- Article
Double-Gated Mamba Multi-Scale Adaptive Feature Learning Network for Unsupervised Single RGB Image Hyperspectral Image Reconstruction
- Zhongmin Jiang,
- Zhen Wang and
- Wenju Wang
- + 1 author
Existing methods for reconstructing hyperspectral images from single RGB images struggle to obtain a large number of labeled RGB-HSI paired images. These methods face issues such as detail loss, insufficient robustness, low reconstruction accuracy, and the difficulty of balancing the spatial–spectral trade-off. To address these challenges, a Double-Gated Mamba Multi-Scale Adaptive Feature (DMMAF) learning network model is proposed. DMMAF designs a reflection dot-product adaptive dual-noise-aware feature extraction method, which is used to supplement edge detail information in spectral images and improve robustness. DMMAF also constructs a deformable attention-based global feature extraction method and a double-gated Mamba local feature extraction approach, enhancing the interaction between local and global information during the reconstruction process, thereby improving image accuracy. Meanwhile, DMMAF introduces a structure-aware smooth loss function, which, by combining smoothing, curvature, and attention supervision losses, effectively resolves the spatial–spectral resolution balance problem. This network model is applied to three datasets—NTIRE 2020, Harvard, and CAVE—achieving state-of-the-art unsupervised reconstruction performance compared to existing advanced algorithms. Experiments on the NTIRE 2020, Harvard, and CAVE datasets demonstrate that this model achieves state-of-the-art unsupervised reconstruction performance. On the NTIRE 2020 dataset, our method attains MRAE, RMSE, and PSNR values of 0.133, 0.040, and 31.314, respectively. On the Harvard dataset, it achieves RMSE and PSNR values of 0.025 and 34.955, respectively, while on the CAVE dataset, it achieves RMSE and PSNR values of 0.041 and 30.983, respectively.
31 December 2025







