- Article
Automatic Vehicle Recognition: A Practical Approach with VMMR and VCR
- Andrei Istrate,
- Madalin-George Boboc and
- Daniel-Tiberius Hritcu
- + 3 authors
Background: Automatic vehicle recognition has recently become an area of great interest, providing substantial support for multiple use cases, including law enforcement and surveillance applications. In real traffic conditions, where for various reasons license plate recognition is impossible or license plates are forged, alternative solutions are required to support human personnel in identifying vehicles used for illegal activities. In such cases, appearance-based approaches relying on vehicle make and model recognition (VMMR) and vehicle color recognition (VCR) can successfully complement license plate recognition. Methods: This research addresses appearance-based vehicle identification, in which VMMR and VCR rely on inherent visual cues such as body contours, stylistic details, and exterior color. In the first stage, vehicles passing through an intersection are detected, and essential visual characteristics are extracted for the two recognition tasks. The proposed system employs deep learning with semantic segmentation and data augmentation for color recognition, while histogram of oriented gradients (HOG) feature extraction combined with a support vector machine (SVM) classifier is used for make-model recognition. For the VCR task, five different neural network architectures are evaluated to identify the most effective solution. Results: The proposed system achieves an overall accuracy of 94.89% for vehicle make and model recognition. For vehicle color recognition, the best-performing models obtain a Top-1 accuracy of 94.17% and a Top-2 accuracy of 98.41%, demonstrating strong robustness under real-world traffic conditions. Conclusions: The experimental results show that the proposed automatic vehicle recognition system provides an efficient and reliable solution for appearance-based vehicle identification. By combining region-tailored data, segmentation-guided processing, and complementary recognition strategies, the system effectively supports real-world surveillance and law-enforcement scenarios where license plate recognition alone is insufficient.
18 December 2025







