Skip to Content
You are currently on the new version of our website. Access the old version .

Future Internet

Future Internet is an international, peer-reviewed, open access journal on internet technologies and the information society, published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Computer Science, Information Systems)

All Articles (3,277)

The sport of orienteering requires athletes to reach specific points marked on a map (called “punching stations”) in the shortest possible time. Currently, the recording of athletes’ passages through the stations is performed offline. In addition to delays in generating intermediate and final rankings, this approach often leads to detection errors and potential cheating related to the lack of authentication of an athlete’s actual passage at a given station. This paper aims to define and design a system enabling three main functionalities: 1. real-time monitoring of athletes’ trajectories through a sensor network connected to control stations; 2. multi-modal authentication of athletes at each station; and 3. immutable certification of each athlete’s passage through blockchain-based recording. System performance is evaluated in terms of wireless network coverage and data collection efficiency across three representative environments: urban, rural, and forested areas. Results are obtained through a measurement campaign for two dedicated wireless technologies: ZigBee for local mesh network and LoRa for long-range links to connect local mesh networks to the cloud over the Internet, which is then accessed by the race organizers. Furthermore, two supporting subsystems are described, addressing athlete authentication and data integrity assurance, as well as a blockchain recording for the overall event management framework. Results are in terms of coverage distances for both technologies, proving highly effective across varied terrains. Field tests demonstrated significant communication capabilities, achieving distances of up to 1800 m in open spaces. Even in challenging, dense wooded environments, the system maintained reliable coverage, reaching transmission distances of up to 600 m. Local ZigBee links between punching stations achieved ranges between 70 and 150 m in forested areas. These findings validate the use of a wireless multi-hop network designed to minimize packet loss and ensure reliable data delivery in competitive scenarios. The feasibility is also investigated in terms of WSN performance, delay analysis and power consumption evaluation.

16 February 2026

Orienteering view of the proposed monitoring system.

Deep Learning-Based Video Watermarking: A Robust Framework for Spatial–Temporal Embedding and Retrieval

  • Antonio Cedillo-Hernandez,
  • Lydia Velazquez-Garcia and
  • Manuel Cedillo-Hernandez
  • + 1 author

This paper introduces a deep learning-based framework for video watermarking that achieves robust, imperceptible, and fast embedding under a wide range of visual and temporal conditions. The proposed method is organized into seven modules that collaboratively perform frame encoding, semantic region analysis, block selection, watermark transformation, and spatiotemporal injection, followed by decoding and multi-objective optimization. A key component of the framework is its ability to learn a visual importance map, which guides a saliency-based block selection strategy. This allows the model to embed the watermark in perceptually redundant regions while minimizing distortion. To enhance resilience, the watermark is distributed across multiple frames, leveraging temporal redundancy to improve recovery under frame loss, insertion, and reordering. Experimental evaluations conducted on a large-scale video dataset demonstrate that the proposed method achieves high fidelity, while preserving low decoding error rates under compression, noise, and temporal distortions. The proposed method operates processing 38 video frames per second on a standard GPU. Additional ablation studies confirm the contribution of each module to the system’s robustness. This framework offers a promising solution for watermarking in streaming, surveillance, and content verification applications.

16 February 2026

Overall architecture of the proposed deep learning-based video watermarking framework. The pipeline is applied over frames in a clip; subscripts t are omitted in the diagram for readability.

With the rapid growth and diversification of malware, accurate multi-class detection remains challenging due to severe class imbalance and limited labeled data. This work presents an image-based malware classification framework that converts executable binaries into 64×64 grayscale images, employs class-wise DCGAN augmentation to mitigate severe imbalance (initial imbalance ratio >12 across 31 families, N9300), and trains a hybrid CNN–Transformer model that captures both local texture features and long-range contextual dependencies. The DCGAN generator produces high-fidelity synthetic samples, evaluated using Inception Score (IS) =3.43, Fréchet Inception Distance (FID) =10.99, and Kernel Inception Distance (KID) =0.0022, and is used to equalize class counts before classifier training. On the blended dataset the proposed GAN-balanced CNN–Transformer achieves an overall accuracy of 95% and a macro-averaged F1-score of 0.95; the hybrid model also attains validation accuracy of ≈94% while substantially improving minority-class recognition. Compared to CNN-only and Transformer-only baselines, the hybrid approach yields more stable convergence, reduced overfitting, and stronger per-class performance, while remaining feasible for practical deployment. These results demonstrate that DCGAN-driven balancing combined with CNN–Transformer feature fusion is an effective, scalable solution for robust malware family classification.

14 February 2026

Pipeline for converting malware binary files into grayscale image representations used for deep learning-based classification.

A Comparative Analysis of Self-Aware Reinforcement Learning Models for Real-Time Intrusion Detection in Fog Networks

  • Nyashadzashe Tamuka,
  • Topside Ehleketani Mathonsi and
  • Tshimangadzo Mavin Tshilongamulenzhe
  • + 3 authors

Fog computing extends cloud services to the network edge, enabling low-latency processing for Internet of Things (IoT) applications. However, this distributed approach is vulnerable to a wide range of attacks, necessitating advanced intrusion detection systems (IDSs) that operate under resource constraints. This study proposes integrating self-awareness (online learning and concept drift adaptation) into a lightweight RL (reinforcement learning)-based IDS for fog networks and quantitatively comparing it with non-RL static thresholds and bandit-based approaches in real time. Novel self-aware reinforcement learning (RL) models, the Hierarchical Adaptive Thompson Sampling–Reinforcement Learning (HATS-RL) model, and the Federated Hierarchical Adaptive Thompson Sampling–Reinforcement Learning (F-HATS-RL), were proposed for real-time intrusion detection in a fog network. These self-aware RL policies integrated online uncertainty estimation and concept-drift detection to adapt to evolving attacks. The RL models were benchmarked against the static threshold (ST) model and a widely adopted linear bandit (Linear Upper Confidence Bound/LinUCB). A realistic fog network simulator with heterogeneous nodes and streaming traffic, including multi-type attack bursts and gradual concept drift, was established. The models’ detection performance was compared using metrics including latency, energy consumption, detection accuracy, and the area under the precision–recall curve (AUPR) and the area under the receiver operating characteristic curve (AUROC). Notably, the federated self-aware agent (F-HATS-RL) achieved the best AUROC (0.933) and AUPR (0.857), with a latency of 0.27 ms and the lowest energy consumption of 0.0137 mJ, indicating its ability to detect intrusions in fog networks with minimal energy. The findings suggest that self-aware RL agents can detect traffic–dynamic attack methods and adapt accordingly, resulting in more stable long-term performance. By contrast, a static model’s accuracy degrades under drift.

14 February 2026

The study’s simulation stages.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

IoT Security
Reprint

IoT Security

Threat Detection, Analysis and Defense
Editors: Olivier Markowitch, Jean-Michel Dricot
Virtual Reality and Metaverse
Reprint

Virtual Reality and Metaverse

Impact on the Digital Transformation of Society II
Editors: Diego Vergara

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Future Internet - ISSN 1999-5903