- Article
UAV-TIRVis: A Benchmark Dataset for Thermal–Visible Image Registration from Aerial Platforms
- Costin-Emanuel Vasile,
- Călin Bîră and
- Radu Hobincu
Registering UAV-based thermal and visible images is a challenging task due to differences in appearance across spectra and the lack of public benchmarks. To address this issue, we introduce UAV-TIRVis, a dataset consisting of 80 accurately and manually registered UAV-based thermal (640 × 512) and visible (4K) image pairs, captured across diverse environments. We benchmark our dataset using well-known registration methods, including feature-based (ORB, SURF, SIFT, KAZE), correlation-based, and intensity-based methods, as well as a custom, heuristic intensity-based method. We evaluate the performance of these methods using four metrics: RMSE, PSNR, SSIM, and NCC, averaged per scenario and across the entire dataset. The results show that conventional methods often fail to generalize across scenes, yielding <0.6 NCC on average, whereas the heuristic method shows that it is possible to achieve 0.77 SSIM and 0.82 NCC, highlighting the difficulty of cross-spectral UAV alignment and the need for further research to improve optimization in existing registration methods.
4 December 2025




