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Abstract: Image denoising, a fundamental step in image processing, has been widely studied for
several decades. Denoising methods can be classified as internal or external depending on whether
they exploit the internal prior or the external noisy-clean image priors to reconstruct a latent image.
Typically, these two kinds of methods have their respective merits and demerits. Using a single
denoising model to improve existing methods remains a challenge. In this paper, we propose a
method for boosting the denoising effect via the image fusion strategy. This study aims to boost
the performance of two typical denoising methods, the nonlocally centralized sparse representation
(NCSR) and residual learning of deep CNN (DnCNN). These two methods have complementary
strengths and can be chosen to represent internal and external denoising methods, respectively. The
boosting process is formulated as an adaptive weight-based image fusion problem by preserving
the details for the initial denoised images output by the NCSR and the DnCNN. Specifically, we
design two kinds of weights to adaptively reflect the influence of the pixel intensity changes and the
global gradient of the initial denoised images. A linear combination of these two kinds of weights
determines the final weight. The initial denoised images are integrated into the fusion framework to
achieve our denoising results. Extensive experiments show that the proposed method significantly
outperforms the NCSR and the DnCNN both quantitatively and visually when they are considered
as individual methods; similarly, it outperforms several other state-of-the-art denoising methods.
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1. Introduction

Digital images are often corrupted by noise during the acquisition or transmission of the images [1],
rendering these images unsuitable for vision applications such as remote sensing and object recognition.
Therefore, image denoising is a fundamental preprocessing step that aims at suppressing noise and
reproducing the latent high quality image with fine image edges, textures, and rich details. A corrupted
noisy image can be generally described as:

y = x + v (1)

where the column vector x denotes the original clean image, and the v denotes the additive noise.
There are many possible solutions for x of a noisy image y because the noise v is unknown. This is a
fact that encourages scholars to continue seeking for new methods to achieve better denoising results.
Various image denoising studies assume v to be additive white gaussian noise (AWGN). Considering
that AWGN is stationary and uncorrelated among pixels, we made the same assumption for this study.

Denoising methods can be classified into two types [2], internal methods and external ones. The
internal methods denoise an image patch using other noisy image patches within the noisy image,
whereas the external methods denoise a patch using externally clean image patches. In the past several
years, the internal sparsity and the self-similarity of images were usually utilized to achieve better
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denoising performance. Non-local Means (NLM), proposed by Baudes et al. [3,4], is the first filter
that utilizes the non-local self-similarity in images. NLM obtains a denoised patch by first finding
similar patches and obtaining their weighted average. Because searching for similar patches in various
noise levels may be computationally impractical, typically, only a small neighborhood of the patch
is considered for searching possible matches. BM3D [5], a characteristic benchmark method, builds
on the strategy of NLM by grouping similar patches together, and suggests a two-step denoising
algorithm. First, the input image is roughly denoised. Then, the denoising is refined by collecting
similar patches to accomplish a collaborative filtering in the transform domain. This two-step process
contributes to the effectiveness of the BM3D, making it a benchmark denoising algorithm. The nuclear
norm minimization (NNM) method was proposed in [6] for video denoising; nevertheless, it was
greatly restricted by its capability and flexibility in handling many practical denoising problems.
In [7], Gu et al. presented weighted nuclear norm minimization (WNNM). This was a low rank
image denoising approach based on non-local self-similarity; however, it suppressed the low rank
parts and shrank the reconstructed data. The K-SVD [8] denoising utilizes the sparse and redundant
representations of an over-complete learned dictionary to produce a high-quality denoised image. Such
a dictionary was initially learned from a large number of clean images. Later, it was directly learned
from the noisy image patches [9]. Motivated by the idea of similar image patches sharing similar
subdictionaries, Chatterjee et al. [10] proposed the K-LLD. Instead of learning a single over-complete
dictionary for an entire image, K-LLD first performs a clustering step based on the patches using
the local weight function presented in [11]. Then, it separately finds the most optimal dictionary for
each cluster to denoise the patches from each cluster. Similarly, the authors of learned simultaneous
sparse coding (LSSC) [12,13] exploit self-similarities of image patches combined with sparse coding to
further improve the performance of image denoising methods based on dictionary learning using a
single dictionary. Taking advantage of the noise properties of local patches and different channels, a
scheme called trilateral weight sparse coding (TWSC) was proposed in [14]. In this model, the noise
statistics and sparsity priors of images are adaptively characterized by two weight matrices. Based on
the idea of nonlocal similarity and sparse representation of image patches, Dong et al. introduced the
nonlocally centralized sparse representation (NCSR) model [15] and the concept of sparse coding noise,
thereby changing the objective of image denoising to suppressing the sparse coding noise. K-means
clustering is applied to cluster the patches obtained from the given image into K clusters; then, a PCA
sub-dictionary is adaptively learned for each cluster, leading to a more stable sparse representation.
It is a fact that NCSR is efficient in capturing image details and adaptively representing them with
a sparse description. However, since each image patch is considered as an independent unit of the
sparse representation in the dictionary learning and sparse coding stages, ignoring the relationships
among the patches can result in inaccurate sparse coding coefficients.

There was a major leap in denoising performance with the revival of neural networks, which
are trained on large collections of external noisy–clean image priors. Zoran and Weiss [16] presented
gaussian mixture models (GMMs) using a gaussian mixture prior learned from a database of clean
natural image patches to reproduce the latent image. PG prior based denoising (PGPD), a method
developed based on GMMs, was proposed in [17] to exploit the non-local self-similarity of clean natural
images. A convolutional neural network (CNN) for denoising was proposed in [18], where a five-layer
convolutional network was specifically designed to synthesize training samples from abundantly
available clean natural images. Subsequently, fully connected denoising auto-encoders [19] were
suggested for image denoising. Nevertheless, the early CNN-based methods and the auto-encoders
cannot compete with the benchmark BM3D [5] method. In [20], the plain multi-layer perceptron
method is used to tackle image denoising with a multi-layer perceptron trained using training examples.
This achieves a performance that is comparable with that of the BM3D method. Schmidt and Roth
introduced the cascade of shrinkage fields (CSF) [21], which combines a random field-based model
and half-quadratic optimization into a single learning framework to efficiently perform the denoising.
Chen et al. [22,23] further presented the trainable nonlinear reaction diffusion (TNRD) method for
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image denoising problems. It learns the parameters from training data through a gradient descent
inference approach. Both the CSF and TNRD show promise in narrowing the gap between denoising
performance and computational efficiency. However, the specified forms of the priors adopted by these
methods are limited with regard to capturing all the features related to image structure. Inspired by
combining learning-based approaches with the traditional methods, Yang et al. [24] defined a network
known as the BM3D-Net by unrolling the computational pipeline of the classical BM3D algorithm into a
CNN structure. It achieves competitive denoising results and significantly outperforms the traditional
BM3D method. With regard to the development of deep CNNs, some prevalent deep CNN-based
approaches are favorably compared to many other state-of-the-art methods both quantitatively and
visually (e.g., recursively branched deconvolutional network (RBDN) [25], fast and flexible denoising
convolutional neural network (FFDNet) [26], and residual learning of deep CNN (DnCNN) [27]).
Santhanam et al. [25] developed the RBDN for denoising as well as general image-to-image regression.
Proposed by Zhang et al. in [26], by inputting an adjustable noise level map, the FFDNet is able to
achieve visually convincing results on the trade-off between detail preservation and noise reduction
with a single network model. Rather than outputting the denoised image x directly, in the case of the
DnCNN, a residual mapping v̂ is employed to estimate the noise existent in the input image, and the
denoising result is x = y− v̂. Taking advantage of batch normalization [28] and residual learning [29],
the DnCNN can handle several prevailing denoising tasks with high efficiency and performance.

Various image denoising algorithms have produced highly promising results; however,
the experimental results and bound calculations in [30] showed that there is still room for improvement
for a wide range of denoising tasks. Some image patches inherently require external denoising;
however, external image patch prior-based methods do not make good use of the internal self-similarity.
Further improvement of the existing methods or the development of a more effective one using a
single denoising model remains a valid challenge. Therefore, we are interested in combining both
internal and external information to achieve better denoising results. To this end, we choose NCSR and
DnCNN as the initial denoisers by considering their performance and complementary strengths. NCSR,
a powerful internal denoising method that combines nonlocal similarity and sparse representation,
demonstrates exceptionally high performance in terms of denoising regular and repeated images. The
DnCNN possesses an external prior modeling capacity with a deep architecture. This is better for
denoising irregular and smooth regions and is complementary to the internal prior employed by the
NCSR. In other words, the combination of NCSR and DnCNN can strongly explore both the internal
and external information of a given region in the initially denoised images.

In this study, we introduce a denoising effect boosting method based on an image fusion strategy.
The objective is to further improve performance by fusing images that are originally denoised by
NCSR and DnCNN. These methods have complementary strengths and can be chosen to represent
the internal and external denoising methods. Note that, the proposed denoising effect boosting
method is simpler than the deep learning-based one introduced in [31]. In the latter method, a CNN
is leveraged to iteratively learn the denoising model in each stage in the deep boosting method; this
requires massive images for training to achieve an appropriate final result. In contrast, our method
boosts the denoising effect using the image fusion strategy. Without using any training samples, we
compute the weight map along each image pixel to fuse two initially denoised images for an enhanced
denoising effect. In summary, the novelty of our method lies in three aspects. First, our method
combines complementary information from images denoised using two state-of-the-art methods via a
fusion strategy. Second, the strategy is excellent in terms of the preservation of details via a simple
fusion structure. Third, it does not involve a computationally expensive training step. The DnCNN
model used in this study was trained by its original developers, and the parameters are set using
the source code of the model. Furthermore, NCSR is based on the nonlocal self-similarity and sparse
representation of image patches, which need not be learned from external samples. Therefore, our
method does not involve any loop iterations for processing images. The effectiveness of the proposed
denoising booster can be seen in Figure 1, where some test images and the corresponding denoised
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images are shown. The proposed booster performs well with regard to the preservation of the image
details. In the Lena image, the NCSR can recover the eyelashes; however, it produces artifacts on the
eyeball. Though DnCNN produces less artifacts, it tends to create an over-smooth region, with the
eyelashes being almost invisible. However, by combining the strengths of these two methods, our
method can preserve more details without generating many artifacts in the same region. We can also
observe that the line in the House image has a gray intensity in the result obtained using the NCSR.
Nevertheless, it becomes brighter after boosting is performed by combining the denoising performance
of the DnCNN with that of the NCSR.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1. Examples showing the effectiveness of the proposed booster in improving NCSR and
DnCNN. (a) Original image. (b) Noisy image. (c) Input image denoised by NCSR, PSNR = 29.11 dB. (d)
Input image denoised by DnCNN, PSNR = 29.50 dB . (e) Our final denoised result, PSNR = 30.04 dB.
(f) Original image. (g) Corrupted image. (h) Input image denoised by NCSR, PSNR = 32.13 dB. (i) Input
image denoised by DnCNN, PSNR = 32.26 dB. (j) Our final denoised result, PSNR = 33.29 dB.

The boosting process is formulated as an adaptive weight-based image fusion problem to enhance
the contrast and preserve the image details of the initially denoised images. Specifically, unlike many
existing conventional pixel-wise image fusion methods that employ one weight to reflect the pixel
value in the image sequence, our method applies a weight map to adaptively reflect the relative
pixel intensity and the global gradient of the initially denoised images obtained using the NCSR and
the DnCNN, respectively. Taking the overall brightness and neighboring pixels into consideration,
two kinds of weights are designed as follows:

1. The relative pixel intensity based weight is designed to reflect the importance of the processed
pixel value relative to the neighboring pixel intensity and the overall brightness.

2. The global gradient based weight is designed to reflect the importance of the regions with largely
variational pixel values and to suppress the saturated pixels in the initial denoised images.

A linear combination of these two kinds of weights determines the final weight. Two initially
denoised images are incorporated into the fusion framework, and the boosting method can significantly
combine the complementary strengths of the two aforementioned methods to achieve better denoising
results. Several extensive experimental results demonstrate that the proposed method visually and
quantitatively outperforms many other state-of-the-art denoising methods. The key contributions of
this study are summarized as follows:
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• Optimal combination. We introduce a denoising effect boosting method to improve the denoising
performance of a single method, NCSR or DnCNN. Each denoiser has its own characteristics. The
NCSR performs well on images with abundant texture regions and repeated patterns. Owing
to the strategies of residual learning [29] and batch normalization [28], the DnCNN is better for
denoising irregular and smooth regions. A linear combination of NCSR and DnCNN is better
than either of the individual methods as well as a number of other state-of-the-art denoising
methods. To the best of our knowledge, the proposed denoising effect boosting method is the first
of its kind in image denoising.

• Weight design. We introduce two adaptive weights to reflect the relative pixel intensity and
global gradient. One is to emphasize the processed pixel value according to the surrounding pixel
intensities and the overall brightness. The other is to emphasize the areas where pixel values vary
significantly and to suppress saturated pixels in the initial denoised images. Therefore, the weight
design is powerful in preserving image details and enhancing the contrast when denoising.

In Section 2, we first review two denoising methods, NCSR and DnCNN, and highlight their
contributions to our study. In Section 3, we describe the proposed method in detail and present the
proposed adaptive combination algorithm. In Section 4, the experimental results obtained using the
proposed method are compared with those of other state-of-the-art methods. In Section 5, we discuss
the results in detail. Finally, we conclude the study and discuss the directions for future research
in Section 6.

2. Related Work

2.1. Nonlocally Centralized Sparse Representation (NCSR) for Image Denoising

The NCSR algorithm involves decomposing a noisy image into a set of overlapping patches,
learning the sub-dictionaries to sparsely code the image patches, making an estimate of the sparse
coding vectors, and combining the estimated patches to form the denoised image. It can be equivalently
introduced as below.

Using the notation employed in [9], for an image x ∈ RN , we denote xi = Rix as an image
patch of size

√
n×
√

n at pixel i; furthermore, Ri represents a matrix for extracting the patch xi from
x. For a given dictionary D ∈ Rn×M, n ≤ M, xi can be sparsely coded as xi ≈ Dαx,i by solving an
l1-minimization problem written as:

min
αi

P

∑
i=1

(‖xi − Dαi‖2
2 + λ‖αi‖1), (2)

where αi represents the sparse coding coefficient of xi, P is the sum of sparse codes for image x, and λ

is the regularization parameter. The redundant patch-based representation is obtained by overlapping
the image patches. This aims at suppressing the boundary artifacts. The entire image x is denoted by a
set of sparse codes {ax,i}. A straightforward least-square solution to reconstruct x from {ax,i} is

x ≈
(

N

∑
i=1

RT
i Ri

)−1 N

∑
i=1

(RT
i Dαx,i). (3)

For the convenience of expression, let

x ≈ Φ ◦ αx =

(
N

∑
i=1

RT
i Ri

)−1 N

∑
i=1

(RT
i Dαx,i), (4)
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here, αx is the concatenation of all the sparse codes. As mentioned in the model of the noisy image
in Equation (1), the sparsity coding denoising model to recover x from y is obtained by solving a
minimization problem:

αy = arg min
α

(‖xi − D ◦ α‖2
2 + λ‖α‖1). (5)

Then, the image x is estimated as x̂ = D ◦ αy. x̂ is an estimate obtained by averaging each of the
reconstructed patches in xi. The reconstruction of x from y in NCSR algorithm is defined as the
following minimization problem:

αy = arg min
α

(
‖xi − D ◦ α‖2

2

)
+ λ ∑

i
‖αi − βi‖p, (6)

where the regularization parameter λ balances the centralized sparsity and the fidelity terms for
better performance. This should be adaptively determined. βi represents the nonlocal estimate of the
unknown sparse code αi. ‖ αi − βi ‖p is the only regularization term in the aforementioned model. In
the case of p = 1, the estimated βi can be computed from the nonlocal redundancy of natural images,
and this is why the model is called the nonlocally centralized sparse representation (NCSR).

An iterative shrinkage strategy is employed to calculate βi in Equation (6). Let Ωi be denote a set
of patches similar to patch xi and αi,q be the sparse codes of patch xi,q within set Ωi. Thereafter, βi can
be computed as:

βi = ∑
q∈Ωi

wi,qαi,q, (7)

where wi,q is the corresponding weight and it is set inversely proportional to the distance between
patches xi and xi,q:

wi,q =
1

W
exp(−(‖xi − xi,q‖2

2)/h), (8)

where xi = Dαi and xi = Dαi,q, respectively. h is a pre-determined scalar, and W is a normalization
factor. Specifically, with the nonlocal estimate βi taking full advantage of the nonlocal redundancy
of images, the NCSR algorithm naturally integrates the nonlocal self-similarity prior into the sparse
representation framework and shows a promising performance in terms of denoising natural images
with many repetitive structures.

2.2. Residual Learning of Deep CNN-Based Image Denoising Method (DnCNN)

The DnCNN method has been successfully used in image denoising mainly because of the
following three reasons [27]. First, it has a very deep architecture that can increase its own capacity and
flexibility. Second, some advances in training CNN-based models have been achieved; these include
the rectified linear unit (ReLU) [32], the tradeoff between depth and width [33,34], gradient-based
optimization algorithms [35–37] parameter initialization [38], batch normalization [28], and residual
learning [29]. Third, the DnCNN can efficiently perform parallel calculations on modern powerful
GPUs; thus, it has the potential to exhibit an improved run-time performance.

The input of the DnCNN is the mentioned noisy observation in Equation (1). Three types of
network layers are introduced in the DnCNN denoiser; the architecture is illustrated in Figure 2,
where “Conv” stands for convolution, “BN” stands for batch normalization, and “ReLU” stands for
the rectified linear unit. After removing all pooling layers, the size of the convolution filters is 3× 3.
For a certain noise level in Gaussian denoising, it is more appropriate to set the size of the receptive
field of the DnCNN denoiser to 35× 35 with a corresponding depth of 17. Some explanations of the
architecture of the DnCNN denoiser are given below:

1. Conv+ReLU: In the first layer, 64 feature maps are generated by 64 filters with the size of 3× 3× c;
subsequently, rectified linear units (ReLU, max(0, ·)) are utilized for nonlinearity. c denotes the
number of image channels; for a gray image, c = 1, and for a color image, c = 3.
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2. Conv+BN+ReLU: 64 filters of size 3× 3× 64 are used, and batch normalization is added for layers
2 ∼ (D− 1) between the convolution and ReLU. Here, D represents the depth of the DnCNN.

3. Conv: In the last layer, there are c filters with the size of 3× 3× 64 that are used to reconstruct the
final residual image.

Figure 2. The architecture of DnCNN network.

With regard to model training, DnCNN adopts the residual learning strategy and trains a residual
mapping R(y) ≈ v to predict the residual image; furthermore, it uses batch normalization [28] to
accelerate training and reduce the internal covariate shift [28]. Then, the output is obtained using
x = y− R(y). It has been pointed out in [27] that integrating residual learning and batch normalization
is particularly helpful for fast and stable training as well as better denoising performance.

3. Combination of the NCSR and the DnCNN

In this section, we present an image fusion algorithm to optimize the denoising performance of
NCSR and DnCNN using two adaptive weights that reflect the relative pixel intensity and the global
gradient, respectively.

3.1. Fusion of Images Denoised by NCSR and DnCNN

The proposed denoising effect boosting method is a linear combination of NCSR and DnCNN.
That is, we apply two denoisers D1 and D2 to yield two denoised images x̂1 = D1(y) and x̂2 = D2(y).
We compute the desired image x̂ by retaining only the “optimal” parts in images x̂1 and x̂2. This
process is guided by the relative pixel intensity and the global gradient, which are consolidated into a
scalar-valued weight map. The final image x̂ is obtained by fusing x̂1 and x̂2 using weighted blending.
The processes involved in the proposed method are shown in Figure 3.

Figure 3. Overall framework of the proposed method.

To optimally fuse the initial denoised images, we compute a weight map for the n-th input
image as

Wn(i, j) =
W1,n(i, j)p1 ×W2,n(i, j)p2

∑2
n=1 W1,n(i, j)p1 ×W2,n(i, j)p2 + ε

(9)
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where (i, j) represents the image pixels, and ε denotes a very small positive value (e.g., 10−2) to avoid
the denominator being zero. The parameters p1, p2 > 0 are set to determine the extent to which
each weight should be emphasized. The number 2 indicates that there are two input images that
are denoised by NCSR and DnCNN, respectively. W1,n(i, j) and W2,n(i, j) are two adaptive weights
designed to reflect the relative pixel intensity and the global gradient of an input image. A detailed
introduction to the two weights will be given in the following subsections.

Using the weight obtained in Equation (9), the resulting denoised image x̂ can be obtained via a
weighted sum of the initial denoised images:

x̂(i, j) =
2

∑
n=1

Wn(i, j)x̂n(i, j), (10)

where x̂n is the input image denoised by NCSR or DnCNN and x̂n(i, j) is the image pixel intensity.
In this study, the pixel intensity is normalized to the range of [0, 1]. Unfortunately, applying only
Equation (10) will yield an image with several artifacts. This is because the values of the weights are
usually noisy and discontinuous. Therefore, we apply Equation (10) in multiple resolutions using
a pyramidal image decomposition, described in [39], to avoid sharp weight map transitions. The
fusion is carried out in each pyramid separately. Specifically, we set the decomposition level l to 7
based on [39]. For level l, L {x̂n(i, j)}l is the Laplacian pyramid of image x̂n(i, j) and G {Wn(i, j)}l is
the Gaussian pyramid of the weight map Wn(i, j). Note that the value of x̂n(i, j) determines the value
of Wn(i, j). Then, we blend the pixel intensities in different pyramid levels in Equation (11):

L {x̂(i, j)}l =
2

∑
n=1

[
L {x̂n(i, j)}l G {Wn(i, j)}l

]
, (11)

The fused pyramid L {x̂n(i, j)}l is collapsed to obtain the resulting denoised image x̂. The pyramid
approach can weaken the local unnatural transition by dispersing the gray-level mutations of the
whole image, which are caused by the differences in the denoising effects.

3.2. Pixel Intensity Based Weight Design (W1,n(i, j))

In this section, we introduce a weight design W1,n(i, j) that reflects the pixel intensity.
A fundamental aspect of the image fusion algorithm is to design Wn(i, j), which reflects the importance
of the corresponding pixel; furthermore, it needs to reflect the influence of luminance changes, i.e.,
to emphasize bright regions and vice versa. Mertens et al. [39] presented an image quality measure
known as well-exposedness to design a weight in this regard:

Wn(i, j) = exp
(
− (x̂n(i, j)− 0.5)2

2λ2

)
, (12)

where λ equals 0.2. Similar to several intuitive weight designs, the measure uses a Gauss curve and
provides weights to each pixel intensity x̂n(i, j) based on the proximity of the intensity value to 0.5. It
also can be observed that the n-th image is the only variable used in this function. Based on this, we
present our observations regarding the weight design. First, a weight design that employs Equation (12)
cannot assign a large weight to a well-denoised pixel with an intensity value far from 0.5, in bright or
dark regions. Therefore, it cannot well emphasize a bright pixel that is well-denoised in an overall dark
image or a well-denoised dark pixel in an overall bright image. Hence, we propose a weight design that
is relative to the overall image brightness. The proposed weight design assigns a relatively large weight
to a dark pixel in a bright image and vice versa. We define mn as the mean of the pixel intensities of the
n-th initial denoised image, and the weight should emphasize the pixel intensities close to 1−mn. In
the same form as that of Equation (12), this can be written as exp(−(x̂n(i, j)− (1−mn))2). In addition,
we note that several well-denoised pixels should be considered when the brightness of the input
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initial denoised images mn and mn+1 has a large difference. Therefore, we assign a large λn when the
brightness of the two images differs substantially. Finally, the first weight W1,n(i, j) that reflects the
relative pixel intensity can be represented as

W1,n(i, j) = exp
(
− (x̂n(i, j)− (1−mn))2

2λ2
n

)
, (13)

where λn controls the weight as λn = 2α(mn+1 −mn) based on the difference between the two input
images. From Equation (13), it can be seen that when the input image is bright (mn is close to 1), dark
pixels (x̂n(i, j) with a relatively low value) will be assigned a larger weight and vice versa. Moreover, a
large weight is assigned when there is a large difference in the mean brightness of the two input initial
denoised images.

3.3. Global Gradient Based Weight Design (W2,n(i, j))

The image gradient has been widely studied because it conveys rich information regarding image
edges and structures. To explore the complementary information provided by the gradient of the
image pixels, and further understand how to design an efficient weight function, we study the gradient
between the pixel intensity and its frequency. In this subsection, we will discuss how image gradient
information can be exploited to compute the weight map for the initial denoised images.

In a bright image, the pixels values in bright regions are saturated close to 1, whereas they have
a small gradient in the dark regions. The opposite relation holds in the case of a dark image. Some
methods assign large weights to pixels with large gradient values [39–41]. However, the pixel gradient
value is small in smooth regions regardless of the degree of luminance; thus, emphasizing only the
pixel values in regions with large gradients will fail to stress the pixels with a small gradient that are in
well-denoised regions.

In this regard, we design another weight that is based on the gradient of the pixel intensity and its
frequency to emphasize the well-denoised regions regardless of their local contrast. As the proposed
gradient is not a local one (that is, relative to surrounding pixels) but relative to other remote pixels in a
similar frequency range, we refer to the proposed gradient as the global gradient. The global gradient
of a dark image is large because many saturated pixel intensities are close to zero. Therefore, we posit
that an image pixel is in a well-denoised region when it is in a region with a small global gradient. In
other words, pixel values are relatively scarce in this region; thus, the pixels have a large variation in
value compared to that of the surrounding pixels. In contrast with dark images, bright images show
smaller global gradients at lower pixel values. This also indicates that the pixels with a smaller global
gradient are in well-denoised or high-variation regions. Therefore, we give a pixel a larger weight
when it has a smaller global gradient. Considering these observations, we design the second weight:

W2,n(i, j) =
Gn(x̂n(i, j))−1

∑2
n=1 Gn(x̂n(i, j))−1 + ε

, (14)

where Gn(x̂n(i, j)) is the global gradient for pixel intensity x̂n(i, j).

4. Experiments

We have conducted extensive experiments to validate the effectiveness of our approach and
compared it to recently proposed powerful denoising methods. In this section, we first discuss the
datasets and the experimental setup. Then, we evaluate the proposed image fusion denoising method
and its competing methods on the test images.

4.1. Datasets and Experimental Setup

Referring to the two widely used test datasets and the ESPL synthetic image database [42],
we derived our test images to evaluate the denoising performance of the proposed method and that of
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several competing methods. The first datasets contains ten natural images that are commonly used to
study image denoising, including four images with a size of 256× 256 (Cameraman, House, Monarch and
Peppers), and six images with a size of 512× 512 (Barbara, Boat, Couple, Hill, Lena, and Man), as shown
in Figure 4. The second one is a set of 50 natural images selected from the Berkeley segmentation
dataset (BSD) [43]. The third dataset contains 25 high quality synthetic color images obtained from the
Internet, which generally comprised 1920 × 1080 pixels. The images are primarily selected from some
popular animation movies and video games. All of the images contain both repetitive patterns and
irregular textures. Some examples can be seen in Figure 5.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Ten commonly used testing images. (a) Barbara. (b) Boat. (c) Cameraman. (d) Couple.
(e) Hill. (f) House. (g) Lena. (h) Man. (i) Monarch. (j) Peppers.

(a) (b) (c) (d)

Figure 5. (a–d) The 4 imagesin the ESPL database.

We compare the denoising performance of our proposed method with that of seven state-of-the-art
and representative denoising methods, including BM3D [5], NCSR [15], WNNM [7], PGPD [17],
DnCNN [27], TWSC [14], and FFDNet [26]. The denoising results of all the competing algorithms are
generated using the source codes released by their original authors, and we use the default parameters.
To quantitatively evaluate the visual quality of the images denoised via the different methods, the
assessing index peak signal to noise ratio (PSNR) is used. This is defined as follows:

PSNR =
2552

1
MN ∑M

i=1 ∑N
j=1(µi,j − xi,j)2

(dB) (15)
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where µi,j and xi,j represent the pixel values of the restored image and the original image respectively,
and the size of the input image is M × N. We also calculated the structural similarity index
measurement (SSIM) [44], the feature similarity index measurement (FSIM) [45], the visual information
fidelity (VIF) [46] and the information content weighting SSIM (IW-SSIM) [47] of the competing
methods. These metrics provide quality measurements closer to the characteristics of human vision,
enabling further evaluation of the denoising performance. For all these aforementioned indexes, larger
values indicate that the denoised images will appear more similar to their original ones in terms of
human vision. The basic parameter setting is as follows: the number of images N is two and the pixel
intensity In(x, y) is normalized to the range of [0, 1]. We conducted experiments to determine the best
PSNR value with respect to changes in α in the range of [0.25, 1.25]. The experimental results show
that a larger α leads to a higher PSNR. However, it is a comparatively minor improvement. For the
stability and robustness of the experimental results, α is set to the middle value 0.75. The exponents p1

and p2 in Equation (9) determine which of the two weights has a greater influence on the final weight
map. As these two weights play the same role in our weight combination, we set p1 = p2 = 1 to
consider the two weights as equally important. We carried out our experiments in MATLAB (R2018a)
environment using a PC with a 4.00 GHz Intel Core i7-6700K CPU, 16 GB of RAM, and an Nvidia
Quadro M4000 GPU.

4.2. Quantitative Comparison with Other State-of-the-Art Algorithms

In this subsection, we first elucidate the testing of the proposed method and its competing
methods on ten commonly used test images. AWGN, with the noise levels σ = 10, 20, 30, 40, 50, and 60,
is added to these test images. The highest values obtained for each noise level are highlighted in bold
in each of the tables. Table 1 lists the PSNR values for the test images Boat, Couple, Man, Monarch, and
Peppers for the noise level σ = 10, 30, and 50. It can be observed that the best PSNR values are obtained
by our method for all these images. From the average PSNR values shown in Table 2, the following
observations can be made. First, the proposed method surpasses the NCSR, PGPD, and BM3D by a
substantial margin, and it also outperforms WNNM, DnCNN, TWSC, and FFDNet by an average of
approximately 0.31∼0.53 dB for a wide range of noise levels. Second, the proposed method has higher
PSNR values than BM3D, NCSR, PGPD, WNNM, DnCNN, and TWSC, and it is only slightly inferior
to the FFDNet when the noise level σ is set to 60. However, it gradually outperforms the FFDNet when
σ < 60, and the proposed method performs exceptionally with regard to low-noise-level denoising.

Table 1. Comparison of denoising results in terms of PSNR (dB) for five selected test images.

Images Noise Level NCSR WNNM PGPD BM3D DnCNN TWSC FFDNet Proposed

10 34.62 34.77 34.44 34.65 34.65 34.69 34.68 35.90
Boat 30 29.02 29.37 29.15 29.24 29.62 29.39 29.64 29.94

50 26.62 26.99 26.91 26.80 27.35 26.99 27.41 27.59

10 34.37 34.44 34.37 34.43 34.52 34.38 34.54 34.88
Couple 30 28.61 29.03 28.84 28.94 29.35 29.02 29.43 29.67

50 26.14 26.57 26.60 26.39 26.96 26.53 27.04 27.19

10 34.20 34.31 34.11 34.20 34.36 34.24 34.41 35.20
Man 30 28.77 28.99 28.79 28.88 29.32 28.95 29.33 29.65

50 26.64 26.90 26.86 26.80 27.24 26.88 27.26 27.47

10 34.07 34.27 34.05 33.88 33.99 34.05 34.11 36.07
Monarch 30 28.29 28.79 28.47 28.22 28.97 28.57 29.00 29.08

50 25.69 26.22 26.02 25.64 26.65 26.16 26.65 26.77

10 34.90 35.05 34.82 34.98 34.94 34.88 34.85 36.40
Peppers 30 29.12 29.48 29.37 29.26 29.92 29.42 29.79 30.20

50 26.58 27.05 26.89 26.74 27.36 26.88 27.41 27.59
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Table 2. Average PSNRs (dB) of the competing methods evaluated on commonly used test images with
noise level σ = 10, 20, 30, 40, 50 and 60.

NCSR WNNM PGPD BM3D DnCNN TWSC FFDNet Proposed

σ = 10 34.83 34.95 34.72 34.84 34.78 34.85 34.85 35.71
σ = 20 31.38 31.59 31.33 31.42 31.64 31.56 31.70 31.92
σ = 30 29.42 29.79 29.48 29.56 29.84 29.73 29.92 30.22
σ = 40 28.06 28.46 28.25 28.09 28.58 28.42 28.67 28.96
σ = 50 27.02 27.50 27.29 27.16 27.58 27.38 27.69 27.91
σ = 60 26.07 26.67 26.41 26.38 26.25 26.51 26.92 26.90

Table 3 presents the average SSIM and FSIM values obtained for eight methods under six different
noise levels. It can be seen that the proposed method and FFDNet have a comparable performance
with regard to the SSIM. Particularly, in terms of the FSIM, the best result is achieved by our method.
This validates the excellent denoising performance of the proposed method, which considers both
local structural preservation and global luminance consistency.

Table 3. Average SSIM/FSIM values obtained for the competing methods evaluated on commonly
used test images with noise level σ = 10, 20, 30, 40, 50 and 60.

σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 60

NCSR 0.931/0.972 0.875/0.943 0.833/0.919 0.796/0.895 0.767/0.879 0.742/0.860
WNNM 0.931/0.972 0.877/0.944 0.839/0.923 0.802/0.902 0.778/0.885 0.752/0.871
PGPD 0.927/0.972 0.870/0.944 0.829/0.922 0.797/0.903 0.769/0.887 0.741/0.874
BM3D 0.931/0.972 0.876/0.946 0.834/0.924 0.795/0.903 0.767/0.888 0.743/0.874

DnCNN 0.931/0.971 0.883/0.946 0.844/0.926 0.811/0.908 0.782/0.892 0.717/0.879
TWSC 0.931/0.972 0.879/0.948 0.838/0.922 0.804/0.900 0.773/0.881 0.745/0.864

FFDNet 0.933/0.973 0.885/0.948 0.848/0.928 0.817/0.910 0.790/0.894 0.767/0.881
proposed 0.936/0.976 0.883/0.951 0.847/0.932 0.815/0.913 0.788/0.897 0.750/0.888

Table 4 lists the average VIF and IW-SSIM values obtained for the competing methods, for various
denoising tasks carried out at six different noise levels. The proposed method outperforms TWSC,
PGPD, and BM3D by a substantial margin. It demonstrates a noticeable denoising effect in
low-noise-level denoising tasks; particularly, in terms of VIF, when the noise level is set to 40 and
50, our method surpasses the benchmark method BM3D by 0.085 and 0.060, respectively. Regarding
images with a low noise level, many details are intact in the final image obtained using our method;
thus, our method is able to eliminate the inaccuracy and uncertainty in denoised images obtained
using the individual methods, thereby preserving the image details to the maximum extent.

Table 4. Average VIF/IW-SSIM values obtained for the competing methods evaluated on commonly
used test images with noise level σ = 10, 20, 30, 40, 50 and 60.

σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 60

NCSR 0.637/0.983 0.494/0.959 0.413/0.934 0.376/0.910 0.343/0.886 0.313/0.860
WNNM 0.644/0.983 0.492/0.961 0.415/0.940 0.358/0.916 0.330/0.897 0.299/0.875
PGPD 0.622/0.982 0.475/0.959 0.403/0.937 0.353/0.914 0.320/0.891 0.280/0.871
BM3D 0.638/0.983 0.481/0.961 0.395/0.938 0.325/0.912 0.308/0.892 0.280/0.871

DnCNN 0.634/0.984 0.484/0.963 0.401/0.943 0.346/0.921 0.308/0.900 0.221/0.871
TWSC 0.578/0.984 0.416/0.936 0.333/0.941 0.280/0.918 0.242/0.894 0.212/0.871

FFDNet 0.636/0.984 0.492/0.964 0.417/0.945 0.366/0.924 0.333/0.904 0.309/0.866
proposed 0.679/0.986 0.529/0.967 0.454/0.948 0.410/0.929 0.368/0.908 0.282/0.885

To further demonstrate the general applicability of our method, we employed 50 images from the
BSD dataset. The PSNR performance of the eight competing denoising methods is reported in Table 5.
An overall impression, obtained from Table 5, is that the proposed method achieves the highest PSNR
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in all cases. In the case of low noise levels (σ = 10), the improvement is strikingly noticeable (e.g.,
an average improvement of 1.14 dB over the second-best method, FFDNet). Subsequently, even as the
noise level increases to 50 and 60, the improvements exhibited by the proposed method over the PSNR
of FFDNet are notable, with the average values of 0.13 dB and 0.03 dB, respectively. It is also observed
that the proposed method outperforms the benchmark BM3D method by 0.65 dB∼1.33 dB. Such a gain
in the PSNR is remarkable because only a few methods can exceed the PSNR of the BM3D method
by an average of more than 0.3 dB [48,49]. In addition, we calculated the metrics VIF and IW-SSIM
to further assess the performance of our method. From Table 6, it is clear that the result obtained
using the proposed boosting method is more pleasing than the denoised image obtained using either
DnCNN or NCSR. A majority of the best metric values are also achieved by our method.

Table 5. Average PSNRs (dB) of the competing methods obtained for 50 images selected from the BSD
dataset with noise level σ = 10, 20, 30, 40, 50 and 60.

NCSR WNNM PGPD BM3D DnCNN TWSC FFDNet Proposed

σ = 10 33.42 33.53 33.31 33.42 33.48 33.54 33.61 34.75
σ = 20 29.56 29.72 29.51 29.54 29.70 30.00 30.02 30.30
σ = 30 27.60 27.80 27.58 27.59 27.74 28.12 28.15 28.38
σ = 40 26.26 26.53 26.36 26.25 26.46 26.88 26.92 27.08
σ = 50 25.35 25.63 25.47 25.39 25.52 25.98 26.03 26.16
σ = 60 24.60 24.91 24.80 24.72 24.79 24.86 25.34 25.37

Table 6. Average VIF/IW-SSIM values of the competing methods obtained for 50 images selected from
the BSD dataset with noise level σ = 10, 20, 30, 40, 50 and 60.

σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 60

NCSR 0.605/0.980 0.447/0.945 0.363/0.909 0.325/0.871 0.292/0.837 0.264 /0.803
WNNM 0.606/0.981 0.438/0.948 0.356/0.914 0.304/0.879 0.274/0.848 0.247/0.816
PGPD 0.594/0.979 0.430/0.945 0.351/0.910 0.303/0.876 0.271/0.842 0.233/0.817
BM3D 0.602/0.981 0.433/0.947 0.346/0.912 0.285/0.877 0.270/0.844 0.241/0.815

DnCNN 0.602/0.982 0.437/0.953 0.353/0.922 0.303/0.890 0.268/0.860 0.187/0.830
TWSC 0.558/0.981 0.371/0.949 0.278/0.914 0.222/0.878 0.184/0.843 0.157/0.810

FFDNet 0.603/0.982 0.441/0.954 0.361/0.924 0.314/0.894 0.282/0.864 0.257/0.837
proposed 0.659/0.985 0.497/0.958 0.412/0.929 0.365/0.898 0.324/0.868 0.245/0.844

In addition to considering traditional datasets, we also evaluated the performance of our method
on synthetic images. The PSNR results are reported in Table 7. The experiments conducted at low
(σ = 10) and high (σ = 50) noise levels show that the proposed method outperforms all of the
7 comparable methods. Moreover, in terms of the average PSNR results, our method is the best
among all the competitors. The proposed boosting method is able to boost the PSNR value by an
approximate average of 0.68 and 0.17 compared to NCSR and DnCNN, respectively. The experimental
results demonstrate that the proposed method can achieve a state-of-the-art denoising performance in
different datasets. Thus, our method possesses a high generalizability and applicability.

Table 7. Average PSNRs (dB) of the competing methods for images in the ESPL synthetic image
database with noise level σ = 10, 30 and 50.

NCSR WNNM PGPD BM3D DnCNN TWSC FFDNet Proposed

σ = 10 36.14 36.33 36.03 36.37 36.37 36.30 36.47 36.52
σ = 30 30.59 30.91 30.73 30.72 31.23 30.92 31.38 31.02
σ = 50 28.21 28.53 28.45 28.30 28.88 28.44 29.08 29.45

Average 31.65 31.92 31.74 31.80 32.16 31.89 32.31 32.33
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4.3. Comparison of Statistical Significance with Other State-of-the-Art Algorithms

Although the proposed method demonstrates performance improvements over the performance
of the existing methods considered in this study (see Tables 1–7), these improvements may not be
statistically relevant. Therefore, we performed a two-way analysis of variance (ANOVA) (and multiple
subsequent comparison tests [50]) on the PSNR results shown in Table 2 to determine the statistical
significance of the results obtained using the proposed method. The corresponding results are tabulated
in Table 8. ANOVA is a statistical analysis method that allows us to interpret and analyze observations
made from several populations. It decomposes the observed results into contributions from different
sources; then, it determines whether there is a significant difference between the sources of variation
or not. Furthermore, it gives a value indicating the amount of variation. In our experiments, a criterion
based on the p-value obtained using the results of the ANOVA is used to evaluate the statistical
significance. From Table 8, it can be seen that the p-values of the paired ANOVA test for evaluating the
difference between our method and the comparison methods are all less than 0.05. This demonstrates
that the results obtained using the proposed boosting method are statistically significant.

Table 8. Multiple comparisons for Two-Way ANOVA of the average PSNRs (dB) of the commonly used
test images.

Comparison Method NCSR WNNM PGPD BM3D DnCNN TWSC FFDNet

p-value 0.000000 0.000018 0.000000 0.000000 0.000003 0.000001 0.003448

4.4. Visual Comparison with Other State-of-the-Art Algorithms

As the ultimate judges of image quality are human subjects, visual quality is also critical in
evaluating a denoising method. Therefore, we focus on the visual comparison of the images denoised
by the eight competing methods in this study. The results of the experiment at the noise level σ = 20
for the test image Boat, shown in Figure 6, illustrate that the proposed method can preserve the contrast
and structural details almost entirely. Comparing our method with other methods, it can be observed
that the results of the NCSR and PGPD have lost several image details, whereas BM3D, WNNM,
DnCNN, and TWSC produced over-smoothed results in the highlighted red window. Furthermore,
FFDNet tends to generate several artifacts on the sign of the boat, where the proposed method obtains
a smooth result. Particularly, the proposed method can recover well the thin masts of the boat. These
masts are almost absent in the recovered images obtained by other methods.

Subsequently, we increased the noise level to 50. It can be observed from Figure 7 that PGPD,
BM3D, NCSR, and FFDNet tend to smooth the edges and textures, which leads to image blurring.
Although DnCNN, TWSC, and WNNM better balance the contrast, they generate substantial artifacts
on the flower in the image Monarch. In contrast, the proposed method can well reconstruct the vein-like
patterns in the butterfly’s wing that are shown in the magnified view; furthermore, the proposed
method better preserves the edge structures of the test image. Overall, the proposed method produces
denoised images of the best visual quality while maintaining high PSNR indices.

In addition, we test our method on the BSD dataset. It is clear from the results that the proposed
method exhibits a visual performance that is superior to that of the other denoising methods. Visual
comparisons of the results obtained using the various denoising methods are shown in Figure 8. It can
be seen that NCSR generates substantial artifacts between the zebra’s stripes, and DnCNN balances the
contrast well; nevertheless, it tends to distort the lines and generate blurred edges. It is not surprising
that our method can preserve much more sharp edges and fine details because it is a combination of
NCSR and DnCNN via the proposed fusion strategy, which is highly promising.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Comparison of denoising results of the competing methods for image Boat with noise level
σ = 20. (a) Original image. (b) Noisy image. (c) NCSR, PSNR = 31.02 dB. (d) WNNM, PSNR = 31.31 dB.
(e) PGPD, PSNR = 31.06 dB. (f) BM3D, PSNR = 31.21 dB. (g) DnCNN, PSNR = 31.44 dB. (h) TWSC,
PSNR = 31.29 dB. (i) FFDNet, PSNR = 31.43 dB. (j) Proposed, PSNR = 31.76 dB.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Comparison of denoising results of the competing methods for image Monarch with noise
level σ = 50. (a) Original image. (b) Noisy image. (c) NCSR, PSNR = 25.69 dB. (d) WNNM, PSNR =
26.22 dB. (e) PGPD, PSNR = 25.97 dB. (f) BM3D, PSNR = 25.64 dB. (g) DnCNN, PSNR = 26.65 dB. (h)
TWSC, PSNR = 26.16 dB. (i) FFDNet, PSNR = 26.65 dB. (j) Proposed, PSNR = 26.77 dB.

For visual comparison, Figure 9 shows the denoised images, corresponding to an image in the
ESPL synthetic image database, that were obtained using the various methods evaluated in this study.
A magnified view is also provided for each image for better visual comparison. It can be seen that a
number of noise pixels have not been removed in the images denoised by NCSR, PGPD, BM3D, and
TWSC; moreover, details have been extensively lost in the lower right corner of the image. Regarding
the denoised image obtained using FFDNet, many undesirable bright pixels are generated on the
wings of the cartoon girl. Furthermore, WNNM and DnCNN produce over-smoothed textures and
edges. By comparison, the result obtained using the proposed method retains the information in the
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original image to the greatest extent and suppresses almost all the noise, even at a high noise level.
One of the reasons for this is that our weight map can incorporate the well-denoised pixels into the
final result.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Comparison of denoising results of the competing methods for the test image with noise
level σ = 40. (a) Original image. (b) Noisy image. (c) NCSR, PSNR = 26.73 dB. (d) WNNM, PSNR =
27.46 dB. (e) PGPD, PSNR = 27.03 dB. (f) BM3D, PSNR = 26.55 dB. (g) DnCNN, PSNR = 27.85 dB. (h)
TWSC, PSNR = 27.44 dB. (i) FFDNet, PSNR = 27.82 dB. (j) Proposed, PSNR = 28.35 dB.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Comparison of denoising results of the competing methods for image selected from the ESPL
synthetic image database with noise level σ = 50. (a) Original image. (b) Noisy image. (c) NCSR, PSNR
= 29.21 dB. (d) WNNM, PSNR = 29.76 dB. (e) PGPD, PSNR = 29.56 dB. (f) BM3D, PSNR = 29.39 dB. (g)
DnCNN, PSNR = 29.94 dB. (h) TWSC, PSNR = 29.59 dB. (i) FFDNet, PSNR = 30.32 dB. (j) Proposed,
PSNR = 30.62 dB.

5. Discussion

There are two important indicators of denoising performance: the denoising effect and
computational complexity. Unfortunately, a high denoising performance is often obtained at the cost
of computational complexity; therefore, the development of denoising methods is a spiraling process.
The current denoising models must seek a reasonable trade-off between denoising performance
and run time. This encourages researchers to continue to focus attention on improving the current
state-of-the-art models. The computation time of our method comprises the fusion time of the initially



Appl. Sci. 2020, 10, 3857 17 of 20

denoised images and the running time of NCSR and DnCNN; therefore, it is longer than the running
time of the single denoiser. However, unlike several deep learning-based boosting methods, the fusion
step in the proposed method does not involve the training stage, which is time-consuming. The fusion
times of our method for processing six images selected from the ten commonly used test images
employed in this study, with sizes of 256× 256 and 512× 512, are listed in Table 9. We evaluate the
fusion time by denoising the ten images with noise levels of 10, 30, and 60. It can be seen that the
fusion process takes very little time; therefore, the computational complexity mainly depends on the
two algorithms to be fused. Our goal is to introduce a novel method for boosting the denoising effect
using an image fusion strategy. With the evolution of the denoising methods to be fused, the efficiency
of our method will increase. The proposed method allows the combination of the initial denoised
images generated by any two image denoisers; thus, one can train two complementary algorithms
that are different from the ones employed in this study and use our method to boost the denoising
effect. In summary, the proposed method achieves optimal results at a reasonable computational cost;
furthermore, it allows for an effective performance/complexity trade-off in the future.

Table 9. Fusion time (s) of the proposed method for processing the six selected images with sizes of
256× 256 and 512× 512 with noise level σ = 10, 30, and 60.

Cameraman Couple House Lena Monarch Peppers Average

σ = 10 0.253 0.614 0.255 0.540 0.270 0.257 0.365
σ = 30 0.260 0.530 0.257 0.539 0.257 0.265 0.351
σ = 60 0.260 0.531 0.259 0.531 0.289 0.274 0.357

Whereas image denoising algorithms have produced highly promising results over the past
decade, it is worth mentioning that it has become increasingly difficult for several denoising methods
to achieve even minor performance improvements. According to Levin et al. [49], when compared over
the BSD dataset, for σ = 50, the predicted maximal possible improvement (over the performance of
BM3D) for external denoising tasks is bounded by 0.7 dB. However, the proposed method exceeds the
performance of BM3D by 0.77 dB, as shown in Table 5, which is a substantial improvement. Through
the image fusion strategy, our method offers a solution to further improve individual internal or
external denoising algorithms. The fused image can provide a visually better output image that
contains more information. Therefore, it is worth achieving a more specific and accurate result using
our method at the reasonable computational cost. In fact, there are abundant real-world applications
(e.g., machine vision, remote sensing, and medical diagnoses) that can benefit from the proposed
method. Specifically, in digital medical treatment, the detailed features in images may be ignored by
the NCSR algorithm, which is based on the non-local self-similarity of images; however, such features
can be preserved by the external denoising method DnCNN. Thus, the proposed method can output
better and more comprehensive images by combing the complementary information of the medical
images denoised by the two methods, thereby providing more accurate data for clinical diagnosis
and treatment. This will be crucial for feature extraction from images of lesions, three-dimensional
reconstruction and multi-source medical image fusion, and other technologies that assist in diagnosis.
Thus, the proposed method could be of immense value with regard to providing an alternative for
boosting the denoising effect.

The boosting algorithm developed in this study can be interpreted as an algorithm for the fusion of
two initially denoised images. Thus, it is not limited to the noise models of algorithms such as AWGN,
and can be adapted to other types of noise if it is allowed by the constituent denoising algorithms.
In addition, a good discrimination between noise and image texture information can significantly
improve the noise reduction effect, which is also the goal of many traditional denoising algorithms.
Currently, researchers are continuing to improve the performance of the state-of-the-art denoising
methods. In the future, we will determine complementary algorithms with better performances to
deal with various denoising tasks by using our fusion strategy.
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6. Conclusions and Future Studies

In this study, a denoising effect boosting method based on an image fusion strategy has been
presented to combine two image denoising methods (i.e., NCSR and DnCNN) for a better denoising
performance. It is based on two weight designs. The first weight design measures the importance of
the pixel values according to the overall luminance, and it increases the weight when the neighboring
pixel intensity changes largely. The second weight design reflects the importance of the regions with
substantial variations in pixel values and suppresses the saturated pixels in the initial denoised images.
By integrating the images denoised via NCSR and DnCNN into an optimally fused image, the final
denoised output is produced. The experimental results confirm that the proposed method exhibits
substantial quantitative improvements over the other state-of-the-art methods, in addition to producing
high-quality fused denoised images with much better image structures and less visual artifacts.

The proposed method is based on a general image fusion strategy. This indicates that it is not
limited to image denoising problems. In future research, it is reasonable to extend the proposed
boosting method to image de-blurring or image super-resolution problems. Future work could also
involve choosing more efficient complementary algorithms or parallel implementations to further
improve the computational efficiency of the proposed method. There is no single method that always
performs better than others in complex imaging scenarios. Our method offers a solution to integrate
individual methods that have complementary strengths into a stronger combined method. We also
expect that a number of computer vision applications can benefit from the proposed denoising effect
boosting method.
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