You are currently on the new version of our website. Access the old version .

Journal of Imaging

Journal of Imaging is an international, multi/interdisciplinary, peer-reviewed, open access journal of imaging techniques, published online monthly by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q2 (Imaging Science and Photographic Technology)

All Articles (2,225)

A Cross-Device and Cross-OS Benchmark of Modern Web Animation Systems

  • Tajana Koren Ivančević,
  • Trpimir Jeronim Ježić and
  • Nikolina Stanić Loknar

Although modern web technologies increasingly rely on high-performance rendering methods to support rich visual content across a range of devices and operating systems, the field remains significantly under-researched. The performance of animated visual elements is affected by numerous factors, including browsers, operating systems, GPU acceleration, scripting load, and device limitations. This study systematically evaluates animation performance across multiple platforms using a unified set of circle-based animations implemented with eight web-compatible technologies, including HTML, CSS, SVG, JavaScript, Canvas, and WebGL. Animations were evaluated under controlled feature combinations involving random motion, distance, colour variation, blending, and transformations, with object counts ranging from 10 to 10,000. Measurements were conducted on desktop operating systems (Windows, macOS, Linux) and mobile platforms (iOS, Android), using CPU utilisation, GPU memory usage, and frame rate (FPS) as key metrics. Results show that DOM-based approaches maintain stable performance at 100 animated objects but exhibit notable degradation by 500 objects. Canvas-based rendering extends usability to higher object counts, while WebGL demonstrates the most stable performance at large scales (5000–10,000 objects). These findings provide concrete guidance for selecting appropriate animation technologies based on scene complexity and target platform.

15 January 2026

Execution flow of web animations depending on the choice of rendering technologies.

Underwater optical images are the primary carriers of underwater scene information, playing a crucial role in marine resource exploration, underwater environmental monitoring, and engineering inspection. However, wavelength-dependent absorption and scattering severely deteriorate underwater images, leading to reduced contrast, chromatic distortions, and loss of structural details. To address these issues, we propose a U-shaped underwater image enhancement framework that integrates Swin-Transformer blocks with lightweight attention and residual modules. A Dual-Window Multi-Head Self-Attention (DWMSA) in the bottleneck models long-range context while preserving fine local structure. A Global-Aware Attention Map (GAMP) adaptively re-weights channels and spatial locations to focus on severely degraded regions. A Feature-Augmentation Residual Network (FARN) stabilizes deep training and emphasizes texture and color fidelity. Trained with a combination of Charbonnier, perceptual, and edge losses, our method achieves state-of-the-art results in PSNR and SSIM, the lowest LPIPS, and improvements in UIQM and UCIQE on the UFO-120 and EUVP datasets, with average metrics of PSNR 29.5 dB, SSIM 0.94, LPIPS 0.17, UIQM 3.62, and UCIQE 0.59. Qualitative results show reduced color cast, restored contrast, and sharper details. Code, weights, and evaluation scripts will be released to support reproducibility.

14 January 2026

Overall Perceptual Vision Swin Transformer-Based Deep Feature Fusion UIE Model.

Timely and accurate detection of forest fires through unmanned aerial vehicle (UAV) remote sensing target detection technology is of paramount importance. However, multiscale targets and complex environmental interference in UAV remote sensing images pose significant challenges during detection tasks. To address these obstacles, this paper presents FF-Mamba-YOLO, a novel framework based on the principles of Mamba and YOLO (You Only Look Once) that leverages innovative modules and architectures to overcome these limitations. Specifically, we introduce MFEBlock and MFFBlock based on state space models (SSMs) in the backbone and neck parts of the network, respectively, enabling the model to effectively capture global dependencies. Second, we construct CFEBlock, a module that performs feature enhancement before SSM processing, improving local feature processing capabilities. Furthermore, we propose MGBlock, which adopts a dynamic gating mechanism, enhancing the model’s adaptive processing capabilities and robustness. Finally, we enhance the structure of Path Aggregation Feature Pyramid Network (PAFPN) to improve feature fusion quality and introduce DySample to enhance image resolution without significantly increasing computational costs. Experimental results on our self-constructed forest fire image dataset demonstrate that the model achieves 67.4% mAP@50, 36.3% mAP@50:95, and 64.8% precision, outperforming previous state-of-the-art methods. These results highlight the potential of FF-Mamba-YOLO in forest fire monitoring.

13 January 2026

Sample images from the UFFD.

Cross-modality person re-identification faces challenges such as illumination discrepancies, local occlusions, and inconsistent modality structures, leading to misalignment and sensitivity issues. We propose GLCN, a framework that addresses these problems by enhancing representation learning through locality enhancement, cross-modality structural alignment, and intra-modality compactness. Key components include the Locality-Preserved Cross-branch Fusion (LPCF) module, which combines Local–Positional–Channel Gating (LPCG) for local region and positional sensitivity; Cross-branch Context Interpolated Attention (CCIA) for stable cross-branch consistency; and Graph-Enhanced Center Geometry Alignment (GE-CGA), which aligns class-center similarity structures across modalities to preserve category-level relationships. We also introduce Intra-Modal Prototype Discrepancy Mining Loss (IPDM-Loss) to reduce intra-class variance and improve inter-class separation, thereby creating more compact identity structures in both RGB and IR spaces. Extensive experiments on SYSU-MM01, RegDB, and other benchmarks demonstrate the effectiveness of our approach.

13 January 2026

Even within a single modality, images of the same identity can vary significantly due to changes in pose and illumination. When matching across modalities, the discrepancy is further amplified because visible and infrared images are produced by fundamentally different imaging mechanisms, making cross-modality matching considerably more challenging.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advances in Retinal Image Processing
Reprint

Advances in Retinal Image Processing

Editors: P. Jidesh, Vasudevan (Vengu) Lakshminarayanan

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
J. Imaging - ISSN 2313-433X