-
Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare
-
An Empirical Comparison of Interpretable Models to Post-Hoc Explanations
-
A Robust Vehicle Detection Model for LiDAR Sensor Using Simulation Data and Transfer Learning Methods
-
Challenges and Limitations of ChatGPT and Artificial Intelligence for Scientific Research: A Perspective from Organic Materials
Journal Description
AI
AI
is an international, peer-reviewed, open access journal on artificial intelligence (AI), including broad aspects of cognition and reasoning, perception and planning, machine learning, intelligent robotics, and applications of AI, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 21.8 days after submission; acceptance to publication is undertaken in 6.9 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Adapting the Parameters of RBF Networks Using Grammatical Evolution
AI 2023, 4(4), 1059-1078; https://doi.org/10.3390/ai4040054 (registering DOI) - 11 Dec 2023
Abstract
Radial basis function networks are widely used in a multitude of applications in various scientific areas in both classification and data fitting problems. These networks deal with the above problems by adjusting their parameters through various optimization techniques. However, an important issue to
[...] Read more.
Radial basis function networks are widely used in a multitude of applications in various scientific areas in both classification and data fitting problems. These networks deal with the above problems by adjusting their parameters through various optimization techniques. However, an important issue to address is the need to locate a satisfactory interval for the parameters of a network before adjusting these parameters. This paper proposes a two-stage method. In the first stage, via the incorporation of grammatical evolution, rules are generated to create the optimal value interval of the network parameters. During the second stage of the technique, the mentioned parameters are fine-tuned with a genetic algorithm. The current work was tested on a number of datasets from the recent literature and found to reduce the classification or data fitting error by over 40% on most datasets. In addition, the proposed method appears in the experiments to be robust, as the fluctuation of the number of network parameters does not significantly affect its performance.
Full article
Open AccessArticle
Evaluating the Performance of Automated Machine Learning (AutoML) Tools for Heart Disease Diagnosis and Prediction
AI 2023, 4(4), 1036-1058; https://doi.org/10.3390/ai4040053 - 01 Dec 2023
Abstract
Globally, over 17 million people annually die from cardiovascular diseases, with heart disease being the leading cause of mortality in the United States. The ever-increasing volume of data related to heart disease opens up possibilities for employing machine learning (ML) techniques in diagnosing
[...] Read more.
Globally, over 17 million people annually die from cardiovascular diseases, with heart disease being the leading cause of mortality in the United States. The ever-increasing volume of data related to heart disease opens up possibilities for employing machine learning (ML) techniques in diagnosing and predicting heart conditions. While applying ML demands a certain level of computer science expertise—often a barrier for healthcare professionals—automated machine learning (AutoML) tools significantly lower this barrier. They enable users to construct the most effective ML models without in-depth technical knowledge. Despite their potential, there has been a lack of research comparing the performance of different AutoML tools on heart disease data. Addressing this gap, our study evaluates three AutoML tools—PyCaret, AutoGluon, and AutoKeras—against three datasets (Cleveland, Hungarian, and a combined dataset). To evaluate the efficacy of AutoML against conventional machine learning methodologies, we crafted ten machine learning models using the standard practices of exploratory data analysis (EDA), data cleansing, feature engineering, and others, utilizing the sklearn library. Our toolkit included an array of models—logistic regression, support vector machines, decision trees, random forest, and various ensemble models. Employing 5-fold cross-validation, these traditionally developed models demonstrated accuracy rates spanning from 55% to 60%. This performance is markedly inferior to that of AutoML tools, indicating the latter’s superior capability in generating predictive models. Among AutoML tools, AutoGluon emerged as the superior tool, consistently achieving accuracy rates between 78% and 86% across the datasets. PyCaret’s performance varied, with accuracy rates from 65% to 83%, indicating a dependency on the nature of the dataset. AutoKeras showed the most fluctuation in performance, with accuracies ranging from 54% to 83%. Our findings suggest that AutoML tools can simplify the generation of robust ML models that potentially surpass those crafted through traditional ML methodologies. However, we must also consider the limitations of AutoML tools and explore strategies to overcome them. The successful deployment of high-performance ML models designed via AutoML could revolutionize the treatment and prevention of heart disease globally, significantly impacting patient care.
Full article
(This article belongs to the Special Issue Artificial Intelligence in Healthcare: Current State and Future Perspectives)
►▼
Show Figures

Figure 1
Open AccessEssay
AI and Regulations
AI 2023, 4(4), 1023-1035; https://doi.org/10.3390/ai4040052 - 29 Nov 2023
Abstract
This essay argues that the popular misrepresentation of the nature of AI has important consequences concerning how we view the need for regulations. Considering AI as something that exists in itself, rather than as a set of cognitive technologies whose characteristics—physical, cognitive, and
[...] Read more.
This essay argues that the popular misrepresentation of the nature of AI has important consequences concerning how we view the need for regulations. Considering AI as something that exists in itself, rather than as a set of cognitive technologies whose characteristics—physical, cognitive, and systemic—are quite different from ours (and that, at times, differ widely among the technologies) leads to inefficient approaches to regulation. This paper aims at helping the practitioners of responsible AI to address the way in which the technical aspects of the tools they are developing and promoting directly have important social and political consequences.
Full article
(This article belongs to the Special Issue Standards and Ethics in AI)
Open AccessReview
Chat GPT in Diagnostic Human Pathology: Will It Be Useful to Pathologists? A Preliminary Review with ‘Query Session’ and Future Perspectives
by
, , , , , , , and
AI 2023, 4(4), 1010-1022; https://doi.org/10.3390/ai4040051 - 22 Nov 2023
Cited by 1
Abstract
The advent of Artificial Intelligence (AI) has in just a few years supplied multiple areas of knowledge, including in the medical and scientific fields. An increasing number of AI-based applications have been developed, among which conversational AI has emerged. Regarding the latter, ChatGPT
[...] Read more.
The advent of Artificial Intelligence (AI) has in just a few years supplied multiple areas of knowledge, including in the medical and scientific fields. An increasing number of AI-based applications have been developed, among which conversational AI has emerged. Regarding the latter, ChatGPT has risen to the headlines, scientific and otherwise, for its distinct propensity to simulate a ‘real’ discussion with its interlocutor, based on appropriate prompts. Although several clinical studies using ChatGPT have already been published in the literature, very little has yet been written about its potential application in human pathology. We conduct a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using PubMed, Scopus and the Web of Science (WoS) as databases, with the following keywords: ChatGPT OR Chat GPT, in combination with each of the following: pathology, diagnostic pathology, anatomic pathology, before 31 July 2023. A total of 103 records were initially identified in the literature search, of which 19 were duplicates. After screening for eligibility and inclusion criteria, only five publications were ultimately included. The majority of publications were original articles (n = 2), followed by a case report (n = 1), letter to the editor (n = 1) and review (n = 1). Furthermore, we performed a ‘query session’ with ChatGPT regarding pathologies such as pigmented skin lesions, malignant melanoma and variants, Gleason’s score of prostate adenocarcinoma, differential diagnosis between germ cell tumors and high grade serous carcinoma of the ovary, pleural mesothelioma and pediatric diffuse midline glioma. Although the premises are exciting and ChatGPT is able to co-advise the pathologist in providing large amounts of scientific data for use in routine microscopic diagnostic practice, there are many limitations (such as data of training, amount of data available, ‘hallucination’ phenomena) that need to be addressed and resolved, with the caveat that an AI-driven system should always provide support and never a decision-making motive during the histopathological diagnostic process.
Full article
(This article belongs to the Special Issue Artificial Intelligence in Healthcare: Current State and Future Perspectives)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhancing Tuta absoluta Detection on Tomato Plants: Ensemble Techniques and Deep Learning
AI 2023, 4(4), 996-1009; https://doi.org/10.3390/ai4040050 - 20 Nov 2023
Abstract
Early detection and efficient management practices to control Tuta absoluta (Meyrick) infestation is crucial for safeguarding tomato production yield and minimizing economic losses. This study investigates the detection of T. absoluta infestation on tomato plants using object detection models combined with ensemble techniques.
[...] Read more.
Early detection and efficient management practices to control Tuta absoluta (Meyrick) infestation is crucial for safeguarding tomato production yield and minimizing economic losses. This study investigates the detection of T. absoluta infestation on tomato plants using object detection models combined with ensemble techniques. Additionally, this study highlights the importance of utilizing a dataset captured in real settings in open-field and greenhouse environments to address the complexity of real-life challenges in object detection of plant health scenarios. The effectiveness of deep-learning-based models, including Faster R-CNN and RetinaNet, was evaluated in terms of detecting T. absoluta damage. The initial model evaluations revealed diminishing performance levels across various model configurations, including different backbones and heads. To enhance detection predictions and improve mean Average Precision (mAP) scores, ensemble techniques were applied such as Non-Maximum Suppression (NMS), Soft Non-Maximum Suppression (Soft NMS), Non-Maximum Weighted (NMW), and Weighted Boxes Fusion (WBF). The outcomes shown that the WBF technique significantly improved the mAP scores, resulting in a 20% improvement from 0.58 (max mAP from individual models) to 0.70. The results of this study contribute to the field of agricultural pest detection by emphasizing the potential of deep learning and ensemble techniques in improving the accuracy and reliability of object detection models.
Full article
(This article belongs to the Special Issue Artificial Intelligence in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Who Needs External References?—Text Summarization Evaluation Using Original Documents
by
and
AI 2023, 4(4), 970-995; https://doi.org/10.3390/ai4040049 - 15 Nov 2023
Abstract
►▼
Show Figures
Nowadays, individuals can be overwhelmed by a huge number of documents being present in daily life. Capturing the necessary details is often a challenge. Therefore, it is rather important to summarize documents to obtain the main information quickly. There currently exist automatic approaches
[...] Read more.
Nowadays, individuals can be overwhelmed by a huge number of documents being present in daily life. Capturing the necessary details is often a challenge. Therefore, it is rather important to summarize documents to obtain the main information quickly. There currently exist automatic approaches to this task, but their quality is often not properly assessed. State-of-the-art metrics rely on human-generated summaries as a reference for the evaluation. If no reference is given, the assessment will be challenging. Therefore, in the absence of human-generated reference summaries, we investigated an alternative approach to how machine-generated summaries can be evaluated. For this, we focus on the original text or document to retrieve a metric that allows a direct evaluation of automatically generated summaries. This approach is particularly helpful in cases where it is difficult or costly to find reference summaries. In this paper, we present a novel metric called Summary Score without Reference—SUSWIR—which is based on four factors already known in the text summarization community: Semantic Similarity, Redundancy, Relevance, and Bias Avoidance Analysis, overcoming drawbacks of common metrics. Therefore, we aim to close a gap in the current evaluation environment for machine-generated text summaries. The novel metric is introduced theoretically and tested on five datasets from their respective domains. The conducted experiments yielded noteworthy outcomes, employing the utilization of SUSWIR.
Full article

Figure 1
Open AccessArticle
Chatbots Put to the Test in Math and Logic Problems: A Comparison and Assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard
AI 2023, 4(4), 949-969; https://doi.org/10.3390/ai4040048 - 24 Oct 2023
Abstract
In an age where artificial intelligence is reshaping the landscape of education and problem solving, our study unveils the secrets behind three digital wizards, ChatGPT-3.5, ChatGPT-4, and Google Bard, as they engage in a thrilling showdown of mathematical and logical prowess. We assess
[...] Read more.
In an age where artificial intelligence is reshaping the landscape of education and problem solving, our study unveils the secrets behind three digital wizards, ChatGPT-3.5, ChatGPT-4, and Google Bard, as they engage in a thrilling showdown of mathematical and logical prowess. We assess the ability of the chatbots to understand the given problem, employ appropriate algorithms or methods to solve it, and generate coherent responses with correct answers. We conducted our study using a set of 30 questions. These questions were carefully crafted to be clear, unambiguous, and fully described using plain text only. Each question has a unique and well-defined correct answer. The questions were divided into two sets of 15: Set A consists of “Original” problems that cannot be found online, while Set B includes “Published” problems that are readily available online, often with their solutions. Each question was presented to each chatbot three times in May 2023. We recorded and analyzed their responses, highlighting their strengths and weaknesses. Our findings indicate that chatbots can provide accurate solutions for straightforward arithmetic, algebraic expressions, and basic logic puzzles, although they may not be consistently accurate in every attempt. However, for more complex mathematical problems or advanced logic tasks, the chatbots’ answers, although they appear convincing, may not be reliable. Furthermore, consistency is a concern as chatbots often provide conflicting answers when presented with the same question multiple times. To evaluate and compare the performance of the three chatbots, we conducted a quantitative analysis by scoring their final answers based on correctness. Our results show that ChatGPT-4 performs better than ChatGPT-3.5 in both sets of questions. Bard ranks third in the original questions of Set A, trailing behind the other two chatbots. However, Bard achieves the best performance, taking first place in the published questions of Set B. This is likely due to Bard’s direct access to the internet, unlike the ChatGPT chatbots, which, due to their designs, do not have external communication capabilities.
Full article
(This article belongs to the Topic AI Chatbots: Threat or Opportunity?)
►▼
Show Figures

Figure 1
Open AccessArticle
Deep Learning Performance Characterization on GPUs for Various Quantization Frameworks
AI 2023, 4(4), 926-948; https://doi.org/10.3390/ai4040047 - 18 Oct 2023
Abstract
Deep learning is employed in many applications, such as computer vision, natural language processing, robotics, and recommender systems. Large and complex neural networks lead to high accuracy; however, they adversely affect many aspects of deep learning performance, such as training time, latency, throughput,
[...] Read more.
Deep learning is employed in many applications, such as computer vision, natural language processing, robotics, and recommender systems. Large and complex neural networks lead to high accuracy; however, they adversely affect many aspects of deep learning performance, such as training time, latency, throughput, energy consumption, and memory usage in the training and inference stages. To solve these challenges, various optimization techniques and frameworks have been developed for the efficient performance of deep learning models in the training and inference stages. Although optimization techniques such as quantization have been studied thoroughly in the past, less work has been done to study the performance of frameworks that provide quantization techniques. In this paper, we have used different performance metrics to study the performance of various quantization frameworks, including TensorFlow automatic mixed precision and TensorRT. These performance metrics include training time and memory utilization in the training stage along with latency and throughput for graphics processing units (GPUs) in the inference stage. We have applied the automatic mixed precision (AMP) technique during the training stage using the TensorFlow framework, while for inference we have utilized the TensorRT framework for the post-training quantization technique using the TensorFlow TensorRT (TF-TRT) application programming interface (API).We performed model profiling for different deep learning models, datasets, image sizes, and batch sizes for both the training and inference stages, the results of which can help developers and researchers to devise and deploy efficient deep learning models for GPUs.
Full article
(This article belongs to the Special Issue Artificial Intelligence-Based Image Processing and Computer Vision)
►▼
Show Figures

Figure 1
Open AccessArticle
From Trustworthy Principles to a Trustworthy Development Process: The Need and Elements of Trusted Development of AI Systems
by
and
AI 2023, 4(4), 904-925; https://doi.org/10.3390/ai4040046 - 13 Oct 2023
Abstract
The current endeavor of moving AI ethics from theory to practice can frequently be observed in academia and industry and indicates a major achievement in the theoretical understanding of responsible AI. Its practical application, however, currently poses challenges, as mechanisms for translating the
[...] Read more.
The current endeavor of moving AI ethics from theory to practice can frequently be observed in academia and industry and indicates a major achievement in the theoretical understanding of responsible AI. Its practical application, however, currently poses challenges, as mechanisms for translating the proposed principles into easily feasible actions are often considered unclear and not ready for practice. In particular, a lack of uniform, standardized approaches that are aligned with regulatory provisions is often highlighted by practitioners as a major drawback to the practical realization of AI governance. To address these challenges, we propose a stronger shift in focus from solely the trustworthiness of AI products to the perceived trustworthiness of the development process by introducing a concept for a trustworthy development process for AI systems. We derive this process from a semi-systematic literature analysis of common AI governance documents to identify the most prominent measures for operationalizing responsible AI and compare them to implications for AI providers from EU-centered regulatory frameworks. Assessing the resulting process along derived characteristics of trustworthy processes shows that, while clarity is often mentioned as a major drawback, and many AI providers tend to wait for finalized regulations before reacting, the summarized landscape of proposed AI governance mechanisms can already cover many of the binding and non-binding demands circulating similar activities to address fundamental risks. Furthermore, while many factors of procedural trustworthiness are already fulfilled, limitations are seen particularly due to the vagueness of currently proposed measures, calling for a detailing of measures based on use cases and the system’s context.
Full article
(This article belongs to the Special Issue Standards and Ethics in AI)
►▼
Show Figures

Figure 1
Open AccessConcept Paper
Algorithms for All: Can AI in the Mortgage Market Expand Access to Homeownership?
AI 2023, 4(4), 888-903; https://doi.org/10.3390/ai4040045 - 11 Oct 2023
Abstract
Artificial intelligence (AI) is transforming the mortgage market at every stage of the value chain. In this paper, we examine the potential for the mortgage industry to leverage AI to overcome the historical and systemic barriers to homeownership for members of Black, Brown,
[...] Read more.
Artificial intelligence (AI) is transforming the mortgage market at every stage of the value chain. In this paper, we examine the potential for the mortgage industry to leverage AI to overcome the historical and systemic barriers to homeownership for members of Black, Brown, and lower-income communities. We begin by proposing societal, ethical, legal, and practical criteria that should be considered in the development and implementation of AI models. Based on this framework, we discuss the applications of AI that are transforming the mortgage market, including digital marketing, the inclusion of non-traditional “big data” in credit scoring algorithms, AI property valuation, and loan underwriting models. We conclude that although the current AI models may reflect the same biases that have existed historically in the mortgage market, opportunities exist for proactive, responsible AI model development designed to remove the systemic barriers to mortgage credit access.
Full article
(This article belongs to the Special Issue Standards and Ethics in AI)
►▼
Show Figures

Figure 1
Open AccessCommunication
Can Artificial Intelligence Aid Diagnosis by Teleguided Point-of-Care Ultrasound? A Pilot Study for Evaluating a Novel Computer Algorithm for COVID-19 Diagnosis Using Lung Ultrasound
by
, , , , , and
AI 2023, 4(4), 875-887; https://doi.org/10.3390/ai4040044 - 10 Oct 2023
Abstract
With the 2019 coronavirus disease (COVID-19) pandemic, there is an increasing demand for remote monitoring technologies to reduce patient and provider exposure. One field that has an increasing potential is teleguided ultrasound, where telemedicine and point-of-care ultrasound (POCUS) merge to create this new
[...] Read more.
With the 2019 coronavirus disease (COVID-19) pandemic, there is an increasing demand for remote monitoring technologies to reduce patient and provider exposure. One field that has an increasing potential is teleguided ultrasound, where telemedicine and point-of-care ultrasound (POCUS) merge to create this new scope. Teleguided POCUS can minimize staff exposure while preserving patient safety and oversight during bedside procedures. In this paper, we propose the use of teleguided POCUS supported by AI technologies for the remote monitoring of COVID-19 patients by non-experienced personnel including self-monitoring by the patients themselves. Our hypothesis is that AI technologies can facilitate the remote monitoring of COVID-19 patients through the utilization of POCUS devices, even when operated by individuals without formal medical training. In pursuit of this goal, we performed a pilot analysis to evaluate the performance of users with different clinical backgrounds using a computer-based system for COVID-19 detection using lung ultrasound. The purpose of the analysis was to emphasize the potential of the proposed AI technology for improving diagnostic performance, especially for users with less experience.
Full article
(This article belongs to the Special Issue Feature Papers for AI)
►▼
Show Figures

Figure 1
Open AccessArticle
Anthropocentrism and Environmental Wellbeing in AI Ethics Standards: A Scoping Review and Discussion
AI 2023, 4(4), 844-874; https://doi.org/10.3390/ai4040043 - 08 Oct 2023
Abstract
As AI deployment has broadened, so too has an awareness for the ethical implications and problems that may ensue from this deployment. In response, groups across multiple domains have issued AI ethics standards that rely on vague, high-level principles to find consensus. One
[...] Read more.
As AI deployment has broadened, so too has an awareness for the ethical implications and problems that may ensue from this deployment. In response, groups across multiple domains have issued AI ethics standards that rely on vague, high-level principles to find consensus. One such high-level principle that is common across the AI landscape is ‘human-centredness’, though oftentimes it is applied without due investigation into its merits and limitations and without a clear, common definition. This paper undertakes a scoping review of AI ethics standards to examine the commitment to ‘human-centredness’ and how this commitment interacts with other ethical concerns, namely, concerns for nonhumans animals and environmental wellbeing. We found that human-centred AI ethics standards tend to prioritise humans over nonhumans more so than nonhuman-centred standards. A critical analysis of our findings suggests that a commitment to human-centredness within AI ethics standards accords with the definition of anthropocentrism in moral philosophy: that humans have, at least, more intrinsic moral value than nonhumans. We consider some of the limitations of anthropocentric AI ethics, which include permitting harm to the environment and animals and undermining the stability of ecosystems.
Full article
(This article belongs to the Special Issue Standards and Ethics in AI)
►▼
Show Figures

Figure 1
Open AccessReview
Ethics and Transparency Issues in Digital Platforms: An Overview
AI 2023, 4(4), 831-843; https://doi.org/10.3390/ai4040042 - 28 Sep 2023
Abstract
There is an ever-increasing application of digital platforms that utilize artificial intelligence (AI) in our daily lives. In this context, the matters of transparency and accountability remain major concerns that are yet to be effectively addressed. The aim of this paper is to
[...] Read more.
There is an ever-increasing application of digital platforms that utilize artificial intelligence (AI) in our daily lives. In this context, the matters of transparency and accountability remain major concerns that are yet to be effectively addressed. The aim of this paper is to identify the zones of non-transparency in the context of digital platforms and provide recommendations for improving transparency issues on digital platforms. First, by surveying the literature and reflecting on the concept of platformization, choosing an AI definition that can be adopted by different stakeholders, and utilizing AI ethics, we will identify zones of non-transparency in the context of digital platforms. Second, after identifying the zones of non-transparency, we go beyond a mere summary of existing literature and provide our perspective on how to address the raised concerns. Based on our survey of the literature, we find that three major zones of non-transparency exist in digital platforms. These include a lack of transparency with regard to who contributes to platforms; lack of transparency with regard to who is working behind platforms, the contributions of those workers, and the working conditions of digital workers; and lack of transparency with regard to how algorithms are developed and governed. Considering the abundance of high-level principles in the literature that cannot be easily operationalized, this is an attempt to bridge the gap between principles and operationalization.
Full article
(This article belongs to the Special Issue Standards and Ethics in AI)
Open AccessArticle
A General Machine Learning Model for Assessing Fruit Quality Using Deep Image Features
AI 2023, 4(4), 812-830; https://doi.org/10.3390/ai4040041 - 27 Sep 2023
Abstract
Fruit quality is a critical factor in the produce industry, affecting producers, distributors, consumers, and the economy. High-quality fruits are more appealing, nutritious, and safe, boosting consumer satisfaction and revenue for producers. Artificial intelligence can aid in assessing the quality of fruit using
[...] Read more.
Fruit quality is a critical factor in the produce industry, affecting producers, distributors, consumers, and the economy. High-quality fruits are more appealing, nutritious, and safe, boosting consumer satisfaction and revenue for producers. Artificial intelligence can aid in assessing the quality of fruit using images. This paper presents a general machine learning model for assessing fruit quality using deep image features. This model leverages the learning capabilities of the recent successful networks for image classification called vision transformers (ViT). The ViT model is built and trained with a combination of various fruit datasets and taught to distinguish between good and rotten fruit images based on their visual appearance and not predefined quality attributes. The general model demonstrated impressive results in accurately identifying the quality of various fruits, such as apples (with a 99.50% accuracy), cucumbers (99%), grapes (100%), kakis (99.50%), oranges (99.50%), papayas (98%), peaches (98%), tomatoes (99.50%), and watermelons (98%). However, it showed slightly lower performance in identifying guavas (97%), lemons (97%), limes (97.50%), mangoes (97.50%), pears (97%), and pomegranates (97%).
Full article
(This article belongs to the Special Issue Artificial Intelligence in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Unveiling the Transparency of Prediction Models for Spatial PM2.5 over Singapore: Comparison of Different Machine Learning Approaches with eXplainable Artificial Intelligence
AI 2023, 4(4), 787-811; https://doi.org/10.3390/ai4040040 - 27 Sep 2023
Abstract
►▼
Show Figures
Aerosols play a crucial role in the climate system due to direct and indirect effects, such as scattering and absorbing radiant energy. They also have adverse effects on visibility and human health. Humans are exposed to fine PM2.5, which has adverse
[...] Read more.
Aerosols play a crucial role in the climate system due to direct and indirect effects, such as scattering and absorbing radiant energy. They also have adverse effects on visibility and human health. Humans are exposed to fine PM2.5, which has adverse health impacts related to cardiovascular and respiratory-related diseases. Long-term trends in PM concentrations are influenced by emissions and meteorological variations, while meteorological factors primarily drive short-term variations. Factors such as vegetation cover, relative humidity, temperature, and wind speed impact the divergence in the PM2.5 concentrations on the surface. Machine learning proved to be a good predictor of air quality. This study focuses on predicting PM2.5 with these parameters as input for spatial and temporal information. The work analyzes the in situ observations for PM2.5 over Singapore for seven years (2014–2021) at five locations, and these datasets are used for spatial prediction of PM2.5. The study aims to provide a novel framework based on temporal-based prediction using Random Forest (RF), Gradient Boosting (GB) regression, and Tree-based Pipeline Optimization Tool (TP) Auto ML works based on meta-heuristic via genetic algorithm. TP produced reasonable Global Performance Index values; 7.4 was the highest GPI value in August 2016, and the lowest was −0.6 in June 2019. This indicates the positive performance of the TP model; even the negative values are less than other models, denoting less pessimistic predictions. The outcomes are explained with the eXplainable Artificial Intelligence (XAI) techniques which help to investigate the fidelity of feature importance of the machine learning models to extract information regarding the rhythmic shift of the PM2.5 pattern.
Full article

Figure 1
Open AccessReview
A Comprehensive Review and a Taxonomy of Edge Machine Learning: Requirements, Paradigms, and Techniques
AI 2023, 4(3), 729-786; https://doi.org/10.3390/ai4030039 - 13 Sep 2023
Abstract
►▼
Show Figures
The union of Edge Computing (EC) and Artificial Intelligence (AI) has brought forward the Edge AI concept to provide intelligent solutions close to the end-user environment, for privacy preservation, low latency to real-time performance, and resource optimization. Machine Learning (ML), as the most
[...] Read more.
The union of Edge Computing (EC) and Artificial Intelligence (AI) has brought forward the Edge AI concept to provide intelligent solutions close to the end-user environment, for privacy preservation, low latency to real-time performance, and resource optimization. Machine Learning (ML), as the most advanced branch of AI in the past few years, has shown encouraging results and applications in the edge environment. Nevertheless, edge-powered ML solutions are more complex to realize due to the joint constraints from both edge computing and AI domains, and the corresponding solutions are expected to be efficient and adapted in technologies such as data processing, model compression, distributed inference, and advanced learning paradigms for Edge ML requirements. Despite the fact that a great deal of the attention garnered by Edge ML is gained in both the academic and industrial communities, we noticed the lack of a complete survey on existing Edge ML technologies to provide a common understanding of this concept. To tackle this, this paper aims at providing a comprehensive taxonomy and a systematic review of Edge ML techniques, focusing on the soft computing aspects of existing paradigms and techniques. We start by identifying the Edge ML requirements driven by the joint constraints. We then extensively survey more than twenty paradigms and techniques along with their representative work, covering two main parts: edge inference, and edge learning. In particular, we analyze how each technique fits into Edge ML by meeting a subset of the identified requirements. We also summarize Edge ML frameworks and open issues to shed light on future directions for Edge ML.
Full article

Figure 1
Open AccessOpinion
What Is the Role of AI for Digital Twins?
AI 2023, 4(3), 721-728; https://doi.org/10.3390/ai4030038 - 01 Sep 2023
Abstract
►▼
Show Figures
The concept of a digital twin is intriguing as it presents an innovative approach to solving numerous real-world challenges. Initially emerging from the domains of manufacturing and engineering, digital twin research has transcended its origins and now finds applications across a wide range
[...] Read more.
The concept of a digital twin is intriguing as it presents an innovative approach to solving numerous real-world challenges. Initially emerging from the domains of manufacturing and engineering, digital twin research has transcended its origins and now finds applications across a wide range of disciplines. This multidisciplinary expansion has impressively demonstrated the potential of digital twin research. While the simulation aspect of a digital twin is often emphasized, the role of artificial intelligence (AI) and machine learning (ML) is severely understudied. For this reason, in this paper, we highlight the pivotal role of AI and ML for digital twin research. By recognizing that a digital twin is a component of a broader Digital Twin System (DTS), we can fully grasp the diverse applications of AI and ML. In this paper, we explore six AI techniques—(1) optimization (model creation), (2) optimization (model updating), (3) generative modeling, (4) data analytics, (5) predictive analytics and (6) decision making—and their potential to advance applications in health, climate science, and sustainability.
Full article

Figure 1
Open AccessArticle
Privacy-Preserving Convolutional Bi-LSTM Network for Robust Analysis of Encrypted Time-Series Medical Images
AI 2023, 4(3), 706-720; https://doi.org/10.3390/ai4030037 - 28 Aug 2023
Abstract
Deep learning (DL) algorithms can improve healthcare applications. DL has improved medical imaging diagnosis, therapy, and illness management. The use of deep learning algorithms on sensitive medical images presents privacy and data security problems. Improving medical imaging while protecting patient anonymity is difficult.
[...] Read more.
Deep learning (DL) algorithms can improve healthcare applications. DL has improved medical imaging diagnosis, therapy, and illness management. The use of deep learning algorithms on sensitive medical images presents privacy and data security problems. Improving medical imaging while protecting patient anonymity is difficult. Thus, privacy-preserving approaches for deep learning model training and inference are gaining popularity. These picture sequences are analyzed using state-of-the-art computer aided detection/diagnosis techniques (CAD). Algorithms that upload medical photos to servers pose privacy issues. This article presents a convolutional Bi-LSTM network to assess completely homomorphic-encrypted (HE) time-series medical images. From secret image sequences, convolutional blocks learn to extract selective spatial features and Bi-LSTM-based analytical sequence layers learn to encode time data. A weighted unit and sequence voting layer uses geographical with varying weights to boost efficiency and reduce incorrect diagnoses. Two rigid benchmarks—the CheXpert, and the BreaKHis public datasets—illustrate the framework’s efficacy. The technique outperforms numerous rival methods with an accuracy above 0.99 for both datasets. These results demonstrate that the proposed outline can extract visual representations and sequential dynamics from encrypted medical picture sequences, protecting privacy while attaining good medical image analysis performance.
Full article
(This article belongs to the Topic Explainable AI for Health)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparison of Various Nitrogen and Water Dual Stress Effects for Predicting Relative Water Content and Nitrogen Content in Maize Plants through Hyperspectral Imaging
AI 2023, 4(3), 692-705; https://doi.org/10.3390/ai4030036 - 18 Aug 2023
Abstract
Water and nitrogen (N) are major factors in plant growth and agricultural production. However, these are often confounded and produce overlapping symptoms of plant stress. The objective of this study is to verify whether the different levels of N treatment influence water status
[...] Read more.
Water and nitrogen (N) are major factors in plant growth and agricultural production. However, these are often confounded and produce overlapping symptoms of plant stress. The objective of this study is to verify whether the different levels of N treatment influence water status prediction and vice versa with hyperspectral modeling. We cultivated 108 maize plants in a greenhouse under three-level N treatments in combination with three-level water treatments. Hyperspectral images were collected from those plants, then Relative Water Content (RWC), as well as N content, was measured as ground truth. A Partial Least Squares (PLS) regression analysis was used to build prediction models for RWC and N content. Then, their accuracy and robustness were compared according to the different N treatment datasets and different water treatment datasets, respectively. The results demonstrated that the PLS prediction for RWC using hyperspectral data was impacted by N stress difference (Ratio of Performance to Deviation; RPD from 0.87 to 2.27). Furthermore, the dataset with water and N dual stresses improved model accuracy and robustness (RPD from 1.69 to 2.64). Conversely, the PLS prediction for N content was found to be robust against water stress difference (RPD from 2.33 to 3.06). In conclusion, we suggest that water and N dual treatments can be helpful in building models with wide applicability and high accuracy for evaluating plant water status such as RWC.
Full article
(This article belongs to the Special Issue Artificial Intelligence in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of an Arabic Chatbot Based on Extractive Question-Answering Transfer Learning and Language Transformers
AI 2023, 4(3), 667-691; https://doi.org/10.3390/ai4030035 - 16 Aug 2023
Cited by 2
Abstract
►▼
Show Figures
Chatbots are programs with the ability to understand and respond to natural language in a way that is both informative and engaging. This study explored the current trends of using transformers and transfer learning techniques on Arabic chatbots. The proposed methods used various
[...] Read more.
Chatbots are programs with the ability to understand and respond to natural language in a way that is both informative and engaging. This study explored the current trends of using transformers and transfer learning techniques on Arabic chatbots. The proposed methods used various transformers and semantic embedding models from AraBERT, CAMeLBERT, AraElectra-SQuAD, and AraElectra (Generator/Discriminator). Two datasets were used for the evaluation: one with 398 questions, and the other with 1395 questions and 365,568 documents sourced from Arabic Wikipedia. Extensive experimental works were conducted, evaluating both manually crafted questions and the entire set of questions by using confidence and similarity metrics. Our experimental results demonstrate that combining the power of transformer architecture with extractive chatbots can provide more accurate and contextually relevant answers to questions in Arabic. Specifically, our experimental results showed that the AraElectra-SQuAD model consistently outperformed other models. It achieved an average confidence score of 0.6422 and an average similarity score of 0.9773 on the first dataset, and an average confidence score of 0.6658 and similarity score of 0.9660 on the second dataset. The study concludes that the AraElectra-SQuAD showed remarkable performance, high confidence, and robustness, which highlights its potential for practical applications in natural language processing tasks for Arabic chatbots. The study suggests that the language transformers can be further enhanced and used for various tasks, such as specialized chatbots, virtual assistants, and information retrieval systems for Arabic-speaking users.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
AI, Algorithms, Applied Sciences, Information, Mathematics
Advances in Artificial Neural Networks
Topic Editors: Krzysztof Ejsmont, Aamer Bilal Asghar, Yong Wang, Rodolfo HaberDeadline: 31 December 2023
Topic in
AI, Applied Sciences, Electronics, IJGI, Remote Sensing, Robotics, Sensors
Artificial Intelligence in Navigation
Topic Editors: Arpad Barsi, Niclas Zeller, Eliseo ClementiniDeadline: 20 January 2024
Topic in
AI, Algorithms, Applied Sciences, Energies, JNE
Intelligent, Explainable and Trustworthy AI for Advanced Nuclear and Sustainable Energy Systems
Topic Editors: Dinesh Kumar, Syed Bahauddin AlamDeadline: 31 January 2024
Topic in
AI, BDCC, Economies, IJFS, JTAER, Sustainability
Artificial Intelligence Applications in Financial Technology
Topic Editors: Albert Y.S. Lam, Yanhui GengDeadline: 1 March 2024

Conferences
Special Issues
Special Issue in
AI
Artificial Intelligence in Healthcare: Current State and Future Perspectives
Guest Editor: Tim HulsenDeadline: 15 December 2023
Special Issue in
AI
Artificial Intelligence in Agriculture
Guest Editor: Arslan MunirDeadline: 30 December 2023
Special Issue in
AI
Feature Papers for AI
Guest Editors: Kenji Suzuki, José MachadoDeadline: 31 December 2023
Special Issue in
AI
Artificial Intelligence and Sustainable Civil Engineering
Guest Editors: Max Ziyadi, Ali Behnood, Moncef L. NehdiDeadline: 14 January 2024