Journal Description
Future Internet
Future Internet
is an international, peer-reviewed, open access journal on Internet technologies and the information society, published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), Ei Compendex, dblp, Inspec, and other databases.
- Journal Rank: CiteScore - Q1 (Computer Networks and Communications)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 11.8 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.4 (2022);
5-Year Impact Factor:
3.4 (2022)
Latest Articles
Optimizing Session-Aware Recommenders: A Deep Dive into GRU-Based Latent Interaction Integration
Future Internet 2024, 16(2), 51; https://doi.org/10.3390/fi16020051 - 01 Feb 2024
Abstract
This study introduces session-aware recommendation models, leveraging GRU (Gated Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary advancement is enhancing latent context, a critical factor for boosting recommendation accuracy. We address the existing models’ rigidity by dynamically blending
[...] Read more.
This study introduces session-aware recommendation models, leveraging GRU (Gated Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary advancement is enhancing latent context, a critical factor for boosting recommendation accuracy. We address the existing models’ rigidity by dynamically blending short-term (most recent) and long-term (historical) preferences, moving beyond static period definitions. Our approaches, pre-combination (LCII-Pre) and post-combination (LCII-Post), with fixed (Fix) and flexible learning (LP) weight configurations, are thoroughly evaluated. We conducted extensive experiments to assess our models’ performance on public datasets such as Amazon and MovieLens 1M. Notably, on the MovieLens 1M dataset, LCII-PreFix achieved a 1.85% and 2.54% higher Recall@20 than II-RNN and BERT4Rec+st+TSA, respectively. On the Steam dataset, LCII-PostLP outperformed these models by 18.66% and 5.5%. Furthermore, on the Amazon dataset, LCII showed a 2.59% and 1.89% improvement in Recall@20 over II-RNN and CAII. These results affirm the significant enhancement our models bring to session-aware recommendation systems, showcasing their potential for both academic and practical applications in the field.
Full article
(This article belongs to the Special Issue Deep Learning in Recommender Systems)
►
Show Figures
Open AccessArticle
Enhancing Smart City Safety and Utilizing AI Expert Systems for Violence Detection
by
, , , , , , and
Future Internet 2024, 16(2), 50; https://doi.org/10.3390/fi16020050 - 31 Jan 2024
Abstract
Violent attacks have been one of the hot issues in recent years. In the presence of closed-circuit televisions (CCTVs) in smart cities, there is an emerging challenge in apprehending criminals, leading to a need for innovative solutions. In this paper, the propose a
[...] Read more.
Violent attacks have been one of the hot issues in recent years. In the presence of closed-circuit televisions (CCTVs) in smart cities, there is an emerging challenge in apprehending criminals, leading to a need for innovative solutions. In this paper, the propose a model aimed at enhancing real-time emergency response capabilities and swiftly identifying criminals. This initiative aims to foster a safer environment and better manage criminal activity within smart cities. The proposed architecture combines an image-to-image stable diffusion model with violence detection and pose estimation approaches. The diffusion model generates synthetic data while the object detection approach uses YOLO v7 to identify violent objects like baseball bats, knives, and pistols, complemented by MediaPipe for action detection. Further, a long short-term memory (LSTM) network classifies the action attacks involving violent objects. Subsequently, an ensemble consisting of an edge device and the entire proposed model is deployed onto the edge device for real-time data testing using a dash camera. Thus, this study can handle violent attacks and send alerts in emergencies. As a result, our proposed YOLO model achieves a mean average precision (MAP) of 89.5% for violent attack detection, and the LSTM classifier model achieves an accuracy of 88.33% for violent action classification. The results highlight the model’s enhanced capability to accurately detect violent objects, particularly in effectively identifying violence through the implemented artificial intelligence system.
Full article
(This article belongs to the Special Issue Challenges in Real-Time Intelligent Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
A New Dynamic Game-Based Pricing Model for Cloud Environment
Future Internet 2024, 16(2), 49; https://doi.org/10.3390/fi16020049 - 31 Jan 2024
Abstract
Resource pricing in cloud computing has become one of the main challenges for cloud providers. The challenge is determining a fair and appropriate price to satisfy users and resource providers. To establish a justifiable price, it is imperative to take into account the
[...] Read more.
Resource pricing in cloud computing has become one of the main challenges for cloud providers. The challenge is determining a fair and appropriate price to satisfy users and resource providers. To establish a justifiable price, it is imperative to take into account the circumstances and requirements of both the provider and the user. This research tries to provide a pricing mechanism for cloud computing based on game theory. The suggested approach considers three aspects: the likelihood of faults, the interplay among virtual machines, and the amount of energy used, in order to determine a justifiable price. In the game that is being proposed, the provider is responsible for determining the price of the virtual machine that can be made available to the user on each physical machine. The user, on the other hand, has the authority to choose between the virtual machines that are offered in order to run their application. The whole game is implemented as a function of the resource broker component. The proposed mechanism is simulated and evaluated using the CloudSim simulator. Its performance is compared with several previous recent mechanisms. The results indicate that the suggested mechanism has successfully identified a more rational price for both the user and the provider, consequently enhancing the overall profitability of the cloud system.
Full article
(This article belongs to the Special Issue Cloud Computing and High Performance Computing (HPC) Advances for Next Generation Internet)
►▼
Show Figures

Figure 1
Open AccessArticle
Efficient Privacy-Aware Forwarding for Enhanced Communication Privacy in Opportunistic Mobile Social Networks
by
and
Future Internet 2024, 16(2), 48; https://doi.org/10.3390/fi16020048 - 31 Jan 2024
Abstract
Opportunistic mobile social networks (OMSNs) have become increasingly popular in recent years due to the rise of social media and smartphones. However, message forwarding and sharing social information through intermediary nodes on OMSNs raises privacy concerns as personal data and activities become more
[...] Read more.
Opportunistic mobile social networks (OMSNs) have become increasingly popular in recent years due to the rise of social media and smartphones. However, message forwarding and sharing social information through intermediary nodes on OMSNs raises privacy concerns as personal data and activities become more exposed. Therefore, maintaining privacy without limiting efficient social interaction is a challenging task. This paper addresses this specific problem of safeguarding user privacy during message forwarding by integrating a privacy layer on the state-of-the-art OMSN routing decision models that empowers users to control their message dissemination. Mainly, we present three user-centric privacy-aware forwarding modes guiding the selection of the next hop in the forwarding path based on social metrics such as common friends and exchanged messages between OMSN nodes. More specifically, we define different social relationship strengths approximating real-world scenarios (familiar, weak tie, stranger) and trust thresholds to give users choices on trust levels for different social contexts and guide the routing decisions. We evaluate the privacy enhancement and network performance through extensive simulations using ONE simulator for several routing schemes (Epidemic, Prophet, and Spray and Wait) and different movement models (random way, bus, and working day). We demonstrate that our modes can enhance privacy by up to 45% in various network scenarios, as measured by the reduction in the likelihood of unintended message propagation, while keeping the message-delivery process effective and efficient.
Full article
(This article belongs to the Special Issue Information and Future Internet Security, Trust and Privacy II)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhancing Urban Resilience: Smart City Data Analyses, Forecasts, and Digital Twin Techniques at the Neighborhood Level
Future Internet 2024, 16(2), 47; https://doi.org/10.3390/fi16020047 - 30 Jan 2024
Abstract
►▼
Show Figures
Smart cities, leveraging advanced data analytics, predictive models, and digital twin techniques, offer a transformative model for sustainable urban development. Predictive analytics is critical to proactive planning, enabling cities to adapt to evolving challenges. Concurrently, digital twin techniques provide a virtual replica of
[...] Read more.
Smart cities, leveraging advanced data analytics, predictive models, and digital twin techniques, offer a transformative model for sustainable urban development. Predictive analytics is critical to proactive planning, enabling cities to adapt to evolving challenges. Concurrently, digital twin techniques provide a virtual replica of the urban environment, fostering real-time monitoring, simulation, and analysis of urban systems. This study underscores the significance of real-time monitoring, simulation, and analysis of urban systems to support test scenarios that identify bottlenecks and enhance smart city efficiency. This paper delves into the crucial roles of citizen report analytics, prediction, and digital twin technologies at the neighborhood level. The study integrates extract, transform, load (ETL) processes, artificial intelligence (AI) techniques, and a digital twin methodology to process and interpret urban data streams derived from citizen interactions with the city’s coordinate-based problem mapping platform. Using an interactive GeoDataFrame within the digital twin methodology, dynamic entities facilitate simulations based on various scenarios, allowing users to visualize, analyze, and predict the response of the urban system at the neighborhood level. This approach reveals antecedent and predictive patterns, trends, and correlations at the physical level of each city area, leading to improvements in urban functionality, resilience, and resident quality of life.
Full article

Graphical abstract
Open AccessArticle
Context-Aware Behavioral Tips to Improve Sleep Quality via Machine Learning and Large Language Models
Future Internet 2024, 16(2), 46; https://doi.org/10.3390/fi16020046 - 30 Jan 2024
Abstract
As several studies demonstrate, good sleep quality is essential for individuals’ well-being, as a lack of restoring sleep may disrupt different physical, mental, and social dimensions of health. For this reason, there is increasing interest in tools for the monitoring of sleep based
[...] Read more.
As several studies demonstrate, good sleep quality is essential for individuals’ well-being, as a lack of restoring sleep may disrupt different physical, mental, and social dimensions of health. For this reason, there is increasing interest in tools for the monitoring of sleep based on personal sensors. However, there are currently few context-aware methods to help individuals to improve their sleep quality through behavior change tips. In order to tackle this challenge, in this paper, we propose a system that couples machine learning algorithms and large language models to forecast the next night’s sleep quality, and to provide context-aware behavior change tips to improve sleep. In order to encourage adherence and to increase trust, our system includes the use of large language models to describe the conditions that the machine learning algorithm finds harmful to sleep health, and to explain why the behavior change tips are generated as a consequence. We develop a prototype of our system, including a smartphone application, and perform experiments with a set of users. Results show that our system’s forecast is correlated to the actual sleep quality. Moreover, a preliminary user study suggests that the use of large language models in our system is useful in increasing trust and engagement.
Full article
(This article belongs to the Special Issue Explainability, Reliability and Trust in Smart Internet of Things Healthcare Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Non-Profiled Unsupervised Horizontal Iterative Attack against Hardware Elliptic Curve Scalar Multiplication Using Machine Learning
Future Internet 2024, 16(2), 45; https://doi.org/10.3390/fi16020045 - 29 Jan 2024
Abstract
►▼
Show Figures
While IoT technology makes industries, cities, and homes smarter, it also opens the door to security risks. With the right equipment and physical access to the devices, the attacker can leverage side-channel information, like timing, power consumption, or electromagnetic emanation, to compromise cryptographic
[...] Read more.
While IoT technology makes industries, cities, and homes smarter, it also opens the door to security risks. With the right equipment and physical access to the devices, the attacker can leverage side-channel information, like timing, power consumption, or electromagnetic emanation, to compromise cryptographic operations and extract the secret key. This work presents a side channel analysis of a cryptographic hardware accelerator for the Elliptic Curve Scalar Multiplication operation, implemented in a Field-Programmable Gate Array and as an Application-Specific Integrated Circuit. The presented framework consists of initial key extraction using a state-of-the-art statistical horizontal attack and is followed by regularized Artificial Neural Networks, which take, as input, the partially incorrect key guesses from the horizontal attack and correct them iteratively. The initial correctness of the horizontal attack, measured as the fraction of correctly extracted bits of the secret key, was improved from 75% to 98% by applying the iterative learning.
Full article

Figure 1
Open AccessArticle
Computer Vision and Machine Learning-Based Predictive Analysis for Urban Agricultural Systems
Future Internet 2024, 16(2), 44; https://doi.org/10.3390/fi16020044 - 28 Jan 2024
Abstract
►▼
Show Figures
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor measurements from thermal images within this context. This research focuses
[...] Read more.
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor measurements from thermal images within this context. This research focuses on using thermal images to forecast sensor measurements of relative air humidity, soil moisture, and light intensity, which are integral to plant health and productivity in urban farming environments. The results indicate a higher accuracy in forecasting relative air humidity and soil moisture levels, with Mean Absolute Percentage Errors (MAPEs) within the range of 10–12%. These findings correlate with the strong dependency of these parameters on thermal patterns, which are effectively extracted by the CNNs. In contrast, the forecasting of light intensity proved to be more challenging, yielding lower accuracy. The reduced performance is likely due to the more complex and variable factors that affect light in urban environments. The insights gained from the higher predictive accuracy for relative air humidity and soil moisture may inform targeted interventions for urban farming practices, while the lower accuracy in light intensity forecasting highlights the need for further research into the integration of additional data sources or hybrid modeling approaches. The conclusion suggests that the integration of these technologies can significantly enhance the predictive maintenance of plant health, leading to more sustainable and efficient urban farming practices. However, the study also acknowledges the challenges in implementing these technologies in urban agricultural models.
Full article

Figure 1
Open AccessArticle
A Spectral Gap-Based Topology Control Algorithm for Wireless Backhaul Networks
by
, , and
Future Internet 2024, 16(2), 43; https://doi.org/10.3390/fi16020043 - 26 Jan 2024
Abstract
►▼
Show Figures
This paper presents the spectral gap-based topology control algorithm (SGTC) for wireless backhaul networks, a novel approach that employs the Laplacian Spectral Gap (LSG) to find expander-like graphs that optimize the topology of the network in terms of robustness, diameter, energy cost, and
[...] Read more.
This paper presents the spectral gap-based topology control algorithm (SGTC) for wireless backhaul networks, a novel approach that employs the Laplacian Spectral Gap (LSG) to find expander-like graphs that optimize the topology of the network in terms of robustness, diameter, energy cost, and network entropy. The latter measures the network’s ability to promote seamless traffic offloading from the Macro Base Stations to smaller cells by providing a high diversity of shortest paths connecting all the stations. Given the practical constraints imposed by cellular technologies, the proposed algorithm uses simulated annealing to search for feasible network topologies with a large LSG. Then, it computes the Pareto front of the set of feasible solutions found during the annealing process when considering robustness, diameter, and entropy as objective functions. The algorithm’s result is the Pareto efficient solution that minimizes energy cost. A set of experimental results shows that by optimizing the LSG, the proposed algorithm simultaneously optimizes the set of desirable topological properties mentioned above. The results also revealed that generating networks with good spectral expansion is possible even under the restrictions imposed by current wireless technologies. This is a desirable feature because these networks have strong connectivity properties even if they do not have a large number of links.
Full article

Figure 1
Open AccessArticle
TinyML Algorithms for Big Data Management in Large-Scale IoT Systems
by
, , , , , and
Future Internet 2024, 16(2), 42; https://doi.org/10.3390/fi16020042 - 25 Jan 2024
Abstract
In the context of the Internet of Things (IoT), Tiny Machine Learning (TinyML) and Big Data, enhanced by Edge Artificial Intelligence, are essential for effectively managing the extensive data produced by numerous connected devices. Our study introduces a set of TinyML algorithms designed
[...] Read more.
In the context of the Internet of Things (IoT), Tiny Machine Learning (TinyML) and Big Data, enhanced by Edge Artificial Intelligence, are essential for effectively managing the extensive data produced by numerous connected devices. Our study introduces a set of TinyML algorithms designed and developed to improve Big Data management in large-scale IoT systems. These algorithms, named TinyCleanEDF, EdgeClusterML, CompressEdgeML, CacheEdgeML, and TinyHybridSenseQ, operate together to enhance data processing, storage, and quality control in IoT networks, utilizing the capabilities of Edge AI. In particular, TinyCleanEDF applies federated learning for Edge-based data cleaning and anomaly detection. EdgeClusterML combines reinforcement learning with self-organizing maps for effective data clustering. CompressEdgeML uses neural networks for adaptive data compression. CacheEdgeML employs predictive analytics for smart data caching, and TinyHybridSenseQ concentrates on data quality evaluation and hybrid storage strategies. Our experimental evaluation of the proposed techniques includes executing all the algorithms in various numbers of Raspberry Pi devices ranging from one to ten. The experimental results are promising as we outperform similar methods across various evaluation metrics. Ultimately, we anticipate that the proposed algorithms offer a comprehensive and efficient approach to managing the complexities of IoT, Big Data, and Edge AI.
Full article
(This article belongs to the Special Issue Internet of Things and Cyber-Physical Systems II)
►▼
Show Figures

Figure 1
Open AccessArticle
Beyond Lexical Boundaries: LLM-Generated Text Detection for Romanian Digital Libraries
by
and
Future Internet 2024, 16(2), 41; https://doi.org/10.3390/fi16020041 - 25 Jan 2024
Abstract
Machine-generated content reshapes the landscape of digital information; hence, ensuring the authenticity of texts within digital libraries has become a paramount concern. This work introduces a corpus of approximately 60 k Romanian documents, including human-written samples as well as generated texts using six
[...] Read more.
Machine-generated content reshapes the landscape of digital information; hence, ensuring the authenticity of texts within digital libraries has become a paramount concern. This work introduces a corpus of approximately 60 k Romanian documents, including human-written samples as well as generated texts using six distinct Large Language Models (LLMs) and three different generation methods. Our robust experimental dataset covers five domains, namely books, news, legal, medical, and scientific publications. The exploratory text analysis revealed differences between human-authored and artificially generated texts, exposing the intricacies of lexical diversity and textual complexity. Since Romanian is a less-resourced language requiring dedicated detectors on which out-of-the-box solutions do not work, this paper introduces two techniques for discerning machine-generated texts. The first method leverages a Transformer-based model to categorize texts as human or machine-generated, while the second method extracts and examines linguistic features, such as identifying the top textual complexity indices via Kruskal–Wallis mean rank and computes burstiness, which are further fed into a machine-learning model leveraging an extreme gradient-boosting decision tree. The methods show competitive performance, with the first technique’s results outperforming the second one in two out of five domains, reaching an F1 score of 0.96. Our study also includes a text similarity analysis between human-authored and artificially generated texts, coupled with a SHAP analysis to understand which linguistic features contribute more to the classifier’s decision.
Full article
(This article belongs to the Special Issue Digital Analysis in Digital Humanities)
►▼
Show Figures

Figure 1
Open AccessReview
A Holistic Analysis of Internet of Things (IoT) Security: Principles, Practices, and New Perspectives
Future Internet 2024, 16(2), 40; https://doi.org/10.3390/fi16020040 - 24 Jan 2024
Abstract
Driven by the rapid escalation of its utilization, as well as ramping commercialization, Internet of Things (IoT) devices increasingly face security threats. Apart from denial of service, privacy, and safety concerns, compromised devices can be used as enablers for committing a variety of
[...] Read more.
Driven by the rapid escalation of its utilization, as well as ramping commercialization, Internet of Things (IoT) devices increasingly face security threats. Apart from denial of service, privacy, and safety concerns, compromised devices can be used as enablers for committing a variety of crime and e-crime. Despite ongoing research and study, there remains a significant gap in the thorough analysis of security challenges, feasible solutions, and open secure problems for IoT. To bridge this gap, we provide a comprehensive overview of the state of the art in IoT security with a critical investigation-based approach. This includes a detailed analysis of vulnerabilities in IoT-based systems and potential attacks. We present a holistic review of the security properties required to be adopted by IoT devices, applications, and services to mitigate IoT vulnerabilities and, thus, successful attacks. Moreover, we identify challenges to the design of security protocols for IoT systems in which constituent devices vary markedly in capability (such as storage, computation speed, hardware architecture, and communication interfaces). Next, we review existing research and feasible solutions for IoT security. We highlight a set of open problems not yet addressed among existing security solutions. We provide a set of new perspectives for future research on such issues including secure service discovery, on-device credential security, and network anomaly detection. We also provide directions for designing a forensic investigation framework for IoT infrastructures to inspect relevant criminal cases, execute a cyber forensic process, and determine the facts about a given incident. This framework offers a means to better capture information on successful attacks as part of a feedback mechanism to thwart future vulnerabilities and threats. This systematic holistic review will both inform on current challenges in IoT security and ideally motivate their future resolution.
Full article
(This article belongs to the Special Issue Cyber Security in the New "Edge Computing + IoT" World)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review
Future Internet 2024, 16(2), 39; https://doi.org/10.3390/fi16020039 - 24 Jan 2024
Abstract
►▼
Show Figures
Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in
[...] Read more.
Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach.
Full article

Figure 1
Open AccessArticle
Refined Semi-Supervised Modulation Classification: Integrating Consistency Regularization and Pseudo-Labeling Techniques
Future Internet 2024, 16(2), 38; https://doi.org/10.3390/fi16020038 - 23 Jan 2024
Abstract
Automatic modulation classification (AMC) plays a crucial role in wireless communication by identifying the modulation scheme of received signals, bridging signal reception and demodulation. Its main challenge lies in performing accurate signal processing without prior information. While deep learning has been applied to
[...] Read more.
Automatic modulation classification (AMC) plays a crucial role in wireless communication by identifying the modulation scheme of received signals, bridging signal reception and demodulation. Its main challenge lies in performing accurate signal processing without prior information. While deep learning has been applied to AMC, its effectiveness largely depends on the availability of labeled samples. To address the scarcity of labeled data, we introduce a novel semi-supervised AMC approach combining consistency regularization and pseudo-labeling. This method capitalizes on the inherent data distribution of unlabeled data to supplement the limited labeled data. Our approach involves a dual-component objective function for model training: one part focuses on the loss from labeled data, while the other addresses the regularized loss for unlabeled data, enhanced through two distinct levels of data augmentation. These combined losses concurrently refine the model parameters. Our method demonstrates superior performance over established benchmark algorithms, such as decision trees (DTs), support vector machines (SVMs), pi-models, and virtual adversarial training (VAT). It exhibits a marked improvement in the recognition accuracy, particularly when the proportion of labeled samples is as low as 1–4%.
Full article
(This article belongs to the Special Issue Key Intelligent Technologies for Wireless Communications and Internet of Things)
►▼
Show Figures

Figure 1
Open AccessArticle
DDPG-MPCC: An Experience Driven Multipath Performance Oriented Congestion Control
Future Internet 2024, 16(2), 37; https://doi.org/10.3390/fi16020037 - 23 Jan 2024
Abstract
We introduce a novel multipath data transport approach at the transport layer referred to as ‘Deep Deterministic Policy Gradient for Multipath Performance-oriented Congestion Control’ (DDPG-MPCC), which leverages deep reinforcement learning to enhance congestion management in multipath networks. Our method combines DDPG
[...] Read more.
We introduce a novel multipath data transport approach at the transport layer referred to as ‘Deep Deterministic Policy Gradient for Multipath Performance-oriented Congestion Control’ (DDPG-MPCC), which leverages deep reinforcement learning to enhance congestion management in multipath networks. Our method combines DDPG with online convex optimization to optimize fairness and performance in simultaneously challenging multipath internet congestion control scenarios. Through experiments by developing kernel implementation, we show how DDPG-MPCC performs compared to the state-of-the-art solutions.
Full article
(This article belongs to the Section Internet of Things)
►▼
Show Figures

Figure 1
Open AccessArticle
Synchronization of Separate Sensors’ Data Transferred through a Local Wi-Fi Network: A Use Case of Human-Gait Monitoring
by
, , , , and
Future Internet 2024, 16(2), 36; https://doi.org/10.3390/fi16020036 - 23 Jan 2024
Abstract
This paper addresses the challenge of synchronizing data acquisition from independent sensor systems in a local network. The network comprises microcontroller-based systems that collect data from physical sensors used for monitoring human gait. The synchronized data are transmitted to a PC or cloud
[...] Read more.
This paper addresses the challenge of synchronizing data acquisition from independent sensor systems in a local network. The network comprises microcontroller-based systems that collect data from physical sensors used for monitoring human gait. The synchronized data are transmitted to a PC or cloud storage through a central controller. The performed research proposes a solution for effectively synchronizing the data acquisition using two alternative data-synchronization approaches. Additionally, it explores techniques to handle varying amounts of data from different sensor types. The experimental research validates the proposed solution by providing trial results and stability evaluations and comparing them to the human-gait-monitoring system requirements. The alternative data-transmission method was used to compare the data-transmission quality and data-loss rate. The developed algorithm allows data acquisition from six pressure sensors and two accelerometer/gyroscope modules, ensuring a 24.6 Hz sampling rate and 1 ms synchronization accuracy. The obtained results prove the algorithm’s suitability for human-gait monitoring under its regular activity. The paper concludes with discussions and key insights derived from the obtained results.
Full article
(This article belongs to the Special Issue Key Intelligent Technologies for Wireless Communications and Internet of Things)
►▼
Show Figures

Graphical abstract
Open AccessArticle
A Bee Colony-Based Optimized Searching Mechanism in the Internet of Things
Future Internet 2024, 16(1), 35; https://doi.org/10.3390/fi16010035 - 22 Jan 2024
Abstract
►▼
Show Figures
The Internet of Things (IoT) consists of complex and dynamically aggregated elements or smart entities that need decentralized supervision for data exchanging throughout different networks. The artificial bee colony (ABC) is utilized in optimization problems for the big data in IoT, cloud and
[...] Read more.
The Internet of Things (IoT) consists of complex and dynamically aggregated elements or smart entities that need decentralized supervision for data exchanging throughout different networks. The artificial bee colony (ABC) is utilized in optimization problems for the big data in IoT, cloud and central repositories. The main limitation during the searching mechanism is that every single food site is compared with every other food site to find the best solution in the neighboring regions. In this way, an extensive number of redundant comparisons are required, which results in a slower convergence rate, greater time consumption and increased delays. This paper presents a solution to optimize search operations with an enhanced ABC (E-ABC) approach. The proposed algorithm compares the best food sites with neighboring sites to exclude poor sources. It achieves an efficient mechanism, where the number of redundant comparisons is decreased during the searching mechanism of the employed bee phase and the onlooker bee phase. The proposed algorithm is implemented in a replication scenario to validate its performance in terms of the mean objective function values for different functions, as well as the probability of availability and the response time. The results prove the superiority of the E-ABC in contrast to its counterparts.
Full article

Figure 1
Open AccessArticle
An Innovative Information Hiding Scheme Based on Block-Wise Pixel Reordering
Future Internet 2024, 16(1), 34; https://doi.org/10.3390/fi16010034 - 22 Jan 2024
Abstract
►▼
Show Figures
Information has been uploaded and downloaded through the Internet, day in and day out, ever since we immersed ourselves in the Internet. Data security has become an area demanding high attention, and one of the most efficient techniques for protecting data is data
[...] Read more.
Information has been uploaded and downloaded through the Internet, day in and day out, ever since we immersed ourselves in the Internet. Data security has become an area demanding high attention, and one of the most efficient techniques for protecting data is data hiding. In recent studies, it has been shown that the indices of a codebook can be reordered to hide secret bits. The hiding capacity of the codeword index reordering scheme increases when the size of the codebook increases. Since the codewords in the codebook are not modified, the visual performance of compressed images is retained. We propose a novel scheme making use of the fundamental principle of the codeword index reordering technique to hide secret data in encrypted images. By observing our experimental results, we can see that the obtained embedding capacity of 197,888 is larger than other state-of-the-art schemes. Secret data can be extracted when a receiver owns a data hiding key, and the image can be recovered when a receiver owns an encryption key.
Full article

Figure 1
Open AccessReview
Overview of Protocols and Standards for Wireless Sensor Networks in Critical Infrastructures
by
, , , , and
Future Internet 2024, 16(1), 33; https://doi.org/10.3390/fi16010033 - 21 Jan 2024
Abstract
This paper highlights the crucial role of wireless sensor networks (WSNs) in the surveillance and administration of critical infrastructures (CIs), contributing to their reliability, security, and operational efficiency. It starts by detailing the international significance and structural aspects of these infrastructures, mentions the
[...] Read more.
This paper highlights the crucial role of wireless sensor networks (WSNs) in the surveillance and administration of critical infrastructures (CIs), contributing to their reliability, security, and operational efficiency. It starts by detailing the international significance and structural aspects of these infrastructures, mentions the market tension in recent years in the gradual development of wireless networks for industrial applications, and proceeds to categorize WSNs and examine the protocols and standards of WSNs in demanding environments like critical infrastructures, drawing on the recent literature. This review concentrates on the protocols and standards utilized in WSNs for critical infrastructures, and it concludes by identifying a notable gap in the literature concerning quality standards for equipment used in such infrastructures.
Full article
(This article belongs to the Special Issue Applications of Wireless Sensor Networks and Internet of Things)
►▼
Show Figures

Figure 1
Open AccessReview
A Holistic Review of Machine Learning Adversarial Attacks in IoT Networks
Future Internet 2024, 16(1), 32; https://doi.org/10.3390/fi16010032 - 19 Jan 2024
Abstract
With the rapid advancements and notable achievements across various application domains, Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem. Among these use cases is IoT security, where numerous systems are deployed to identify or thwart attacks,
[...] Read more.
With the rapid advancements and notable achievements across various application domains, Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem. Among these use cases is IoT security, where numerous systems are deployed to identify or thwart attacks, including intrusion detection systems (IDSs), malware detection systems (MDSs), and device identification systems (DISs). Machine Learning-based (ML-based) IoT security systems can fulfill several security objectives, including detecting attacks, authenticating users before they gain access to the system, and categorizing suspicious activities. Nevertheless, ML faces numerous challenges, such as those resulting from the emergence of adversarial attacks crafted to mislead classifiers. This paper provides a comprehensive review of the body of knowledge about adversarial attacks and defense mechanisms, with a particular focus on three prominent IoT security systems: IDSs, MDSs, and DISs. The paper starts by establishing a taxonomy of adversarial attacks within the context of IoT. Then, various methodologies employed in the generation of adversarial attacks are described and classified within a two-dimensional framework. Additionally, we describe existing countermeasures for enhancing IoT security against adversarial attacks. Finally, we explore the most recent literature on the vulnerability of three ML-based IoT security systems to adversarial attacks.
Full article
(This article belongs to the Special Issue AI and Security in 5G Cooperative Cognitive Radio Networks)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Future Internet Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Computers, Energies, Future Internet, Information, Mathematics
Research on Blockchain Technology for Peer-to-Peer (P2P) Energy Trading
Topic Editors: Pierre-Martin Tardif, Brahim El Bhiri, Bilal Abu-Salih, Kenji TanakaDeadline: 29 February 2024
Topic in
Data, Future Internet, Information, Mathematics, Symmetry
Application of Deep Learning Method in 6G Communication Technology
Topic Editors: Mohamed Abouhawwash, K. VenkatachalamDeadline: 31 March 2024
Topic in
AI, Algorithms, BDCC, Future Internet, Informatics, Information, Languages, Publications
AI Chatbots: Threat or Opportunity?
Topic Editors: Antony Bryant, Roberto Montemanni, Min Chen, Paolo Bellavista, Kenji Suzuki, Jeanine Treffers-DallerDeadline: 30 April 2024
Topic in
Drones, Electronics, Future Internet, Information, Mathematics
Future Internet Architecture: Difficulties and Opportunities
Topic Editors: Peiying Zhang, Haotong Cao, Keping YuDeadline: 30 June 2024
Conferences
Special Issues
Special Issue in
Future Internet
Machine Learning Perspective in the Convolutional Neural Network Era
Guest Editor: Young Im ChoDeadline: 15 February 2024
Special Issue in
Future Internet
Security for Vehicular Ad Hoc Networks
Guest Editor: Ming-Chin ChuangDeadline: 29 February 2024
Special Issue in
Future Internet
Digital Analysis in Digital Humanities
Guest Editors: Francesca Fallucchi, Ernesto William De LucaDeadline: 10 March 2024
Special Issue in
Future Internet
Security and Privacy Issues in the Internet of Cloud
Guest Editor: Christos KalloniatisDeadline: 20 March 2024
Topical Collections
Topical Collection in
Future Internet
Featured Reviews of Future Internet Research
Collection Editor: Dino Giuli
Topical Collection in
Future Internet
5G/6G Networks for the Internet of Things: Communication Technologies and Challenges
Collection Editor: Sachin Sharma
Topical Collection in
Future Internet
Computer Vision, Deep Learning and Machine Learning with Applications
Collection Editors: Remus Bard, Arpad Gellert
Topical Collection in
Future Internet
Innovative People-Centered Solutions Applied to Industries, Cities and Societies
Collection Editors: Dino Giuli, Filipe Portela

