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Abstract: Convolutional neural networks (CNNs) are a state-of-the-art technique for speech emotion
recognition. However, CNNs have mostly been applied to noise-free emotional speech data, and
limited evidence is available for their applicability in emotional speech denoising. In this study, a
cascaded denoising CNN (DnCNN)–CNN architecture is proposed to classify emotions from Korean
and German speech in noisy conditions. The proposed architecture consists of two stages. In the first
stage, the DnCNN exploits the concept of residual learning to perform denoising; in the second stage,
the CNN performs the classification. The classification results for real datasets show that the DnCNN–
CNN outperforms the baseline CNN in overall accuracy for both languages. For Korean speech, the
DnCNN–CNN achieves an accuracy of 95.8%, whereas the accuracy of the CNN is marginally lower
(93.6%). For German speech, the DnCNN–CNN has an overall accuracy of 59.3–76.6%, whereas the
CNN has an overall accuracy of 39.4–58.1%. These results demonstrate the feasibility of applying the
DnCNN with residual learning to speech denoising and the effectiveness of the CNN-based approach
in speech emotion recognition. Our findings provide new insights into speech emotion recognition
in adverse conditions and have implications for language-universal speech emotion recognition.

Keywords: cascaded DnCNN–CNN; speech emotion recognition; residual learning

1. Introduction

Emotions play a crucial role in social interactions as they provide important informa-
tion about the thoughts and behavior of the speaker. Speech is one of the most efficient
and fundamental ways of expressing emotion [1]. The study of speech emotion recogni-
tion, which aims to identify high-level affective contents of an utterance from low-level
acoustic features, has drastically evolved over the past decade with the rapid development
in human–machine interactions. Speech emotion recognition has a wide applicability,
including in automated call centers [2], health care [3], onboard vehicle driving systems [4],
education [5], and many other smart systems [6]. However, there is a long way to go to
achieve a more natural interaction between humans and machines. In particular, deter-
mining the most effective features for emotion recognition remains an open issue, which
makes speech emotion recognition very challenging. In fact, emotion classification is not
straightforward, even for humans.

Speech emotion recognition systems consist of two main modules: feature extraction
and classification. Feature extraction is the first core processing phase, in which the most
relevant features that are available in the speech signal are extracted. Prior research
on feature extraction is generally classified into four categories: continuous features,
qualitative features, spectral features, and Teager energy operator (TEO)-based features [7].
Continuous features include formant, timing, pitch-related features, and energy-related
features [8]. Qualitative features are the perceptual correlates of the voice quality, e.g., being
harsh, tense, and breathy [9]. Spectral features carrying information about the frequency
contents that are present in speech are typically exploited as short-time representations of
speech signals. Primary spectral features include linear predictor coefficients (LPC), linear
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predictor cepstral coefficients (LPCC), and mel-frequency cepstral coefficients (MFCC) [10].
TEO-based features, which are primarily employed in stress classification, include the TEO-
decomposed FM variation, the normalized TEO autocorrelation envelope area, the critical-
band-based TEO autocorrelation envelope area [11], and temporal feature integration for
capturing the temporal dependency of successive feature observations [12].

Classification is the second core processing step in speech emotion recognition, in
which the extracted features are mapped onto the relevant emotion classes. Previous studies
have identified various classification algorithms to generate robust emotional features.
Researchers have proposed support vector machines [13,14], Gaussian mixture models [15],
hidden Markov models [16], artificial neural networks [17], the K-nearest neighbor [18], and
binary decision trees [19]. These classifiers have demonstrated good emotion classification
performance. However, these traditional approaches involve extracting well-established
handcrafted features from signal cues, which typically requires significant human expertise
and substantial effort. Furthermore, their performance varies widely across different speech
databases.

Recently, deep learning has emerged as a promising research area in machine learning
and has increasingly gained attention in various domains, including speech [20,21] and
image recognition [22]; natural language processing [23]; and, more recently, speech emo-
tion recognition [24–26]. In particular, deep neural networks (DNNs) can learn high-level
invariant features of the input signal from the raw data and provide a state-of-the-art
classification performance [27,28]. Jiang et al. [29] proposed a hybrid DNN architecture
to address the issue of heterogeneous acoustic features that usually degrade the classifica-
tion performance in speech emotion recognition. This architecture focuses on extracting
informative feature representations, which are fed into a fusion deep network, and then
classified using a support vector machine. Recurrent neural networks (RNNs) can remem-
ber previous inputs in internal states and learn temporal contextual information; thus, they
have shown improvements in terms of classifying emotion [30].

Convolutional neural networks (CNNs) [31] utilize a succession of layers of trainable
convolution filters and optional pooling operations that are applied to local features. Al-
though they were initially designed for computer vision tasks, CNNs have been efficient in
recognition tasks of one-dimensional signals, such as audio [32] and speech [33]. In [34],
one-dimensional CNN (1D CNN) and two-dimensional CNN (2D CNN) architectures
outperformed standard feature-based classification and temporal feature integration meth-
ods in general audio classification. CNNs have also been effectively applied in speech
emotion recognition tasks. Some studies have utilized CNN-based models trained on
information generated from speech signals using spectrograms to extract high-level af-
fective features [24,35]. A unique architecture based on a merged CNN, with a 1D CNN
branch and a 2D CNN branch, was proposed to learn high-level features from raw input
signals and log-mel spectrograms [36]. The 1D CNN and 2D CNN are first trained; then,
their learned features are repurposed and transferred to the merged CNN, which is sub-
sequently fine-tuned. In another study [37], both spectrogram and phoneme embedding
features were used as the input of a multichannel CNN model to achieve a good result on
the interactive emotional dyadic motion capture (IEMOCAP) corpus. A lightweight and
efficient CNN-based architecture was also proposed to learn deep frequency features for
speech emotion recognition [38]. In [39], a CNN-based architecture was tested on the acted
emotional speech dynamic database (AESDD) by analyzing the sequential time frames and
its performance surpassed some existing techniques, which rely on handcrafted features.
Very recently, Abbaschian et al. [40] comprehensively and systematically reviewed major
deep learning approaches employed in the speech emotion recognition research, combined
with their associated speech databases. This review indicates that CNN-based approaches
play an important role in speech emotion recognition.

Therefore, CNNs have proven to be powerful for a range of speech emotion recognition
tasks. In a real scenario, human speech emotion perception typically involves listening to
the background noise. However, CNNs have been applied mostly on speech databases
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that are recorded in a controlled environment. Consequently, it remains unclear whether
CNNs are effective for the recognition of emotions in noisy speech. Meanwhile, CNNs have
proven to be successful in performing image denoising [41]. Very recently, a denoising CNN
(DnCNN) has shown promising results for removing environmental noise and enhancing
the prediction accuracy to classify the defect patterns on semiconductor wafers [42]. To the
best of our knowledge, DnCNN methods have not been evaluated in the speech domain.
Furthermore, research on speech emotion recognition has focused on certain languages,
such as English and German [43,44]. To date, no prior studies have investigated the
effectiveness of deep learning architectures, including CNN, in a Korean emotional speech
database.

This study investigates the performance of a speech emotion recognition algorithm
based on a DnCNN that is trained on a Korean emotional speech database. In particu-
lar, a cascaded DnCNN–CNN architecture was employed without using any traditional
handcrafted features. For comparison, we investigated the performance of a baseline
CNN model to further explore the capability of CNN-based architectures for speech signal
denoising. The Korean database was recorded under less-controlled conditions and mixed
with three types of environmental noise to simulate real-world listening situations. As
the Korean database for this study contains a slight degree of noise, we also evaluated the
proposed DnCNN–CNN alone on the original Korean database. This was done to further
assess the effectiveness of the proposed classification method in recognizing emotions from
noisy speech. In addition, we evaluated the proposed DnCNN–CNN on a popular German
emotional speech database, EMO-DB. It was mixed with three types of environmental
noise to further explore the feasibility of the DnCNN–CNN in emotion recognition for
speech in another language. As for the Korean database, the CNN was also tested using
the German speech database.

2. Materials and Methods
2.1. Database

We assessed the effectiveness of the proposed cascaded DnCNN–CNN architecture
and the baseline CNN architecture using two speech emotional databases: the newly
developed Chung-Ang database of Korean emotional speech (CADKES) and the Berlin
Emotional Speech Database (EMO-DB) [44].

CADKES: Owing to the lack of an available Korean emotional speech dataset for this
type of research, we created a dataset. Twenty-six actors (13 males and 13 females; mean age:
23.2 years; range: 19–27 years) were individually recorded in a less-controlled condition at
Chung-Ang University (CAU). The actors were recorded in the presence of background
noise. All actors were undergraduates of the Department of Theatre at CAU and native
Korean speakers. The recordings were made using a Rode USB microphone (Model
Podcaster, RODE, Sydney, Australia), which was placed approximately 20 cm from each
speaker. The computer had a 16-bit audio resolution, and the software program Praat [45]
was used with a sampling rate of 44.1 kHz. The recordings were later down-sampled to
16 kHz. All actors produced 52 short sentences, which consisted of 40 declarative sentences
and 12 interrogative sentences. The sentences contained a full set of Korean phonemes and
were each uttered with five emotional intentions: neutral, happiness, sadness, anger, and
fear. This resulted in 6760 sentences (26 actors × 52 sentences × 5 emotions). The Korean
sentences were presented to 10 native Korean-speaking listeners for intellectual evaluation;
all were determined to be intelligible. However, some recordings contained a slight level
of ambient noise.

EMO-DB: The Berlin Emotional Speech Database (EMO-DB) in German is one of the
most popular databases in speech emotion recognition. This database was collected from
ten professional actors (five males) who were asked to express the given text (five short and
five longer sentences) with seven emotions: neutral, happiness, sadness, anger, fear, disgust,
and boredom. The recording occurred in an anechoic room at the Technical University of
Berlin. A human perception test with 20 German listeners was conducted to ensure the
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emotional quality and naturalness of the recorded utterances. The EMO-DB consisted of
535 utterances that had an emotion recognition accuracy exceeding 80% in the perception
test. Within the database, the seven emotions were not equally distributed. There were
79 neutral instances, 71 instances of happiness, 62 instances of sadness, 127 instances of
anger, 69 instances of fear, 46 instances of disgust, and 81 instances of boredom.

2.2. Noise Materials

The present study was designed to evaluate the effectiveness of the DnCNN under a
real-world noise environment. To simulate noise-corrupted speech signals, we employed
the Diverse Environments Multichannel Acoustic Noise Database (DEMAND) [46], which
provides a set of recordings of environmental noise in a variety of indoor and outdoor
settings. The DEMAND recordings were performed with a 16-channel planar array of
microphones and a target length of 5 min. In this study, three types of indoor noise were
selected: cafeteria noise recorded in a busy office cafeteria (PCAFETER), train station noise
recorded in the main transfer area of a busy subway station (PSTATION), and subway
noise recorded in a subway (TMETRO). Subsequently, the three types of noise were added
to the utterances of CADKES and EMO-DB. The signal-to-noise ratio (SNR) was set to
10 dB. Each speech database was mixed with the three types of environmental noise. This
mix can be expressed as z = (1 − w)x + wy, where x is the original audio signal, y is the
environmental noise signal, and w is a weighting parameter.

2.3. Spectrogram Generation

A spectrogram is a 2D visual representation of the spectral density of an audio or
speech signal (1D) as it varies with time at different frequencies. It has been demonstrated
to be highly appropriate for converting a 1D speech-signal-based representation into a
2D CNN representation [47,48]. As the present study is concerned with learning high-
level features directly from speech signals using a 2D CNN-based architecture without
considering handcrafted features, a spectrogram was used as input data to the 2D CNN.

The spectrogram was implemented using a short-term Fourier transform (STFT). The
STFT first segments a long-time speech signal into overlapping shorter frames of equal
length and then is separately applied on each frame. This reveals the Fourier spectrum
on each frame. The Fourier transform provides not only the frequencies present in the
signal, but also the magnitude of each frequency. In brief, the spectrogram is the output of
the STFT, in which the horizontal axis represents the time, and the vertical axis represents
the frequency of each frame. When considering the spectrogram, the darker the color is,
the higher the magnitude at a particular time–frequency point is. The spectrogram has
been used extensively in speech signal analysis, including speech emotion recognition. In
this study, the spectrograms were extracted with a size of 256 × 256, and they had a 50%
overlap.

2.4. CNN

CNNs feature a multilayer feedforward architecture that typically consists of alternat-
ing convolutional and pooling layers followed by fully connected layers. The convolutional
layer is a fundamental component of the CNN architecture, in which the feature extraction
is performed by moving a predefined number of filters along the input. The pooling
layer simplifies the output from the convolutional layer and achieves spatial invariance by
down-sampling the resolution of the features. Pooling significantly reduces the computa-
tional parameters, thereby reducing the network computations. The most popular pooling
algorithm is max pooling, which maintains the maximum value among the generated
features and discards the others in the pooling region. The output feature maps of the
pooling layer are connected to one or more fully connected layers, in which every input in
one layer is connected to every output in another layer. The fully connected layer extracts
the global features from the local convolutional features and performs classification on the
extracted features.
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2.5. Residual Learning

The success of CNNs has been primarily attributed to the stacking of the distinct types
of layers. The general concept behind their function is that the CNN layers progressively
learn more abstract and complex features. Apparently, it is reasonable to assume that,
as the network goes deeper, its accuracy improves. However, empirical evidence shows
that with an increasing network depth, the accuracy becomes saturated or even degrades
rapidly owing to the notorious vanishing gradient problem.

The residual learning framework was initially developed to address this performance
degradation problem in image recognition [41]. Within the framework, the layers are
reformulated for learning residual functions with respect to the layer inputs, rather than
learning the unreferenced functions. The formulation of residual learning is as follows:
r = y − x, where y and x are assumed to denote the underlying desired mapping and
inputs to a few stacked layers, respectively. These stacked layers are hypothesized to
approximate the residual function r, rather than y [41]. Then, the original function becomes
x̂ = r + x. The residual learning approach achieves a good performance for denoising
tasks by effectively resolving the vanishing gradient and the degradation problem [49].

2.6. Denoising CNN

The concept of residual learning was subsequently adopted in the DnCNN for image
denoising [50], which led to a significant increase in the advanced performance. The
residual image learning strategy, r = y− x, fits the residual image r more quickly than the
clean image x [51]. Subsequently, the modified residual learning strategy, x = y+r, where
r is targeted for our noise-removal method, is finally applied to the DnCNN to directly
estimate the noise present in the input image.

Most recently, Chae and Bae [42] exploited a cascade of the DnCNN with residual
learning and a CNN for identifying wafer map defects. These can be caused by dust in
a cleanroom and/or by problems in the fabrication process or human error. The results
showed that the residual-learning-based DnCNN outperformed the baseline CNN by 10%.
As an attempt to extend the cascaded DnCNN–CNN architecture to speech denoising, we
can extend the concept of residual learning to emotional speech. Accordingly, we adopted
the following loss function [52].

l(θ) =
1

2N

N

∑
i=1
||R(yi; θ)− (yi − xi)||2 (1)

where N is the number of noisy speech patches and R(yi; θ) is the residual mapping
function. θ, yi, and xi denote the parameters of the proposed network, the noisy speech
patch, and the clean speech patch, respectively.

2.7. Network Architecture

Figure 1 presents a block diagram of the proposed cascaded DnCNN–CNN architec-
ture for emotional speech recognition. The cascaded architecture consists of two stages.
The first stage is the denoising stage, in which the denoised spectrograms are generated
by removing the noise from the noisy speech signals. Figure 2 shows the original and
denoised sample spectrograms of an utterance in the Korean emotional speech database.
The second stage is the classification stage, in which the CNN classifier recognizes the
emotional states. Notably, this classifier serves as the baseline for comparison purposes.
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This study employed a network architecture that is similar to that used in a previ-
ous investigation [42]. Table 1 provides a detailed description of our proposed network
architecture. The input of the network is a 256 × 256 spectrogram that is generated from
noisy emotional speech signals. The residual learning stage consists of four convolutional
layers. Batch normalization layers are used after the convolutional layers to normalize the
inputs of each layer [53]. During this residual learning stage, denoised spectrograms are
generated by removing the noise from the noisy speech signals.

The classification stage consists of four convolutional layers, four max pooling layers,
one flattened layer, one dropout layer, and two fully connected layers. All convolutional
layers have 32 (3 × 3) kernels, which are applied with a stride of 1. Each convolutional
layer is followed by a subsequent max pooling layer of 32 (2 × 2) kernels with a stride of 1.
Then, the output of the fourth max pooling layer is flattened to a single vector of size 8192
× 1 before it is passed onto two fully connected layers with a 70% dropout. Subsequently,
the output is fed into the first fully connected layer, which has 256 outputs. The second
fully connected layer performs the five-class classification.

In this architecture, the rectified linear unit (ReLU) is used as the nonlinear activation
function for the convolutional layers and the first fully connected layer, except for the
second fully connected layer. The second fully connected layer uses the sigmoid function
to squeeze the final output into the range from 0 to 1. The network parameters were trained
using the back-propagation algorithm with stochastic gradient descent. We trained the
network for 1000 epochs at a learning rate of 0.01. The dataset was randomly split into
five subsets to perform a five-fold cross validation and the model with the best overall
performance was selected for data analysis.
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Table 1. Structure of the proposed cascaded DnCNN–CNN.

Denoising Stage

Layer Type Output Size Kernel Size Stride

Convolutional Layer 1 256 × 256 × 64 3 × 3 1 × 1
Batch Normalization

Convolutional Layer 2 256 × 256 × 32 3 × 3 1 × 1
Batch Normalization

Convolutional Layer 3 256 × 256 × 16 3 × 3 1 × 1
Batch Normalization

Convolutional Layer 4 256 × 256 × 3
Batch Normalization

Classification Stage

Convolutional Layer 1 256 × 256 × 32 3 × 3 1 × 1
Max Pooling Layer 1 128 × 128 × 32 2 × 2 1 × 1

Convolutional Layer 2 128 × 128 × 64 3 × 3 1 × 1
Max Pooling Layer 2 64 × 64 × 64 2 × 2 1 × 1

Convolutional Layer 3 64 × 64 × 128 3 × 3 1 × 1
Max Pooling Layer 3 32 × 32 × 128 2 × 2 1 × 1

Flattened Layer 131,072 - -
Dropout Layer 70% - -

Fully Connected Layer 1 256 - -
Fully Connected Layer 2 5 - -

3. Results

The efficiency of the baseline CNN and the proposed cascaded DnCNN–CNN in
speech emotion recognition under noisy environmental conditions was evaluated. Specif-
ically, we evaluated the two classifiers on the Korean CADKES and German EMO-DB,
which were mixed with PCAFETER, PSTATION, and TMETOR noise. As CADKES contains
a slight level of noise, we further analyzed the classification performance of our proposed
method on CADKES to comprehensively evaluate its efficiency. For comparison purposes,
we also assessed the classification performance of the baseline CNN.

Tables 2 and 3 present the confusion matrices for the performance of the baseline
CNN and the proposed DnCNN–CNN architecture, respectively, when CADKES was
mixed with the PCAFETER noise. The results show that the baseline CNN classifier
achieves the highest accuracy for sadness (95.3%) and the lowest accuracy for fearful
(36.1%). The CNN has accuracies of 40.0%, 42.0%, and 48.1% for anger, happiness, and
neutral, respectively. Misclassification is the highest for the emotional state pair of fearful
and sadness, in which fearful is misclassified as sadness 56.0% of the time. In addition,
neutral (47.9%), happiness (43.0%), and anger (37.7%) are most frequently misclassified as
sadness. The proposed DnCNN–CNN architecture also achieves the highest accuracy for
sadness (92.7%), followed by neutral (60.5%). The DnCNN–CNN classifier also exhibits the
lowest accuracy for fearful (31.4%); however, it exhibits accuracies of 47.2% and 49.2% for
happiness and anger, respectively. Misclassification is the highest for the fearful–sadness
pair (55.2%), in which fearful is misclassified as sadness. Neutral is also most frequently
misclassified as sadness (35.3%). Happiness (34.4%) and anger (29.4%) are most frequently
misclassified as sadness. The overall accuracy is 3.8% higher for the DnCNN–CNN (56.1%)
than the CNN (52.3%); however, the CNN performs better for the sadness and fearful
emotions.

Tables 4 and 5 present the confusion matrices for the performance of the baseline CNN
and the proposed DnCNN–CNN, respectively, when CADKES is mixed with PSTATION.
The CNN classifier achieves the highest accuracy for sadness (96.3%) and the lowest
accuracy for happiness and fearful (37.0%). The recognition accuracies of neutral and anger
are 44.0% and 45.5%, respectively. Misclassification is the highest for the fearful–sadness
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pair, where fearful is misclassified as sadness 57.0% of the time. This is followed by the
neutral–sadness pair (52.5%), happiness–sadness pair (45.3%), and anger–sadness pair
(37.0%). The CNN achieves an overall accuracy of 51.9%. The DnCNN–CNN also achieves
the highest accuracy for sadness (92.6%) and the lowest accuracy for happiness (33.9%).
The accuracies of neutral, anger, and fearful are 47.9%, 44.6%, and 50.2%, respectively. The
DnCNN–CNN shows parallel misclassification patterns that are also observed for the CNN;
neutral (46.1%), fearful (42.4%), happiness (36.3%), and anger (30.3%) are most frequently
misclassified as sadness. The DnCNN–CNN (53.9%) achieves a 2% increase in the overall
accuracy in comparison with the CNN (51.9%); however, the CNN performs better for the
happiness, sadness, and anger emotions.

Table 2. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the Korean CADKES
mixed with the PCAFETER noise.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 48.1% 0.7% 47.9% 1.7% 1.5%

Happiness 10.4% 42.0% 43.0% 1.8% 2.8%

Sadness 2.2% 0.7% 95.3% 0.5% 1.3%

Anger 9.2% 6.6% 37.7% 40.0% 6.6%

Fearful 3.2% 1.7% 56.0% 3.0% 36.1%

Overall accuracy: 52.3%

Table 3. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained on
the Korean CADKES mixed with the PCAFETER noise.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 60.5% 0.8% 35.3% 2.8% 0.6%

Happiness 14.0% 47.2% 34.4% 3.5% 0.9%

Sadness 3.7% 0.8% 92.7% 1.9% 0.9%

Anger 11.8% 7.0% 29.4% 49.2% 2.7%

Fearful 6.2% 1.7% 55.2% 5.5% 31.4%

Overall accuracy: 56.1%

Table 4. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the Korean CADKES
mixed with the PSTATION noise.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 44.0% 0.1% 52.5% 1.9% 1.5%

Happiness 10.5% 37.0% 45.3% 4.3% 2.9%

Sadness 1.3% 0.3% 96.3% 0.2% 1.9%

Anger 8.5% 5.6% 37.0% 45.5% 3.4%

Fearful 1.9% 0.7% 57.0% 3.5% 37.0%

Overall accuracy: 51.9%
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Table 5. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained on
the Korean CADKES mixed with the PSTATION noise.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 47.9% 0.5% 46.1% 1.5% 3.9%

Happiness 17.0% 33.9% 36.3% 5.3% 7.5%

Sadness 2.5% 0.3% 92.6% 1.1% 3.4%

Anger 11.6% 3.4% 30.3% 44.6% 10.1%

Fearful 3.6% 0.7% 42.4% 3.0% 50.2%

Overall accuracy: 53.9%

Tables 6 and 7 present the confusion matrices for the performance of the baseline CNN
and the proposed DnCNN–CNN architecture, respectively, when the CADKES is mixed
with the TMETRO noise. The results indicate that the CNN classifier exhibits the highest
classification accuracy for sadness (93.8%) and the lowest accuracy for anger (47.9%). The
neutral, happiness, and fearful emotions have an accuracy of 58.0%, 48.6%, and 51.7%,
respectively. Fearful (42.0%), neutral (38.1%), happiness (35.7%), and anger (27.7%) are
most frequently misclassified as sadness. For the DnCNN classifier, sadness is the most
accurately recognized emotion (90.6%), whereas anger is the least accurately recognized
emotion (50.4%). Neutral, happiness, and fearful were recognized with accuracies of 79.2%,
52.8%, and 55.8%, respectively. Fearful (35.5%), happiness (20.0%), neutral (17.2%), and
anger (13.4%) are most frequently misclassified as sadness. The DnCNN-CNN (64.8%)
performs better, overall, than the CNN (60.1%) by 4.7%. In addition, the proposed classifier
performs better for all emotions except for the sadness emotion.

Table 6. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the Korean CADKES
mixed with the TMETRO noise.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 58.0% 0.7% 38.1% 0.5% 2.6%

Happiness 10.8% 48.6% 35.7% 1.8% 3.1%

Sadness 1.8% 0.5% 93.8% 0.7% 3.1%

Anger 10.5% 8.2% 27.7% 47.9% 5.7%

Fearful 2.3% 2.2% 42.0% 1.8% 51.7%

Overall accuracy: 60.1%

Table 7. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained on
the Korean CADKES mixed with the TMETRO noise.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 79.2% 1.4% 17.2% 0.3% 1.9%

Happiness 20.3% 52.8% 20.0% 1.4% 5.6%

Sadness 4.2% 0.2% 90.6% 0.7% 4.3%

Anger 17.0% 10.7% 13.4% 50.4% 8.6%

Fearful 5.7% 2.0% 35.5% 1.0% 55.8%

Overall accuracy: 64.8%
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As mentioned above, we evaluated the performances of the baseline CNN and the
proposed cascaded DnCNN–CNN on the original CADKES that contains a slight level of
noise to examine whether the classifiers perform differently. Tables 8 and 9 provide the
emotion classification results of the CNN and the DnCNN–CNN, respectively. The results
show that both classifiers have an excellent performance on the original CADKES. The
CNN classifier yields an overall accuracy of 93.6%. All the emotion classes are recognized
with an accuracy above 90%. The best recognized emotion is neutral (95.4%). Meanwhile,
misclassification is the highest for the sadness–fearful pair, where sadness is misclassified
as fearful 3.8% of the time. This is followed by the sadness–neutral pair (3.6%) and the
anger–happiness pairs (3.6%). The DnCNN–CNN architecture achieves a high overall
accuracy of 95.8%. Neutral, sadness, and anger (>96%) have a relatively higher classification
accuracy than happiness (94.7%) and fearful (93.0%). Misclassification is the highest for the
emotional state pair of happiness and anger, where happiness is misclassified as anger 3.7%
of the time. These results indicate that the proposed DnCNN–CNN classifier outperforms
the baseline CNN classifier in terms of the overall accuracy. In addition, the proposed
classifier performs better than the baseline classifier in terms of the accuracy for every
class of emotion. The highest improvement in the classification accuracy is observed for
sadness (6.4%), whereas the lowest improvement in the classification accuracy is observed
for happiness (0.5%).

Table 8. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the original Korean
CADKES.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 95.4% 1.4% 2.2% 0.3% 0.7%

Happiness 2.1% 94.2% 0.8% 1.9% 1.0%

Sadness 3.6% 1.6% 90.7% 0.4% 3.8%

Anger 0.9% 3.6% 0.6% 93.9% 1.1%

Fearful 2.1% 1.8% 3.2% 0.8% 92.1%

Overall accuracy: 93.6%

Table 9. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained on
the original Korean CADKES.

Predicted Emotion

True emotion

Neutral Happiness Sadness Anger Fearful

Neutral 98.1% 0.9% 1.0% 0.0% 0.0%

Happiness 1.0% 94.7% 0.6% 3.7% 0.0%

Sadness 1.2% 0.6% 97.1% 0.0% 1.2%

Anger 0.5% 1.1% 1.1% 96.2% 1.1%

Fearful 1.9% 1.4% 1.9% 1.7% 93.0%

Overall accuracy: 95.8%

Tables 10 and 11 provide the confusion matrices for the performances of the baseline
CNN and the proposed DnCNN–CNN architecture, respectively, when the German EMO-
DB was mixed with the PCAFETER noise. The CNN exhibits the highest accuracy for
boredom (100.0%), followed by sadness (72.6%) and anxiety (52.2%). Disgust, neutral,
and anger are recognized as the intended emotions 37.0%, 30.4%, and 26.4% of the time,
respectively. Happiness is the least accurately recognized emotion (23.9%). The highest
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misclassification is observed for the neutral–boredom pair, where neutral is recognized
as boredom in 64.6% of the instances, followed by the happiness–boredom pair (50.7%)
and the disgust–boredom pair (45.7%). The proposed DnCNN–CNN achieves the highest
accuracy for boredom (92.6%), followed by neutral (83.5%). Sadness, anger, happiness, and
anxiety are recognized as the intended emotions in 77.4%, 76.0%, 67.6%, and 67.2% of the
instances, respectively. Disgust is the least accurately recognized emotion (65.2%). The
sadness–boredom pair exhibits the highest misclassification, where neutral is recognized
as boredom in 21.0% of the instances, followed by the anxiety–neutral pair, where anxiety
is recognized as neutral in 17.9% of the instances. The proposed DnCNN–CNN (76.6%)
outperforms the baseline CNN (48.2%) in the overall accuracy for the EMO-DB mixed with
the PCAFETER noise. The DnCNN–CNN also performs better than the baseline CNN for
every emotion class except for the boredom emotion. The highest improvement in the
classification accuracy is observed for neutral (53.1%), whereas the lowest improvement in
the classification accuracy is observed for sadness (4.8%).

Table 10. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the German
EMO-DB mixed with the PCAFETER noise.

Predicted Emotion

True emotion

Neutral Anger Boredom Disgust Anxiety Happiness Sadness

Neutral 30.4% 0.0% 64.6% 0.0% 0.0% 0.0% 5.1%

Anger 3.1% 26.4% 24.8% 7.0% 28.7% 7.8% 2.3%

Boredom 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

Disgust 2.2% 0.0% 45.7% 37.0% 6.5% 0.0% 8.7%

Anxiety 10.4% 0.0% 19.4% 3.0% 52.2% 0.0% 14.9%

Happiness 11.3% 2.8% 50.7% 4.2% 7.0% 23.9% 0.0%

Sadness 1.6% 0.0% 25.8% 0.0% 0.0% 0.0% 72.6%

Overall accuracy: 48.2%

Table 11. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained
on the German EMO-DB mixed with the PCAFETER noise.

Predicted Emotion

True emotion

Neutral Anger Boredom Disgust Anxiety Happiness Sadness

Neutral 83.5% 0.0% 16.5% 0.0% 0.0% 0.0% 0.0%

Anger 4.7% 76.0% 0.8% 1.6% 3.9% 13.2% 0.0%

Boredom 7.4% 0.0% 92.6% 0.0% 0.0% 0.0% 0.0%

Disgust 6.5% 0.0% 15.2% 65.2% 8.7% 2.2% 2.2%

Anxiety 17.9% 1.5% 4.5% 1.5% 67.2% 1.5% 6.0%

Happiness 12.7% 5.6% 11.3% 1.4% 1.4% 67.6% 0.0%

Sadness 1.6% 0.0% 21.0% 0.0% 0.0% 0.0% 77.4%

Overall accuracy: 76.6%

Tables 12 and 13 provide the confusion matrices for the performance of the baseline
CNN and the proposed DnCNN–CNN architecture, respectively, when the German EMO-
DB was mixed with the PSTATION noise. The CNN obtains the highest accuracy for
boredom (100.0%) and the lowest accuracy for anger (10.1%). Sadness, anxiety, neutral,
disgust, and happiness are recognized as the intended emotions in 71.0%, 38.8%, 24.1%,
23.9%, and 15.5% of the instances, respectively. The highest misclassification is observed for
the neutral–boredom pair, where neutral is recognized as boredom in 70.9% of the instances.
This is followed by the happiness–boredom pair (62.0%) and the disgust–boredom pair
(45.7%). The DnCNN–CNN achieves the highest classification accuracy for boredom
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(98.8%) and the lowest classification accuracy for happiness (39.4%). Sadness (88.7%)
exhibits relatively better accuracies in comparison with disgust (52.2%), anxiety (50.7%),
anger (46.5%), and neutral (45.6%). The highest misclassification is observed for the neutral–
boredom pair, where happiness is misclassified as boredom 53.2% of the time. Disgust
(26.1%), happiness (29.6%), and sadness (11.3%) are also most frequently misclassified
as boredom. Anger and anxiety are most frequently misclassified as neutral (14.0%) and
sadness (23.9%), respectively. The DnCNN–CNN (59.3%) achieves a higher overall accuracy
than the CNN (39.4%). More specifically, the DnCNN–CNN performs better than the CNN
on every emotion class except for boredom.

Table 12. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the German
EMO-DB mixed with the PSTATION noise.

Predicted Emotion

True emotion

Neutral Anger Boredom Disgust Anxiety Happiness Sadness

Neutral 24.1% 0.0% 70.9% 0.0% 0.0% 0.0% 5.1%

Anger 14.0% 10.1% 31.8% 7.0% 30.2% 3.9% 3.1%

Boredom 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

Disgust 2.2% 0.0% 45.7% 23.9% 8.7% 0.0% 19.6%

Anxiety 13.4% 0.0% 20.9% 1.5% 38.8% 0.0% 25.4%

Happiness 9.9% 1.4% 62.0% 4.2% 7.0% 15.5% 0.0%

Sadness 0.0% 0.0% 29.0% 0.0% 0.0% 0.0% 71.0%

Overall accuracy: 39.4%

Table 13. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained
on the German EMO-DB mixed with the PSTATION noise.

Predicted Emotion

True emotion

Neutral Anger Boredom Disgust Anxiety Happiness Sadness

Neutral 45.6% 0.0% 53.2% 0.0% 0.0% 0.0% 1.3%

Anger 14.0% 46.5% 10.9% 7.8% 8.5% 7.0% 5.4%

Boredom 0.0% 0.0% 98.8% 0.0% 0.0% 0.0% 1.2%

Disgust 10.9% 0.0% 26.1% 52.2% 2.2% 2.2% 6.5%

Anxiety 11.9% 0.0% 13.4% 0.0% 50.7% 0.0% 23.9%

Happiness 22.5% 2.8% 29.6% 4.2% 0.0% 39.4% 1.4%

Sadness 0.0% 0.0% 11.3% 0.0% 0.0% 0.0% 88.7%

Overall accuracy: 59.3%

Tables 14 and 15 provide the confusion matrices for the performances of the baseline
CNN and the proposed DnCNN–CNN architecture, respectively, when the German EMO-
DB is mixed with the TMETRO noise. The CNN obtains the highest accuracy for boredom
(98.8%), followed by sadness (87.1%), Anxiety, neutral, disgust, and anger have accuracies
of 61.2%, 57.0%, 52.2%, and 38.8%, respectively. Happiness is the least accurately recognized
emotion (28.2%). The highest misclassification is observed for the neutral–boredom pair,
in which neutral is recognized as boredom in 39.2% of the instances. This is followed by
the happiness–boredom pair (38.0%) and the disgust–boredom pair (28.3%). The DnCNN–
CNN achieves the highest accuracy for boredom (93.8%), followed by sadness (88.7%).
Neutral (68.4%) and anger (68.2%) exhibit relatively higher classification accuracies than
anxiety (59.7%), happiness (50.7%), and disgust (50.0%). Misclassification is the highest for
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the neutral–boredom emotional state pair, where anxiety is misclassified as neutral 30.4% of
the time. This is followed by the happiness–neutral pair, where happiness is misclassified
as neutral 28.2% of the time. The proposed DnCNN–CNN (69.5%) outperforms the baseline
CNN method (58.1%) in terms of the overall accuracy; more specifically, the DnCNN–CNN
performs better than the CNN on every emotion class except for boredom, disgust, and
anxiety.

Table 14. Confusion matrix of the emotion classification results of the baseline CNN that was trained on the German
EMO-DB mixed with the TMETRO noise.

Predicted Emotion

True emotion

Neutral Anger Boredom Disgust Anxiety Happiness Sadness

Neutral 57.0% 0.0% 39.2% 0.0% 0.0% 0.0% 3.8%

Anger 8.5% 38.8% 14.0% 6.2% 22.5% 8.5% 1.6%

Boredom 0.0% 0.0% 98.8% 0.0% 0.0% 0.0% 1.2%

Disgust 0.0% 0.0% 28.3% 52.2% 13.0% 0.0% 6.5%

Anxiety 9.0% 0.0% 9.0% 1.5% 61.2% 0.0% 19.4%

Happiness 16.9% 2.8% 38.0% 4.2% 9.9% 28.2% 0.0%

Sadness 1.6% 0.0% 11.3% 0.0% 0.0% 0.0% 87.1%

Overall accuracy: 58.1%

Table 15. Confusion matrix of the emotion classification results of the proposed cascaded DnCNN–CNN that was trained
on the German EMO-DB mixed with the TMETRO noise.

Predicted Emotion

True emotion

Neutral Anger Boredom Disgust Anxiety Happiness Sadness

Neutral 68.4% 0.0% 30.4% 0.0% 0.0% 0.0% 1.3%

Anger 7.0% 68.2% 3.9% 2.3% 6.2% 11.6% 0.8%

Boredom 6.2% 0.0% 93.8% 0.0% 0.0% 0.0% 0.0%

Disgust 15.2% 2.2% 13.0% 50.0% 8.7% 4.3% 6.5%

Anxiety 23.9% 1.5% 6.0% 0.0% 59.7% 0.0% 9.0%

Happiness 28.2% 4.2% 11.3% 1.4% 4.2% 50.7% 0.0%

Sadness 1.6% 0.0% 9.7% 0.0% 0.0% 0.0% 88.7%

Overall accuracy: 69.5%

4. Discussion

Recently, CNNs have achieved advanced performance for a wide spectrum of ap-
plications. In particular, CNN-based approaches are compelling in terms of recognizing
emotions while analyzing recorded speech in a noise-free environment. However, very
little attention has been given to their ability to recognize emotional states from noisy
speech. Motivated by the effectiveness of the DnCNN for noise reduction in wafer maps
and image processing, this study explored their applicability in the speech domain. This
was achieved by evaluating the performance of the proposed classifier in the Korean
CADKES and German EMO-DB databases under noisy environmental conditions. Specif-
ically, this investigation proposed the DnCNN–CNN architecture, which concatenates
the residual-learning-based denoising stage and classification stage. For comparison, this
study also analyzed the performance of the baseline CNN. Notably, only a few studies have
utilized CNNs for noisy speech emotion recognition. This study provides the first evidence
for the feasibility and effectiveness of the DnCNN architecture for boosting the emotion
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recognition performance in speech signals. In addition, this study is the first attempt at
using deep learning algorithms to classify Korean emotional speech.

The results show that the proposed DnCNN–CNN achieves a 2–28.4% increase in the
overall accuracy in comparison with the baseline CNN under the PCAFETER, PSTATION,
and TMETRO noise conditions. Nonetheless, the two classifiers perform poorly overall
on the Korean database that was mixed with the three types of noise. When it was tested
with the original CADKES, the proposed DnCNN–CNN exhibited a drastic increase in the
overall accuracy. The baseline CNN also gained a high overall accuracy. These patterns
indicate the effect of the noise that is contained in the original Korean CADKES in emotion
classification. It also supports the effectiveness of the proposed method in recognizing
emotions from speech signals that are corrupted by noise. Furthermore, the performance
of the proposed method on the German EMO-DB highlights the potential efficiency of the
DnCNN–CNN for recognizing emotions from noisy speech. Meanwhile, it exhibits higher
accuracies than the CNN under the three noise conditions. The results of the Bayesian
Wilcoxon Signed Rank test based on [54] show that the probability of higher accuracy of
the proposed DnCNN-CNN than the baseline CNN is 100%.

The overall DnCNN results are conceptually consistent with those of previous research
on the noise reduction of image sequences [41] and semiconductor wafer maps [42] in
terms of its high potential in denoising tasks across domains. The baseline-CNN-based
results are also largely consistent with those of previous studies [24,32–39]. Finally, the high
accuracy of speech emotion recognition for the original Korean CADKES demonstrates the
effectiveness and versatility of CNNs in a variety of recognition tasks.

However, there are some important limitations to this research. First, the performance
of the proposed algorithm in emotion recognition tasks for noisy speech was tested in only
two languages. It remains undetermined whether the proposed DnCNN is effective in
a language-universal manner. Second, the effectiveness of the DnCNN in noisy speech
emotion recognition is limited because its performance varies remarkably as a function
of the noise level. In particular, the DnCNN performs drastically better on the original
CADKES than the CADKES mixed with different types of noise. Further studies are
required to verify the effectiveness of the proposed DnCNN–CNN on noisy speech emotion
recognition tasks.

As the proposed algorithm performed considerably better when using German speech
than when using Korean speech, one possible direction for future studies is to boost the
denoising performance and robustness of the DnCNN–CNN on emotional speech signals
to which heavy noise is added. Another future research direction is to corroborate the
applicability of the proposed method by exploring whether the proposed DnCNN–CNN
performs well in enhancing the recognition of noisy emotional speech in languages other
than Korean and German.
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