You are currently viewing a new version of our website. To view the old version click .

Journal of Imaging

Journal of Imaging is an international, multi/interdisciplinary, peer-reviewed, open access journal of imaging techniques, published online monthly by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q2 (Imaging Science and Photographic Technology)

All Articles (2,208)

This study aims to demonstrate the feasibility of ultrashort echo time (UTE)-based susceptibility source separation for musculoskeletal (MSK) imaging, enabling discrimination between diamagnetic and paramagnetic tissue components, with a particular focus on hemophilic arthropathy (HA). Three key techniques were integrated to achieve UTE-based susceptibility source separation: Iterative decomposition of water and fat with echo asymmetry and least-squares estimation for B0 field estimation, projection onto dipole fields for local field mapping, and χ-separation for quantitative susceptibility mapping (QSM) with source decomposition. A phantom containing varying concentrations of diamagnetic (CaCO3) and paramagnetic (Fe3O4) materials was used to validate the method. In addition, in vivo UTE-QSM scans of the knees and ankles were performed on five HA patients using a 3T clinical MRI scanner. In the phantom, conventional QSM underestimated susceptibility values due to the mixed-source cancelling the effect. In contrast, source-separated maps provided distinct diamagnetic and paramagnetic susceptibility values that correlated strongly with CaCO3 and Fe3O4 concentrations (r = −0.99 and 0.95, p < 0.05). In vivo, paramagnetic maps enabled improved visualization of hemosiderin deposits in joints of HA patients, which were poorly visualized or obscured in conventional QSM due to susceptibility cancellation by surrounding diamagnetic tissues such as bone. This study demonstrates, for the first time, the feasibility of UTE-based quantitative susceptibility source separation for MSK applications. The approach enhances the detection of paramagnetic substances like hemosiderin in HA and offers potential for improved assessment of bone and joint tissue composition.

6 January 2026

UTE pulse sequences. (A) Projection radial UTE and (B) cones UTE. Dual echo acquisition was utilized to acquire two images at TE1 and TE2. To obtain more echoes near ultrashort TE, image acquisition was repeated with delayed TE1 and TE2. (DAQ: data acquisiton).

Depression is a prevalent mental disorder that imposes a significant public health burden worldwide. Although multimodal detection methods have shown potential, existing techniques still face two critical bottlenecks: (i) insufficient integration of global patterns and local fluctuations in long-sequence modeling and (ii) static fusion strategies that fail to dynamically adapt to the complementarity and redundancy among modalities. To address these challenges, this paper proposes a dynamic multimodal depression detection framework, DynMultiDep, which combines multi-scale temporal modeling with an adaptive fusion mechanism. The core innovations of DynMultiDep lie in its Multi-scale Temporal Experts Module (MTEM) and Dynamic Multimodal Fusion module (DynMM). On one hand, MTEM employs Mamba experts to extract long-term trend features and utilizes local-window Transformers to capture short-term dynamic fluctuations, achieving adaptive fusion through a long-short routing mechanism. On the other hand, DynMM introduces modality-level and fusion-level dynamic decision-making, selecting critical modality paths and optimizing cross-modal interaction strategies based on input characteristics. The experimental results demonstrate that DynMultiDep outperforms existing state-of-the-art methods in detection performance on two widely used large-scale depression datasets.

6 January 2026

Vision-Based People Counting and Tracking for Urban Environments

  • Daniyar Nurseitov,
  • Kairat Bostanbekov and
  • Nazgul Toiganbayeva
  • + 3 authors

Population growth and expansion of urban areas increase the need for the introduction of intelligent passenger traffic monitoring systems. Accurate estimation of the number of passengers is an important condition for improving the efficiency, safety and quality of transport services. This paper proposes an approach to the automatic detection and counting of people using computer vision and deep learning methods. While YOLOv8 and DeepSORT have been widely explored individually, our contribution lies in a task-specific modification of the DeepSORT tracking pipeline, optimized for dense passenger environments, strong occlusions, and dynamic lighting, as well as in a unified architecture that integrates detection, tracking, and automatic event-log generation. Our new proprietary dataset of 4047 images and 8918 labeled objects has achieved 92% detection accuracy and 85% counting accuracy, which confirms the effectiveness of the solution. Compared to Mask R-CNN and DETR, the YOLOv8 model demonstrates an optimal balance between speed, accuracy, and computational efficiency. The results confirm that computer vision can become an efficient and scalable replacement for traditional sensory passenger counting systems. The developed architecture (YOLO + Tracking) combines recognition, tracking and counting of people into a single system that automatically generates annotated video streams and event logs. In the future, it is planned to expand the dataset, introduce support for multicamera integration, and adapt the model for embedded devices to improve the accuracy and energy efficiency of the solution in real-world conditions.

5 January 2026

High-fidelity 3D face reconstruction from a single image is challenging, owing to the inherently ambiguous depth cues and the strong entanglement of multi-scale facial textures. In this regard, we propose a hierarchical multi-resolution self-supervised framework (HMR-Framework), which reconstructs coarse-, medium-, and fine-scale facial geometry progressively through a unified pipeline. A coarse geometric prior is first estimated via 3D morphable model regression, followed by medium-scale refinement using a vertex deformation map constrained by a global–local Markov random field loss to preserve structural coherence. In order to improve fine-scale fidelity, a learnable Gabor-aware texture enhancement module has been proposed to decouple spatial–frequency information and thus improve sensitivity for high-frequency facial attributes. Additionally, we employ a wavelet-based detail perception loss to preserve the edge-aware texture features while mitigating noise commonly observed in in-the-wild images. Extensive qualitative and quantitative evaluation of benchmark datasets indicate that the proposed framework provides better fine-detail reconstruction than existing state-of-the-art methods, while maintaining robustness over pose variations. Notably, the hierarchical design increases semantic consistency across multiple geometric scales, providing a functional solution for high-fidelity 3D face reconstruction from monocular images.

5 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Computational Intelligence in Remote Sensing
Reprint

Computational Intelligence in Remote Sensing

2nd Edition
Editors: Yue Wu, Kai Qin, Maoguo Gong, Qiguang Miao

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
J. Imaging - ISSN 2313-433X