Journal Description
Sustainable Chemistry
Sustainable Chemistry
is an international, peer-reviewed, open access journal on advances in the development of alternative green and sustainable technologies in chemical engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, CAPlus / SciFinder, FSTA, and other databases.
- Journal Rank: JCR - Q2 (Engineering, Chemical) / CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 30.4 days after submission; acceptance to publication is undertaken in 5.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Sustainable Chemistry is a companion journal of Sustainability.
- Journal Cluster of Chemical Reactions and Catalysis: Catalysts, Chemistry, Electrochem, Inorganics, Molecules, Organics, Oxygen, Photochem, Reactions, Sustainable Chemistry.
Impact Factor:
4.2 (2024);
5-Year Impact Factor:
5.0 (2024)
Latest Articles
The Nature of Lignin and Implications for Its Technical Use as a Source for Biogenic Aromatics—A Review
Sustain. Chem. 2025, 6(4), 38; https://doi.org/10.3390/suschem6040038 - 28 Oct 2025
Abstract
►
Show Figures
The composite material lignocellulose makes up the majority of biomass on earth and is characterized by a high biological and chemical resistance, which is essentially caused by the phenylpropanoid polymer lignin. Thus, the removal and depolymerization of lignin to produce aromatic chemicals can
[...] Read more.
The composite material lignocellulose makes up the majority of biomass on earth and is characterized by a high biological and chemical resistance, which is essentially caused by the phenylpropanoid polymer lignin. Thus, the removal and depolymerization of lignin to produce aromatic chemicals can significantly enhance the material usability of all lignocellulose constituents. This review summarizes the current state of knowledge on the nature of lignin, including its biosynthesis, structure, chemistry and biodegradation. Second, it attempts to derive implications regarding the technical valorization of lignin from native biomass through depolymerization. Finally, the consequences of the findings for conventional, recently developed and future processes valorizing lignocellulose are assessed, and the associated technical and economic hurdles are discussed. It becomes clear that lignin depolymerizability is restricted in established pulping processes, primarily due to repolymerization reactions. Strategies avoiding lignin repolymerization involve an increased process complexity and additional economic expenditure but might enable an increased value creation from lignocellulosic biomass.
Full article
Open AccessArticle
Enhanced Stability of Water-Processed Sb2Te3: PEO Thermoelectric Hybrids via Thiol-Based Surface Functionalization
by
Oskars Bitmets, Bejan Hamawandi, Raitis Grzibovskis, Jose Francisco Serrano Claumarchirant, Muhammet S. Toprak and Kaspars Pudzs
Sustain. Chem. 2025, 6(4), 37; https://doi.org/10.3390/suschem6040037 - 25 Oct 2025
Abstract
This study explores the development of a water-based hybrid thermoelectric (TE) material composed of Sb2Te3 nanoparticles (NPs) and polyethylene oxide (PEO). Sb2Te3 NPs were synthesized via the microwave-assisted colloidal route, where X-ray diffraction confirmed the purity and
[...] Read more.
This study explores the development of a water-based hybrid thermoelectric (TE) material composed of Sb2Te3 nanoparticles (NPs) and polyethylene oxide (PEO). Sb2Te3 NPs were synthesized via the microwave-assisted colloidal route, where X-ray diffraction confirmed the purity and quality of the Sb2Te3 NPs. Key properties, including the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and long-term stability, were studied. X-ray photoelectron spectroscopy (XPS) analysis revealed that exposure to water and oxygen leads to NP oxidation, which can be partially mitigated by hydrochloric acid (HCl) treatment, though this does not halt ongoing oxidation. Scanning electron microscopy (SEM) images displayed a percolation network of NPs within the PEO matrix. While the initial σ was high, a decline occurred over eight weeks, resulting in similar conductivity among all samples. The effect of surface treatments, such as 1,6-hexanedithiol (HDT), was demonstrated to enhance long-term stability. The results highlight both the challenges and potential of Sb2Te3/PEO hybrids for TE applications, especially regarding oxidation and durability, and underscore the need for improved synthesis and processing techniques to optimize their performance. This study provides valuable insights for the design of next-generation hybrid TE materials and emphasizes the importance of surface chemistry control in polymer–inorganic nanocomposites.
Full article
(This article belongs to the Special Issue Innovations in Energy Engineering and Cleaner Production: A Sustainable Chemistry Perspective)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Antimony and Bismuth Recovery from an Acidic Chloride Eluate of a Copper Electrolyte Purification Plant with an Arsenic Sequestration
by
Mateusz Ciszewski, Szymon Orda, Michał Drzazga, Katarzyna Leszczyńska-Sejda, Andrzej Chmielarz and Patricia Córdoba
Sustain. Chem. 2025, 6(4), 36; https://doi.org/10.3390/suschem6040036 - 24 Oct 2025
Abstract
Antimony (Sb), bismuth (Bi), and arsenic (As) are common contaminants of copper (Cu) electrolyte and anodes, necessitating strict control of their concentrations. The purification of Cu electrolytes is required and demands the application of appropriate techniques. This paper presents the methodology of selective
[...] Read more.
Antimony (Sb), bismuth (Bi), and arsenic (As) are common contaminants of copper (Cu) electrolyte and anodes, necessitating strict control of their concentrations. The purification of Cu electrolytes is required and demands the application of appropriate techniques. This paper presents the methodology of selective precipitation, applied for Sb, Bi, and As recovery from the acidic eluate of a Cu electrolyte purification plant. An important aspect was the change in solution type from chloride to sulfate, prior to arsenic sequestration. A facile precipitation method, preceded by a reduction in As(V) and Sb(V), was applied. The primary objectives are focused on the preparation of three distinct concentrates: antimony oxychloride, bismuth oxychloride, and iron(III) arsenate(V), emphasizing optimal recovery and purity. The processes were performed in a specially designed, cascade-lined pilot scale installation, with a daily capacity of approximately 2.5 m3. In total, 22 m3 of eluate was processed, yielding 191 kg of Sb concentrate, 97 kg of Bi concentrate, and 163 kg of scorodite. The recovery of Sb was as high as 98%, with antimony content up to 50% in the concentrate. The recovery of bismuth varied from 60 to 99%, depending on the process parameters. The elimination of arsenic from the eluate was close to 100%.
Full article
(This article belongs to the Special Issue Circularity, Sustainability, Resilience, and Analysis in Water, Wastewater, and Sludge Management)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Supercritical CO2 Extraction from Bacupari (Garcinia brasiliensis) and Leiteira (Tabernaemontana catharinensis) Seeds
by
Guilherme de Souza Lopes, Matheus Almeida Conceição, Carlos Toshiyuki Hiranobe, Camila da Silva, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Leandro Ferreira-Pinto
Sustain. Chem. 2025, 6(4), 35; https://doi.org/10.3390/suschem6040035 - 23 Oct 2025
Abstract
►▼
Show Figures
This study evaluated the extraction of oils from the seeds of bacupari (Garcinia brasiliensis Mart.) and leiteira (Tabernaemontana catharinensis), using carbon dioxide (CO2) in the supercritical state. The effects of temperature (40, 50, and 60 °C) and pressure
[...] Read more.
This study evaluated the extraction of oils from the seeds of bacupari (Garcinia brasiliensis Mart.) and leiteira (Tabernaemontana catharinensis), using carbon dioxide (CO2) in the supercritical state. The effects of temperature (40, 50, and 60 °C) and pressure (20, 24, and 28 MPa) on the yield and extraction kinetics were investigated. The results indicated that, within the studied limits, temperature had a negligible influence on the process, while pressure had a greater impact on the yields owing to its effect on the density of supercritical CO2 and the solubility of the extracted compounds. The maximum yields obtained were 14.8% for bacupari and 15.2% for leiteira, with most of the oil extracted within the first 30 min, indicating initial rapid extraction. Chemical composition analysis revealed relevant bioactive compounds in bacupari, including oleic acid (35%) and delta-tocopherol (19.6%). In leiteira, the main compounds identified were hexanedioic acid (29.2%) and stigmast-5-ene (7.95%). These results suggest the potential application of these oils in the pharmaceutical, cosmetic, and food sectors, while also highlighting the feasibility of using supercritical CO2 as an extraction method for these plant matrices.
Full article

Figure 1
Open AccessArticle
Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications
by
Ebuka Ogbuoji, Odianosen Ewah, Anastasia Myers, Corey Roberts, Anastasia Shaverina and Isabel C. Escobar
Sustain. Chem. 2025, 6(4), 34; https://doi.org/10.3390/suschem6040034 - 14 Oct 2025
Abstract
►▼
Show Figures
The substitution of hazardous, environmentally persistent solvents (NMP and DMAc) with more sustainable alternatives (ETAc and GBL) in fabricating flat sheet polyactic acid (PLA) membranes via nonsolvent-induced phase separation for air filtration applications was the focus of this study. The polymer-solvent affinity was
[...] Read more.
The substitution of hazardous, environmentally persistent solvents (NMP and DMAc) with more sustainable alternatives (ETAc and GBL) in fabricating flat sheet polyactic acid (PLA) membranes via nonsolvent-induced phase separation for air filtration applications was the focus of this study. The polymer-solvent affinity was first evaluated using Hansen solubility parameters, confirming suitable Relative Energy Difference (RED) values (<1) for all solvent candidates. Dope solutions prepared with biodegradable solvents demonstrated higher viscosity compared to those prepared with environmentally persistent solvents. These biodegradable solvent systems also exhibited slower precipitation rates during membrane formation. This resulted in spongelike cross-sectional morphologies, contrasting with the combined fingerlike and spongelike structures observed in membranes fabricated with environmentally persistent NMP and DMAc. Thermal analysis revealed that membranes fabricated with biodegradable solvents exhibited superior thermal stability with higher glass transition temperatures (Tg = 54.39–55.34 °C) compared to those made with environmentally persistent solvents (Tg = 49.97–50.71 °C). Membranes fabricated with ethyl acetate (ETAc) showed the highest hydrophobicity (contact angle = 115.1 ± 9°), airflow rate (12.7 ± 0.28 LPM at 0.4 bar) and maintained filtration efficiency at values greater than 95% for 0.3 μm aerosols.
Full article

Graphical abstract
Open AccessArticle
A Novel Continuous Ultrasound-Assisted Leaching Process for Rare Earth Element Extraction: Environmental and Economic Assessment
by
Rebecca M. Brown, Ethan Struhs, Amin Mirkouei and David Reed
Sustain. Chem. 2025, 6(4), 33; https://doi.org/10.3390/suschem6040033 - 10 Oct 2025
Abstract
►▼
Show Figures
Rare earth elements (REEs) make up integral components in personal electronics, healthcare instrumentation, and modern energy technologies. REE leaching with organic acids is an environmentally friendly alternative to traditional extraction methods. Our previous study demonstrated that batch ultrasound-assisted organic acid leaching of REEs
[...] Read more.
Rare earth elements (REEs) make up integral components in personal electronics, healthcare instrumentation, and modern energy technologies. REE leaching with organic acids is an environmentally friendly alternative to traditional extraction methods. Our previous study demonstrated that batch ultrasound-assisted organic acid leaching of REEs can significantly decrease environmental impacts compared to traditional bioleaching. The batch method is limited to small volumes and is unsuitable for industrial implementation. This study proposes a novel approach to increase reaction volume using a continuous ultrasound-assisted organic acid leaching method. Laboratory experiments showed that continuous ultrasound-assisted leaching increased the leaching rate (µg/h) 11.3–24.5 times compared to our previously reported batch method. Techno-economic analysis estimates the cost of the continuous approach using commercially purchased organic acids is $9465/kg of extracted REEs and $4325/kg of extracted REEs, using gluconic acid and citric acid, respectively. The sensitivity analysis reveals that substituting commercially purchased organic acids with microbially produced biolixiviant can reduce the process cost by approximately 99% while minimally increasing energy consumption. Environmental assessment shows that most of the emissions stemmed from the energy required to power the ultrasound reactor. We concluded that increased leaching capacity using a continuous ultrasound-assisted approach is feasible, but process modifications are needed to reduce the environmental impact.
Full article

Graphical abstract
Open AccessArticle
Reduction in Chemical Oxygen Demand of Effluents from the Confectionery Sector of Agroindustry Using the Fenton Process
by
Maiara A. P. Frigulio, Angélica G. Morales, Felipe A. Santos and Juliane C. Forti
Sustain. Chem. 2025, 6(4), 32; https://doi.org/10.3390/suschem6040032 - 25 Sep 2025
Abstract
►▼
Show Figures
The confectionery industry produces effluents with diverse and complex compositions and high organic loads, which are typically not treated by conventional treatment plants. In this context, the Fenton process presents itself as an advanced chemical treatment alternative due to its ease of application,
[...] Read more.
The confectionery industry produces effluents with diverse and complex compositions and high organic loads, which are typically not treated by conventional treatment plants. In this context, the Fenton process presents itself as an advanced chemical treatment alternative due to its ease of application, cost-effectiveness, and ability to improve the degradability of challenging effluents. This study addressed the question: How can Fenton’s reagent be applied as a pretreatment to reduce the organic load in real effluents from the food industry? The research evaluated this chemical pretreatment for effluents from a starch-based gummy candy production process, aiming to reduce the organic load and aid subsequent conventional treatments. Parameters such as COD, total dissolved solids (TDS), temperature, pH, electrical conductivity, dissolved oxygen, and degrees Brix (°Bx) were monitored before and after 2 and 4 h of pretreatment. The results showed that Fenton pretreatment reduced COD by more than 31%, with efficiency influenced by effluent composition and concentration. This removal can reduce discharge rates and operating costs, providing an economic advantage. The process proved to be a promising pretreatment option, contributing to the initial removal of pollutants and improving the performance of wastewater treatment systems, thus supporting sustainable industrial practices.
Full article

Figure 1
Open AccessArticle
Designing a Photocatalyst: Relationship Between Surface Species and Specific Production of Desired ROS
by
Fabrizio E. Viale, Verónica R. Elías, Tamara B. Benzaquén, Gerardo F. Goya, Griselda A. Eimer and Gabriel O. Ferrero
Sustain. Chem. 2025, 6(4), 31; https://doi.org/10.3390/suschem6040031 - 23 Sep 2025
Cited by 1
Abstract
►▼
Show Figures
Bimetallic mesoporous photocatalysts were synthesized via a wet impregnation method using SBA-15 as a support, and characterized by UV–visible diffuse reflectance spectroscopy, low-angle X-ray diffraction and N2 physisorption. Among the tested materials, the Ti/Mn combination exhibited the highest photocatalytic activity in azo
[...] Read more.
Bimetallic mesoporous photocatalysts were synthesized via a wet impregnation method using SBA-15 as a support, and characterized by UV–visible diffuse reflectance spectroscopy, low-angle X-ray diffraction and N2 physisorption. Among the tested materials, the Ti/Mn combination exhibited the highest photocatalytic activity in azo dye degradation. To understand this enhanced performance, catalysts with varying Mn loads and calcination ramps were evaluated. Additionally, experiments with radical scavengers (isopropanol, chloroform) and under N2 insufflation were conducted to identify the active radical species. Catalysts prepared with low Mn content and higher calcination ramps showed the greatest activity, which significantly decreased with isopropanol, indicating hydroxyl radicals as the main reactive species. In contrast, samples with higher Mn content and quicker heating displayed reduced activity in the presence of chloroform, suggesting superoxide radical involvement. Spectroscopic analyses (XPS, UV–Vis DRS) revealed that increasing Mn load promotes the formation of Mn2+ over Mn4+ species and lowers the band gap energy. These findings highlight the direct correlation between synthesis parameters, surface composition and optical properties, providing a strategy for fine-tuning the performance of a photocatalyst.
Full article

Graphical abstract
Open AccessArticle
Sodium-Oxide Fluxed Aluminothermic Reduction of Manganese Ore for a Circular Economy: Cr Collector Metal Application
by
Theresa Coetsee and Frederik De Bruin
Sustain. Chem. 2025, 6(3), 30; https://doi.org/10.3390/suschem6030030 - 18 Sep 2025
Abstract
►▼
Show Figures
Aluminothermic reduction is gaining renewed interest as an alternative processing route for the circular economy. Aluminium is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if electricity is sourced from non-fossil fuel energy sources. The Al2O3 product
[...] Read more.
Aluminothermic reduction is gaining renewed interest as an alternative processing route for the circular economy. Aluminium is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if electricity is sourced from non-fossil fuel energy sources. The Al2O3 product from the aluminothermic reduction process can be recycled via hydrometallurgy, with leaching as the first step. NaAlO2 is a water-leachable compound that forms a pathway for recycling Al2O3 with hydrometallurgy. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of added chromium metal as a collector metal is illustrated with an increased alloy yield at 68%, from 43% without added Cr. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO. This approach negates the need for a pre-roasting step. The alloy and slag chemical analyses are compared to the thermochemistry-predicted phase chemistry. The alloy consists of 57% Mn, 18% Cr, 18% Fe, 3.4% Si, 1.5% Al, and 2.2% C. The formulated slag exhibits high Al2O3 solubility, enabling effective alloy–slag separation, even at an Al2O3 content of 55%.
Full article

Figure 1
Open AccessArticle
Novel, Simple, and Environmentally Friendly Methodology for the Determination of Urinary Iodide by Colorimetry Based on Silver Nanoplates
by
Irina Tamara Ortiz, Maia Balod, Pablo Edmundo Antezana, Gisel Nadin Ortiz, Martin Federico Desimone, Carlos Gamarra-Luques, Jorgelina Cecilia Altamirano and María Belén Hapon
Sustain. Chem. 2025, 6(3), 29; https://doi.org/10.3390/suschem6030029 - 18 Sep 2025
Abstract
►▼
Show Figures
Iodine is an essential element for the synthesis of thyroid hormones. Iodine deficiency leads to a range of health consequences known as iodine deficiency disorders. To assess the iodine nutritional status of a population, urinary iodine (UI) is typically measured. This work introduces
[...] Read more.
Iodine is an essential element for the synthesis of thyroid hormones. Iodine deficiency leads to a range of health consequences known as iodine deficiency disorders. To assess the iodine nutritional status of a population, urinary iodine (UI) is typically measured. This work introduces a novel and simple analytical method for determining UI using silver triangular nanoplates (AgTNPs) after interfering substances are removed via solid-phase extraction (SPE). The AgTNPs were synthesized and characterized using Transmission Electron Microscopy, UV–vis spectroscopy, and zeta potential measurements. The limit of detection of iodide of the AgTNPs assessed spectrophotometrically was 35.78 µg I−/L. However, urine samples interfered with the colorimetric reaction. Thus, an SPE methodology was developed and optimized to eliminate urine interferents that hinder AgTNP performance. A logistic regression analysis was conducted to validate the combined application of SPE and AgTNPs for the qualitative determination of UI. This work demonstrated that the developed SPE methodology eliminates these interferents and extracts iodide from the sample, allowing the accurate determination of UI using AgTNPs. This reliable sample preparation method was then used on actual human urine samples to accurately identify UI deficiency levels. The proposed methodology offers an effective and environmentally friendly approach for monitoring iodine status, without requiring highly complex equipment.
Full article

Figure 1
Open AccessReview
Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice?
by
Anka Jevremović, Maja Ranković, Aleksandra Janošević Ležajić, Snežana Uskoković-Marković, Bojana Nedić Vasiljević, Nemanja Gavrilov, Danica Bajuk-Bogdanović and Maja Milojević-Rakić
Sustain. Chem. 2025, 6(3), 28; https://doi.org/10.3390/suschem6030028 - 13 Sep 2025
Abstract
This review sheds some light on the emerging niche of the reuse of spent adsorbents in electrochemical devices. Reuse and repurposing extend the adsorbent’s life cycle, remove the need for long-term storage, and generate additional value, making it a highly eco-friendly process. Main
[...] Read more.
This review sheds some light on the emerging niche of the reuse of spent adsorbents in electrochemical devices. Reuse and repurposing extend the adsorbent’s life cycle, remove the need for long-term storage, and generate additional value, making it a highly eco-friendly process. Main adsorbent-type materials are overviewed, emphasising desired properties for initial adsorption and subsequent conversion to electroactive material step. The effects of the most frequent regeneration procedures are compared to highlight their strengths and shortcomings. The latest efforts of repurposing and reuse in supercapacitors, fuel cells, and batteries are analysed. Reuse in supercapacitors is dominated by materials that, after a regeneration step, lead to materials with high surface area and good pore structure and is mainly based on the conversion of organic adsorbents to some form of conductive carbon adlayer. Additionally, metal/metal-oxide and layered-double hydroxides are also being developed, but predominantly towards fuel cell and battery electrodes with respectable oxygen reduction characteristics and significant capacities, respectively. Repurposed adsorbents are being adopted for peroxide generation as well as direct methanol fuel cells. The work puts forward electrochemical devices as a valuable avenue for spent adsorbents and as a puzzle piece towards a greener and more sustainable future.
Full article
(This article belongs to the Special Issue Circularity, Sustainability, Resilience, and Analysis in Water, Wastewater, and Sludge Management)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Hemicellulosic Carbohydrate Extraction from Corncobs via Hydrothermal Treatment: A Response Surface Methodology Approach
by
Muhammad Husnain Manzoor, Islam Elsayed and El Barbary Hassan
Sustain. Chem. 2025, 6(3), 27; https://doi.org/10.3390/suschem6030027 - 10 Sep 2025
Abstract
►▼
Show Figures
With increasing concerns about climate change and the depletion of fossil fuels, hemicellulose sugars from lignocellulosic biomass are gaining attention as sustainable feedstocks for producing biofuels and valuable chemicals. In this study, the extraction of hemicellulose sugars from corncob biomass was performed using
[...] Read more.
With increasing concerns about climate change and the depletion of fossil fuels, hemicellulose sugars from lignocellulosic biomass are gaining attention as sustainable feedstocks for producing biofuels and valuable chemicals. In this study, the extraction of hemicellulose sugars from corncob biomass was performed using hydrothermal pretreatment. Response Surface Methodology (RSM) with the Box–Behnken Design (BBD) was employed to optimize different parameters. The tested parameters included the corncob-to-water ratio (0.5:10, 1.5:10), time (30 to 90 min), and temperature (150 to 170 °C), to achieve the highest sugar yields (xylose, arabinose, and total sugars). The ANOVA results for the full quadratic polynomial model, which evaluates the effects of the three variables on xylose yield, indicate that the model is highly significant and provides a good fit to the data. This was evidenced by the minimal difference (0.003) between the predicted R2 and the adjusted R2. This study reports one of the highest recoveries of hemicellulosic sugars from corncobs and also evaluates degradation byproducts, offering a more efficient and comprehensive pretreatment approach that employs a lower temperature and a mild acid concentration (1%) compared with earlier research. The highest yields of xylose (103.49 mg/g), arabinose (26.75 mg/g), and total sugars (163.21 mg/g) were obtained at 160 °C and a corncob-to-water ratio of 0.5:10, after 90 min. Degradation products such as HMF and furfural in the hydrolysate were also analyzed by HPLC. The hydrolysate obtained from hydrothermal pretreatment contained oligomers that were converted into monomers through 1% H2SO4 hydrolysis. The highest yields after the acidic hydrolysis were 301.93 mg/g xylose, 46.96 mg/g arabinose, and 433.79 mg/g total sugars hydrolysis.
Full article

Figure 1
Open AccessArticle
Microwave-Assisted Extraction for the Sustainable Recovery and Valorization of Phenolic Compounds from Maritime Pine Bark
by
Diana Barros, Ricardo Pereira-Pinto, Élia Fernandes, Preciosa Pires and Manuela Vaz-Velho
Sustain. Chem. 2025, 6(3), 26; https://doi.org/10.3390/suschem6030026 - 8 Sep 2025
Abstract
►▼
Show Figures
This study investigates the potential of Pinus pinaster subsp. atlantica bark, a forestry by-product from northern Portugal, as a source of phenolic compounds with strong antioxidant properties. Microwave-assisted extraction (MAE) was used to optimize recovery, assessing the effects of solvent composition (water, ethanol,
[...] Read more.
This study investigates the potential of Pinus pinaster subsp. atlantica bark, a forestry by-product from northern Portugal, as a source of phenolic compounds with strong antioxidant properties. Microwave-assisted extraction (MAE) was used to optimize recovery, assessing the effects of solvent composition (water, ethanol, and 50:50 water–ethanol), extraction time (15 or 30 min), and temperature (90, 110, or 130 °C) using a one-variable-at-a-time approach. High-Performance Liquid Chromatography (HPLC) profiling characterized the polyphenol composition. The results showed that solvent choice strongly influenced extract composition and bioactivity, with hydroethanolic and ethanolic extracts exhibiting the highest antioxidant activities in DPPH, ABTS, and ORAC assays. Optimal conditions—50:50 water–ethanol, 130 °C, 15 min—yielded 11.13% (w/w) extract, 3.10 mg GAE/mL total phenolics, and 2.01 mg CE/mL condensed tannins, comparable to commercial extracts such as Pycnogenol®. MAE proved effective, rapid, and solvent-efficient, enhancing phenolic recovery without degrading extract quality. These findings highlight the potential of P. pinaster bark extracts for biomedical, nutraceutical, and cosmetic applications, supporting the sustainable valorization of forestry residues and aligning with circular economy principles.
Full article

Figure 1
Open AccessReview
Upcycling Nutshells: Reinforced Polymers and Biocomposites
by
Bárbara G. S. Guinati and Rhett C. Smith
Sustain. Chem. 2025, 6(3), 25; https://doi.org/10.3390/suschem6030025 - 8 Sep 2025
Abstract
►▼
Show Figures
This review highlights recent advances in the use of nutshell-derived materials, including peanut, walnut, and other lignocellulosic shell wastes, as reinforcers in polymer composites. The focus is placed on evaluating how the incorporation of nutshell fillers influences the mechanical and thermal properties of
[...] Read more.
This review highlights recent advances in the use of nutshell-derived materials, including peanut, walnut, and other lignocellulosic shell wastes, as reinforcers in polymer composites. The focus is placed on evaluating how the incorporation of nutshell fillers influences the mechanical and thermal properties of various polymer matrices. Key findings across multiple studies show that nutshell reinforcement can significantly enhance tensile strength, modulus, thermal stability, and biodegradability, depending on filler concentration, particle size, and surface treatment. The review also discusses the sustainability and economic benefits of using agricultural waste as a functional additive, offering insights into the design of low-cost, eco-friendly polymer composites for packaging, construction, and environmental applications.
Full article

Figure 1
Open AccessReview
Cerium-Doped Strontium Ferrate Perovskite Oxides: Sustainable Materials to Face Energy and Environmental Challenges
by
Maria Laura Tummino, Francesca Deganello and Vittorio Boffa
Sustain. Chem. 2025, 6(3), 24; https://doi.org/10.3390/suschem6030024 - 20 Aug 2025
Abstract
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in
[...] Read more.
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in the unusual 4+ oxidation state, although some Fe3+ is often present, depending on the synthesis and processing conditions and the type and amount of dopant. When doped with cerium at the Sr site, the SrFeO3−δ cubic structure is stabilized, more oxygen vacancies form and the Fe4+/Fe3+ redox couple plays a key role in its functional properties. Alone or combined with other materials, Ce-doped strontium ferrates can be successfully applied to wastewater treatment. Specific doping at the Fe site enhances their electronic conductivity for use as electrodes in solid oxide fuel cells and electrolyzers. Their oxygen storage capacity and oxygen mobility are also exploited in chemical looping reactions. The main limitations of these materials are SrCO3 formation, especially at the surface; their low surface area and porosity; and cation leaching at acidic pH values. However, these limitations can be partially addressed through careful selection of synthesis, processing and testing conditions. This review highlights the high versatility and efficiency of cerium-doped strontium ferrates for energy and environmental applications, both at low and high temperatures. The main literature on these compounds is reviewed to highlight the impact of their key properties and synthesis and processing parameters on their applicability as sustainable thermocatalysts, electrocatalysts, oxygen carriers and sensors.
Full article
(This article belongs to the Special Issue Innovations in Energy Engineering and Cleaner Production: A Sustainable Chemistry Perspective)
►▼
Show Figures

Graphical abstract
Open AccessFeature PaperReview
Natural Dyes and Pigments: Sustainable Applications and Future Scope
by
Arvind Negi
Sustain. Chem. 2025, 6(3), 23; https://doi.org/10.3390/suschem6030023 - 8 Aug 2025
Cited by 1
Abstract
►▼
Show Figures
Natural dyes and pigments are gaining importance as a sustainable alternative to synthetic dyes. Sourced from renewable materials, they are known for their biodegradable and non-toxic properties, offering a diverse range of color profiles and applications across industries such as textiles, cosmetics, food,
[...] Read more.
Natural dyes and pigments are gaining importance as a sustainable alternative to synthetic dyes. Sourced from renewable materials, they are known for their biodegradable and non-toxic properties, offering a diverse range of color profiles and applications across industries such as textiles, cosmetics, food, and pharmaceuticals. This manuscript discusses various aspects of natural dyes and pigments (derived from plants and microbes), including anthocyanins, flavonoids, carotenoids, lactones, and chlorophyll. Furthermore, it highlights the polyphenolic nature of these compounds, which is responsible for their antioxidant activity and contributes to their anticancer, antibacterial, antifungal, antiprotozoal, and immunomodulatory effects. However, natural dyes are often categorized as pigments rather than dyes due to their limited solubility, a consequence of their molecular characteristics. Consequently, this manuscript provides a detailed discussion of key structural challenges associated with natural dyes and pigments, including thermal decomposition, photodegradation, photoisomerization, cross-reactivity, and pH sensitivity. Due to these limitations, natural dyes are currently used in relatively limited applications, primarily in the food industry, and, to lesser extent, in textiles and coatings. Nevertheless, with ongoing research and technological innovations, natural dyes present a viable alternative to synthetic dyes, promoting a more sustainable and environmentally conscious future.
Full article

Figure 1
Open AccessArticle
Liquid-Phase Hydrogenation over a Cu/SiO2 Catalyst of 5-hydroximethylfurfural to 2,5-bis(hydroxymethyl)furan Used in Sustainable Production of Biopolymers: Kinetic Modeling
by
Juan Zelin, Hernán Antonio Duarte, Alberto Julio Marchi and Camilo Ignacio Meyer
Sustain. Chem. 2025, 6(3), 22; https://doi.org/10.3390/suschem6030022 - 6 Aug 2025
Abstract
►▼
Show Figures
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF
[...] Read more.
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF to BHMF over a Cu/SiO2 catalyst prepared by precipitation–deposition (PD) at a constant pH. Physicochemical characterization, using different techniques, confirms that the Cu/SiO2–PD catalyst is formed by copper metallic nanoparticles of 3–5 nm in size highly dispersed on the SiO2 surface. Before the kinetic study, the Cu/SiO2-PD catalyst was evaluated in three solvents: tetrahydrofuran (THF), 2-propanol (2-POH), and water. The pattern of catalytic activity and BHMF yield for the different solvents was THF > 2-POH > H2O. In addition, selectivity to BHF was the highest in THF. Thus, THF was chosen for further kinetic study. Several experiments were carried out by varying the initial HMF concentration (C0HMF) between 0.02 and 0.26 M and the hydrogen pressure (PH2) between 200 and 1500 kPa. In all experiments, BHMF selectivity was 97–99%. By pseudo-homogeneous modeling, an apparent reaction order with respect to HFM close to 1 was estimated for a C0HMF between 0.02 M and 0.065 M, while when higher than 0.065 M, the apparent reaction order changed to 0. The apparent reaction order with respect to H2 was nearly 0 when C0HMF = 0.13 M, while for C0HMF = 0.04 M, it was close to 1. The reaction orders estimated suggest that HMF is strongly absorbed on the catalyst surface, and thus total active site coverage is reached when the C0HMF is higher than 0.065 M. Several Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic models were proposed, tested against experimental data, and statistically compared. The best fitting of the experimental data was obtained with an LHHW model that considered non-competitive H2 and HMF chemisorption and strong chemisorption of reactant and product molecules on copper metallic active sites. This model predicts both the catalytic performance of Cu/SiO2-PD and its deactivation during liquid-phase HMF hydrogenation.
Full article

Graphical abstract
Open AccessArticle
Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar
by
Gordana Stevanović, Jovan Parlić, Marija Ajduković, Nataša Jović-Jovičić, Vojkan Radonjić and Zorica Mojović
Sustain. Chem. 2025, 6(3), 21; https://doi.org/10.3390/suschem6030021 - 31 Jul 2025
Abstract
►▼
Show Figures
Dry Turkish oak (Quercus cerris) sawdust, untreated and treated with three activators, (H3PO4, NaOH and H2O2) was pyrolyzed under limited-oxygen conditions to obtain biochar samples. The electrochemical properties of these samples were tested
[...] Read more.
Dry Turkish oak (Quercus cerris) sawdust, untreated and treated with three activators, (H3PO4, NaOH and H2O2) was pyrolyzed under limited-oxygen conditions to obtain biochar samples. The electrochemical properties of these samples were tested and compared to the properties of several commercial carbon blacks. The electrochemical characterization was performed via cyclic voltammetry, analyzing the response toward two commonly used redox probes, [Fe(CN)6]3−/−4− and [Ru(NH3)6]2+/3+. The influence of the scan rate on this response was investigated, and the resulting data were used to obtain the values of the heterogenous charge transfer constant, k0. Higher k0 values were observed for carbon blacks than for investigated biochar samples. The detection of 4-nitrophenol and heavy metal ions was used to assess the applicability of biochars for electroanalytical purposes. The response of untreated biochar was comparable with the response of Vulcan carbon black, which showed the best response of all analyzed carbon blacks.
Full article

Figure 1
Open AccessArticle
Synthesis and Catalytic Performance of Cotton-Derived Mn–Ce and Mn–Co–Ce Biomorphic Fibers for Soot Combustion and CO Oxidation
by
Nicolás Sacco, Ezequiel Banús, Juan P. Bortolozzi, Sabrina Leonardi, Eduardo Miró and Viviana Milt
Sustain. Chem. 2025, 6(3), 20; https://doi.org/10.3390/suschem6030020 - 16 Jul 2025
Abstract
►▼
Show Figures
Biomorphic mineralization was employed to synthesize novel Mn–Ce and Mn–Co–Ce oxide fibers using commercial cotton as a biotemplate, aiming to assess their catalytic performance in diesel soot combustion and CO oxidation. Two synthesis protocols—one with and one without citric acid—were investigated. The inclusion
[...] Read more.
Biomorphic mineralization was employed to synthesize novel Mn–Ce and Mn–Co–Ce oxide fibers using commercial cotton as a biotemplate, aiming to assess their catalytic performance in diesel soot combustion and CO oxidation. Two synthesis protocols—one with and one without citric acid—were investigated. The inclusion of citric acid led to fibers with more uniform morphology, attributed to improved precursor distribution, although synthesis yields decreased for Co-containing systems. In soot combustion tests, Mn–Ce catalysts synthesized with citric acid outperformed their monometallic counterparts. While cobalt incorporation enhanced the mechanical robustness of the fibers, it did not significantly boost catalytic activity. Selected formulations were also evaluated for CO oxidation, with Mn–Co–Ce fibers achieving T50 values in the 240–290 °C range, comparable to Co–Ce nanofibers reported in the literature. These results demonstrate that biomorphic fibers produced through a simple and sustainable route can offer competitive performance in soot and CO oxidation applications.
Full article

Graphical abstract
Open AccessReview
Thermal Modification of Wood—A Review
by
Veronika Jančíková and Michal Jablonský
Sustain. Chem. 2025, 6(3), 19; https://doi.org/10.3390/suschem6030019 - 11 Jul 2025
Cited by 1
Abstract
►▼
Show Figures
The thermal modification of wood has emerged as a sustainable and effective method for enhancing the physical, chemical, and mechanical properties of wood without the use of harmful chemicals. This review summarizes the current state-of-the-art in thermal wood modification, focusing on the mechanisms
[...] Read more.
The thermal modification of wood has emerged as a sustainable and effective method for enhancing the physical, chemical, and mechanical properties of wood without the use of harmful chemicals. This review summarizes the current state-of-the-art in thermal wood modification, focusing on the mechanisms of wood degradation during treatment and the resulting changes in the properties of the material. The benefits of thermal modification of wood include improved dimensional stability, increased resistance to biological decay, and improved durability, while potential risks such as reduced mechanical strength, color change, and higher costs of wood under certain conditions are also discussed. The review highlights recent advances in process optimization and evaluates the trade-offs between improved performance and possible structural drawbacks. Finally, future perspectives are outlined for sustainable applications of thermally modified wood in various industries. Emerging trends and future research directions in the field are identified, aiming to improve the performance and sustainability of thermally modified wood products in construction, furniture, and other industries.
Full article

Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Catalysts, Chemistry, Molbank, Molecules, Sustainable Chemistry
Towards the Sustainable Synthesis of Biologically Active Molecules in Green Solvents
Topic Editors: Antonio Salomone, Serena PerroneDeadline: 31 December 2025
Topic in
Coatings, Foods, Molecules, Polymers, Sustainable Chemistry, Recycling
Green and Recycled Polymer Materials Towards Sustainability
Topic Editors: Carol López-de-Dicastillo, Eliezer Velásquez, Adrián Rojas SepúlvedaDeadline: 30 September 2026
Topic in
Processes, Waste, Water, Fermentation, Sustainable Chemistry
Advanced Anaerobic Digestion and Integrated Technologies for High-Strength Waste Valorization
Topic Editors: Alejandro Alvarado-Lassman, Carlos Velasco-Santos, Juan Manuel Méndez-ContrerasDeadline: 30 April 2027
Special Issues
Special Issue in
Sustainable Chemistry
Innovations in Energy Engineering and Cleaner Production: A Sustainable Chemistry Perspective
Guest Editors: Francesca Deganello, Jan-Willem BosDeadline: 30 November 2025
Special Issue in
Sustainable Chemistry
Recycling and Upcycling of Plastic Wastes
Guest Editors: Konstantinos Triantafyllidis, Michael T. TimkoDeadline: 30 November 2025
Special Issue in
Sustainable Chemistry
Valorization of E-Waste: Innovation and Sustainable Chemistry for a Circular Economy
Guest Editor: Emilia PaoneDeadline: 15 January 2026
Special Issue in
Sustainable Chemistry
Carbon-Based Nanomaterials for Environmental Applications: Advancing CO2 Conversion and Beyond
Guest Editors: Claudia Espro, Isabella Chiarotto, Viviana Bressi, Thomas LenDeadline: 30 April 2026
Topical Collections
Topical Collection in
Sustainable Chemistry
Heterogeneous Catalysts Applied in Sustainable Chemistry
Collection Editor: James A. Sullivan
Topical Collection in
Sustainable Chemistry
New and Unconventional Strategies in Sustainable Chemistry Education at All Levels
Collection Editors: Francesca Deganello, James A. Sullivan


