You are currently viewing a new version of our website. To view the old version click .

Journal of Imaging

Journal of Imaging is an international, multi/interdisciplinary, peer-reviewed, open access journal of imaging techniques, published online monthly by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q2 (Imaging Science and Photographic Technology)

All Articles (2,156)

Registering UAV-based thermal and visible images is a challenging task due to differences in appearance across spectra and the lack of public benchmarks. To address this issue, we introduce UAV-TIRVis, a dataset consisting of 80 accurately and manually registered UAV-based thermal (640 × 512) and visible (4K) image pairs, captured across diverse environments. We benchmark our dataset using well-known registration methods, including feature-based (ORB, SURF, SIFT, KAZE), correlation-based, and intensity-based methods, as well as a custom, heuristic intensity-based method. We evaluate the performance of these methods using four metrics: RMSE, PSNR, SSIM, and NCC, averaged per scenario and across the entire dataset. The results show that conventional methods often fail to generalize across scenes, yielding <0.6 NCC on average, whereas the heuristic method shows that it is possible to achieve 0.77 SSIM and 0.82 NCC, highlighting the difficulty of cross-spectral UAV alignment and the need for further research to improve optimization in existing registration methods.

4 December 2025

Example image pairs (visible and thermal) contained in our dataset.

Accurate segmentation and classification of kidney pathologies from medical images remain a major challenge in computer-aided diagnosis due to complex morphological variations, small lesion sizes, and severe class imbalance. This study introduces DiagNeXt, a novel two-stage deep learning framework designed to overcome these challenges through an integrated use of attention-enhanced ConvNeXt architectures for both segmentation and classification. In the first stage, DiagNeXt-Seg employs a U-Net-based design incorporating Enhanced Convolutional Blocks (ECBs) with spatial attention gates and Atrous Spatial Pyramid Pooling (ASPP) to achieve precise multi-class kidney segmentation. In the second stage, DiagNeXt-Cls utilizes the segmented regions of interest (ROIs) for pathology classification through a hierarchical multi-resolution strategy enhanced by Context-Aware Feature Fusion (CAFF) and Evidential Deep Learning (EDL) for uncertainty estimation. The main contributions of this work include: (1) enhanced ConvNeXt blocks with large-kernel depthwise convolutions optimized for 3D medical imaging, (2) a boundary-aware compound loss combining Dice, cross-entropy, focal, and distance transform terms to improve segmentation precision, (3) attention-guided skip connections preserving fine-grained spatial details, (4) hierarchical multi-scale feature modeling for robust pathology recognition, and (5) a confidence-modulated classification approach integrating segmentation quality metrics for reliable decision-making. Extensive experiments on a large kidney CT dataset comprising 3847 patients demonstrate that DiagNeXt achieves 98.9% classification accuracy, outperforming state-of-the-art approaches by 6.8%. The framework attains near-perfect AUC scores across all pathology classes (Normal: 1.000, Tumor: 1.000, Cyst: 0.999, Stone: 0.994) while offering clinically interpretable uncertainty maps and attention visualizations. The superior diagnostic accuracy, computational efficiency (6.2× faster inference), and interpretability of DiagNeXt make it a strong candidate for real-world integration into clinical kidney disease diagnosis and treatment planning systems.

4 December 2025

The internal quality assessment of potato tubers is a crucial task in agro-laboratory processing. Traditional methods struggle to detect internal defects such as hollow heart, internal bruises, and insect galleries using only surface features. We present a novel, fully modular hybrid AI architecture designed for defect detection using RGB images of potato slices, suitable for integration in laboratory. Our pipeline combines high-recall multi-threshold YOLO detection, contextual patch validation using ResNet, precise segmentation via the Segment Anything Model (SAM), and skin-contact analysis using VGG16 with a Random Forest classifier. Experimental results on a labeled dataset of over 6000 annotated instances show a recall above 95% and precision near 97.2% for most defect classes. The approach offers both robustness and interpretability, outperforming previous methods that rely on costly hyperspectral or MRI techniques. This system is scalable, explainable, and compatible with existing 2D imaging hardware.

3 December 2025

Over 2 [...]

3 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Computational Intelligence in Remote Sensing
Reprint

Computational Intelligence in Remote Sensing

2nd Edition
Editors: Yue Wu, Kai Qin, Maoguo Gong, Qiguang Miao
Image and Video Forensics
Reprint

Image and Video Forensics

Editors: Irene Amerini, Gianmarco Baldini, Francesco Leotta

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
J. Imaging - ISSN 2313-433X