Background and Objective: The accurate detection of sleep stages and disorders in older adults is essential for the effective diagnosis and treatment of sleep disorders affecting millions worldwide. Although Polysomnography (PSG) remains the primary method for monitoring sleep in medical settings, it is
[...] Read more.
Background and Objective: The accurate detection of sleep stages and disorders in older adults is essential for the effective diagnosis and treatment of sleep disorders affecting millions worldwide. Although Polysomnography (PSG) remains the primary method for monitoring sleep in medical settings, it is costly and time-consuming. Recent automated models have not fully explored and effectively fused the sleep features that are essential to identify sleep stages and disorders. This study proposes a novel automated model for detecting sleep stages and disorders in older adults by analyzing PSG recordings. PSG data include multiple channels, and the use of our proposed advanced methods reveals the potential correlations and complementary features across EEG, EOG, and EMG signals.
Methods: In this study, we employed three novel advanced architectures, (1) CNNs, (2) CNNs with Bi-LSTM, and (3) CNNs with a transformer encoder, for the automatic classification of sleep stages and disorders using multichannel PSG data. The CNN extracts local features from RGB spectrogram images of EEG, EOG, and EMG signals individually, followed by an appropriate column-wise feature fusion block. The Bi-LSTM and transformer encoder are then used to learn and capture intra-epoch feature transition rules and dependencies. A residual connection is also applied to preserve the characteristics of the original joint feature maps and prevent gradient vanishing.
Results: The experimental results in the CAP sleep database demonstrated that our proposed CNN with transformer encoder method outperformed standalone CNN, CNN with Bi-LSTM, and other advanced state-of-the-art methods in sleep stages and disorders classification. It achieves an accuracy of 95.2%, Cohen’s kappa of 93.6%, MF1 of 91.3%, and MGm of 95% for sleep staging, and an accuracy of 99.3%, Cohen’s kappa of 99.1%, MF1 of 99.2%, and MGm of 99.6% for disorder detection. Our model also achieves superior performance to other state-of-the-art approaches in the classification of N1, a stage known for its classification difficulty.
Conclusions: To the best of our knowledge, we are the first group going beyond the standard to investigate and innovate a model architecture which is accurate and robust for classifying sleep stages and disorders in the elderly for both patient and non-patient subjects. Given its high performance, our method has the potential to be integrated and deployed into clinical routine care settings.
Full article