You are currently viewing a new version of our website. To view the old version click .

Sustainable Chemistry

Sustainable Chemistry is an international, peer-reviewed, open access journal on advances in the development of alternative green and sustainable technologies in chemical engineering, published quarterly online by MDPI.

Quartile Ranking JCR - Q2 (Engineering, Chemical | Chemistry, Multidisciplinary)

All Articles (196)

The old spectral displacement method can be suitably revitalized for a didactic experimental approach to fundamental concepts of supramolecular chemistry and to the study of complex equilibria in general. In particular, the case of the β-cyclodextrin/phenolphthalein/adamantane ternary system has been taken into account as a viable and impressive example due to the remarkable color changes that can be observed when performing the experiments. A new method for data regression analysis is proposed, with a smart trick able to overcome the mathematical difficulties arising whenever multiple equilibria must be considered. Hence, some aspects of the reliability of fitting procedures are discussed.

4 December 2025

Structures of βCD, Php and Ada.

Mercury Removal and Antibacterial Performance of A TiO2–APTES Kaolin Composite

  • Awal Adava Abdulsalam,
  • Sabina Khabdullina and
  • Zhamilya Sairan
  • + 7 authors

Mercury (Hg2+) contamination in water systems poses a severe environmental and health hazard due to its high toxicity and bioaccumulation potential. In this study, a novel adsorbent was developed by sequentially modifying kaolin via acid–base treatment, titanium dioxide (TiO2) incorporation, and 3-aminopropyltriethoxysilane (APTES) grafting. Batch adsorption experiments revealed that the fully modified kaolin (TiO2-loaded and APTES grafted) exhibited the highest adsorption capacity (25.6 mg/g) compared to the acid–base-treated (5.8 mg/g) and TiO2-loaded (17.7 mg/g) kaolin. Under optimal conditions (75 mg adsorbent dosage; 70 mg/L Hg2+; pH 5), the fully modified kaolin maintained its performance even in the presence of varying ionic strengths, natural organic matter, and competing metal ions. Adsorption kinetics followed a pseudo-second-order model, and the equilibrium data were well fitted by the Langmuir isotherm. Antibacterial activity assay revealed that the TiO2-loaded kaolin effectively inhibited S. aureus (minimum inhibitory concentration = 2.5 mg/mL) and showed moderate activity against E. coli (BL21) (minimum inhibitory concentration = 5 mg/mL). However, antibacterial activity decreased after amine functionalization, indicating a compromise between enhancing adsorption capacity and preserving antibacterial functionality. This study presents a promising cost-efficient approach for the simultaneous removal of Hg2+ ions from water matrices and inhibiting bacterial growth, aligning with SDG 6 (Clean Water and Sanitation).

1 December 2025

Schematic illustration of the preparation process of AB, ABK–TiO2, and ABK–TiO2–APTES.

New Approaches for the Extraction of Anthocyanins from Grape Skins Using Deep Eutectic Solvents

  • Marta Jiménez-Salcedo,
  • Filipe H. B. Sosa and
  • João A. P. Coutinho
  • + 1 author

Deep eutectic solvents (DES) were selected for the extraction of anthocyanins from red grape skins as an efficient and environmentally friendly solvent alternative to traditional mixtures based on methanol. In silico studies (COSMO-RS) were employed as screening tools to identify the most suitable options, significantly reducing the chemical space of potential DES to be studied. A total of 30,132 DES combinations were assessed. The DESs selected were polyalcohols (ethyleneglycol, glycerol, 1,2-propanediol, and 1,6-hexanediol) and carboxylic acids (citric, oxalic, malic, and lactic acid) as hydrogen bond donors (HBD) and choline chloride, betaine, or salts (potassium carbonate, sodium acetate, and propionate), as hydrogen bond acceptors (HBA). Choline chloride:glycerol and choline chloride:oxaclic acic were selected as solvents to optimize time, temperature, and water content in ultrasound- and microwave-assisted extraction of anthocyanins. In both cases, around 20 wt% of water was found to be the optimum to maximize the extractions, whereas extraction time and temperature depended on the type of anthocyanin. The amount of malvidin-3-O-glucoside extracted by microwave-assisted extraction with choline chloride: oxalic acid was 172 ± 7 mg/kg and 119.5 ± 0.5 mg/kg by ultrasound-assisted extraction with choline chloride: glycerol, which means an increase in performance of, respectively, 64 and a 13% compared to the traditional method.

24 November 2025

The activity coefficients at infinite dilution (ln γ∞) of malvidin-3-O-glucoside (a) and malvidin-3-O-(6-p-coumaroyl)glucoside (b) in eutectic solvents (1:1) at 298.15 K.

This interdisciplinary study explores the potential of bioactive compounds from Aronia melanocarpa pomace, a juice industry by-product. The ethanol extract of the pomace was analyzed using HPLC, revealing key polyphenolic acids and anthocyanins. The extract exhibited outstanding antioxidant activity (100% as measured by the ABTS assay and 98.23% as measured by the DPPH assay) and >99% antibacterial efficacy against E. coli and S. aureus. This bioactive extract was utilized in a one-step process to dye and functionalize textiles (wool, silk, cellulose acetate, cotton, and viscose), with cotton and viscose suited for colored disposable bioactive textiles, particularly protective healthcare textiles, due to strong antioxidant (>97% as measured by the ABTS assay and >76% as measured by the DPPH assay) and antibacterial (>75% for E. coli and >80% for S. aureus) properties. The aronia pomace extract was also incorporated into newly synthesized starch/gelatin hydrogels with a compression modulus of 0.041–0.127 MPa and equilibrium swelling ratios of 3.33–4.26 g/g. Functionalized hydrogels demonstrated over 99% ABTS antioxidant activity, while the antibacterial efficacy against E. coli and S. aureus exceeded 70% and 97%, respectively. These properties, combined with the hydrogels’ ability to control the release of extract compounds, make them adequate for wound care applications. The extract’s effectiveness as a green inhibitor for carbon steel, with inhibition efficiency surpassing 94% at a concentration of aronia pomace extract of 100 ppm, was confirmed by electrochemical methods. Moreover, the extract predominantly retards the cathodic reaction. The current research represents the first exploration of alternative and green sustainable technologies for developing novel products based on aronia pomace extract.

19 November 2025

Novel aspects of this study.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Biomass Transformation
Reprint

Biomass Transformation

Sustainable Development
Editors: Domenico Licursi, Juan J. Hernández

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Sustain. Chem. - ISSN 2673-4079