You are currently on the new version of our website. Access the old version .

Journal of Imaging

Journal of Imaging is an international, multi/interdisciplinary, peer-reviewed, open access journal of imaging techniques, published online monthly by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q2 (Imaging Science and Photographic Technology)

All Articles (2,220)

GLCN: Graph-Aware Locality-Enhanced Cross-Modality Re-ID Network

  • Junjie Cao,
  • Yuhang Yu and
  • Rong Rong
  • + 1 author

Cross-modality person re-identification faces challenges such as illumination discrepancies, local occlusions, and inconsistent modality structures, leading to misalignment and sensitivity issues. We propose GLCN, a framework that addresses these problems by enhancing representation learning through locality enhancement, cross-modality structural alignment, and intra-modality compactness. Key components include the Locality-Preserved Cross-branch Fusion (LPCF) module, which combines Local–Positional–Channel Gating (LPCG) for local region and positional sensitivity; Cross-branch Context Interpolated Attention (CCIA) for stable cross-branch consistency; and Graph-Enhanced Center Geometry Alignment (GE-CGA), which aligns class-center similarity structures across modalities to preserve category-level relationships. We also introduce Intra-Modal Prototype Discrepancy Mining Loss (IPDM-Loss) to reduce intra-class variance and improve inter-class separation, thereby creating more compact identity structures in both RGB and IR spaces. Extensive experiments on SYSU-MM01, RegDB, and other benchmarks demonstrate the effectiveness of our approach.

13 January 2026

Even within a single modality, images of the same identity can vary significantly due to changes in pose and illumination. When matching across modalities, the discrepancy is further amplified because visible and infrared images are produced by fundamentally different imaging mechanisms, making cross-modality matching considerably more challenging.

Contrast-enhanced spectral mammography (CESM) provides low-energy images acquired in standard craniocaudal (CC) and mediolateral oblique (MLO) views, and clinical interpretation relies on integrating both views. This study proposes a dual-view classification framework that combines deep CNN feature extraction with transformer-based fusion for breast-side classification using low-energy (DM) images from CESM acquisitions (Normal vs. Tumorous; benign and malignant merged). The evaluation was conducted using 5-fold stratified group cross-validation with patient-level grouping to prevent leakage across folds. The final configuration (Model E) integrates dual-backbone feature extraction, transformer fusion, MC-dropout inference for uncertainty estimation, and post hoc logistic calibration. Across the five held-out test folds, Model E achieved a mean accuracy of 96.88% ± 2.39% and a mean F1-score of 97.68% ± 1.66%. The mean ROC-AUC and PR-AUC were 0.9915 ± 0.0098 and 0.9968 ± 0.0029, respectively. Probability quality was supported by a mean Brier score of 0.0236 ± 0.0145 and a mean expected calibration error (ECE) of 0.0334 ± 0.0171. An ablation study (Models A–E) was also reported to quantify the incremental contribution of dual-view input, transformer fusion, and uncertainty calibration. Within the limits of this retrospective single-center setting, these results suggest that dual-view transformer fusion can provide strong discrimination while also producing calibrated probabilities and uncertainty outputs that are relevant for decision support.

13 January 2026

A Dual-UNet Diffusion Framework for Personalized Panoramic Generation

  • Jing Shen,
  • Leigang Huo and
  • Chunlei Huo
  • + 1 author

While text-to-image and customized generation methods demonstrate strong capabilities in single-image generation, they fall short in supporting immersive applications that require coherent 360° panoramas. Conversely, existing panorama generation models lack customization capabilities. In panoramic scenes, reference objects often appear as minor background elements and may be multiple in number, while reference images across different views exhibit weak correlations. To address these challenges, we propose a diffusion-based framework for customized multi-view image generation. Our approach introduces a decoupled feature injection mechanism within a dual-UNet architecture to handle weakly correlated reference images, effectively integrating spatial information by concurrently feeding both reference images and noise into the denoising branch. A hybrid attention mechanism enables deep fusion of reference features and multi-view representations. Furthermore, a data augmentation strategy facilitates viewpoint-adaptive pose adjustments, and panoramic coordinates are employed to guide multi-view attention. The experimental results demonstrate our model’s effectiveness in generating coherent, high-quality customized multi-view images.

11 January 2026

This study proposes an automated system using deep learning-based object detection to identify implant systems, leveraging recent progress in self-supervised learning, specifically masked image modeling (MIM). We advocate for self-pre-training, emphasizing that its advantages when acquiring suitable pre-training data is challenging. The proposed Masked Deep Embedding (MDE) pre-training method, extending the masked autoencoder (MAE) transformer, significantly enhances dental implant detection performance compared to baselines. Specifically, the proposed method achieves a best detection performance of AP = 96.1, outperforming supervised ViT and MAE baselines by up to +2.9 AP. In addition, we address the absence of a comprehensive dataset for implant design, enhancing an existing dataset under dental expert supervision. This augmentation includes annotations for implant design, such as coronal, middle, and apical parts, resulting in a unique Implant Design Dataset (IDD). The contributions encompass employing self-supervised learning for limited dental radiograph data, replacing MAE’s patch reconstruction with patch embeddings, achieving substantial performance improvement in implant detection, and expanding possibilities through the labeling of implant design. This study paves the way for AI-driven solutions in implant dentistry, providing valuable tools for dentists and patients facing implant-related challenges.

9 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advances in Retinal Image Processing
Reprint

Advances in Retinal Image Processing

Editors: P. Jidesh, Vasudevan (Vengu) Lakshminarayanan

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
J. Imaging - ISSN 2313-433X