Heavy Metals in Particulate Matter—Trends and Impacts on Environment
Abstract
1. Introduction
2. Characteristics of Heavy Metals in Particulate Matter from Air
2.1. Classification of Particulate Matter
2.2. Air Quality Assessment
2.3. Analytical Detection of Heavy Metals and Particulate Matter
2.3.1. Preparation of Samples for HM and PM Detection
2.3.2. Methods for HM and PM Detection
2.3.3. Quality Assurance/Quality Control (QA/QC) Procedures
3. Sources of Heavy Metals and Particulate Matter in Atmosphere
3.1. Heavy Metals Sources
3.2. Particulate Matter Sources
4. Influence of HMs from Air in Other Environments
4.1. Water
4.2. Soil
5. Health Effect
5.1. Heavy Metals
5.2. Heavy Metals Combined with Particulate Matter
6. Biomonitors
6.1. Roots
6.2. Leaves/Needles
6.3. A Plant’s Influence on PM Concentration
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacyna, E.G.; Pacyna, J.M.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S.; Panasiuk, D.; Nitter, S.; Pregger, T.; Pfeiffer, H.; Friedrich, R. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos. Environ. 2007, 41, 8557–8566. [Google Scholar]
- Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 10 February 2025).
- Available online: https://www.eea.europa.eu/en/analysis/publications/harm-to-human-health-from-air-pollution-2024 (accessed on 10 February 2025).
- Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 10 February 2025).
- Bilo, F.; Cirelli, P.; Borgese, L. Elemental analysis of particulate matter by X-ray fluorescence methods: A green approach to air quality monitoring. TrAC Trends Anal. Chem. 2024, 170, 117427. [Google Scholar]
- Nadgórska–Socha, A.; Kandziora-Ciupa, M.; Trzęsicki, M.; Barczyk, G. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere 2017, 183, 471–482. [Google Scholar] [PubMed]
- Shi, J.; Zhang, G.; An, H.; Yin, W.; Xia, X. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos. Pollut. Res. 2017, 8, 836–842. [Google Scholar]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar]
- De Vries, W.; Römkens, P.F.A.M.; Kros, J.; Voogd, J.C.; Schulte-Uebbing, L.F. Impacts of Nutrients and Heavy Metals in European Agriculture. Current and Critical Inputs in Relation to Air, Soil and Water Quality; ETC-DI; European Environment Agency (EEA): Copenhagen, Denmark, 2022. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp Suppl. 2012, 101, 133–164. [Google Scholar]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar]
- Herawati, N.; Suzuki, S.; Hayashi, K.; Rivai, I.; Koyama, H. Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull. Environ. Contam. Toxicol. 2000, 64, 33–39. [Google Scholar]
- Nriagu, J.O. A global assessment of natural sources of atmospheric trace metals. Nature 1989, 338, 47–49. [Google Scholar]
- Wang, S.; Shi, X. Molecular mechanisms of metal toxicity and carcinogenesis. Mol. Cell. Biochem. 2001, 222, 3–9. [Google Scholar]
- Baldantoni, D.; De Nicola, F.; Alfani, A. Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant. Atmos. Pollut. Res. 2014, 5, 262–269. [Google Scholar]
- Kaur, R.; Sharma, S.; Kaur, H. Heavy metals toxicity and the environment. J. Pharmacogn. Phytochem. 2019, 1, 247–249. [Google Scholar]
- Tchounwou, P.B.; Ishaque, A.B.; Schneider, J. Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Mol. Cell. Biochem. 2001, 222, 21–28. [Google Scholar] [PubMed]
- Yedjou, C.G.; Tchounwou, P.B. Oxidative stress in human leukemia (HL-60), human liver carcinoma (HepG2), and human (Jurkat-T) cells exposed to arsenic trioxide. Met. Ions Biol. Med. 2006, 9, 298–303. [Google Scholar]
- Handa, K.; Jindal, R. Estimating the hepatotoxic impact of hexavalent chromium on Ctenopharyngodon idellus through a multi-biomarker study. Environ. Adv. 2021, 5, 100108. [Google Scholar]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar]
- Chen, Q.Y.; DesMarais, T.; Costa, M. Metals and mechanisms of carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 537–554. [Google Scholar]
- Al-Alawi, M.t.M.; Mandiwana, K.L. The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. J. Hazard. Mater. 2007, 148, 43–46. [Google Scholar]
- Stern, B.R. Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. J. Toxicol. Environ. Health Part A 2010, 73, 114–127. [Google Scholar]
- Tchounwou, P.B.; Newsome, C.; Williams, J.; Glass, K. Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. Met. Ions Biol. Med. 2008, 10, 285–290. [Google Scholar] [PubMed]
- Zuo, P.; Huang, Y.; Bi, J.; Wang, W.; Li, W.; Lu, D.; Zhang, Q.; Liu, Q.; Jiang, G. Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. TrAC Trends Anal. Chem. 2023, 158, 116866. [Google Scholar]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [PubMed]
- Gokul, T.; Kumar, K.R.; Prema, P.; Arun, A.; Balaji, P.; Faggio, C. Particulate pollution and its toxicity to fish: An overview. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 270, 109646. [Google Scholar]
- Benabed, A.; Boulbair, A. PM10, PM2.5, PM1, and PM0.1 resuspension due to human walking. Air Qual. Atmos. Health 2022, 15, 1547–1556. [Google Scholar] [CrossRef]
- Dietz, K.-J.; Herth, S. Plant nanotoxicology. Trends Plant Sci. 2011, 16, 582–589. [Google Scholar]
- Mühlfeld, C.; Rothen-Rutishauser, B.; Blank, F.; Vanhecke, D.; Ochs, M.; Gehr, P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L817–L829. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Q.; Liu, L.; Wang, Y.; Zhang, Y.; Xu, L.; Pang, Y.; Zhu, Y.; Niu, H.; Shao, L. Trans-regional transport of haze particles from the North China Plain to Yangtze River Delta during winter. J. Geophys. Res. Atmos. 2021, 126, e2020JD033778. [Google Scholar]
- Available online: https://www.eea.europa.eu/themes/air/air-pollution-sources-1 (accessed on 10 February 2025).
- Qu, K.; Yan, Y.; Wang, X.; Jin, X.; Vrekoussis, M.; Kanakidou, M.; Brasseur, G.P.; Lin, T.; Xiao, T.; Cai, X. The effect of cross-regional transport on ozone and particulate matter pollution in China: A review of methodology and current knowledge. Sci. Total Environ. 2024, 947, 174196. [Google Scholar]
- Zhang, Z.; Wang, X.; Cheng, S.; Guan, P.; Zhang, H.; Shan, C.; Fu, Y. Investigation on the difference of PM2. 5 transport flux between the North China Plain and the Sichuan Basin. Atmos. Environ. 2022, 271, 118922. [Google Scholar]
- Available online: https://www.power-eng.com/environmental-emissions/why-particulate-matters/ (accessed on 10 February 2025).
- Son, Y.-S. A review on indoor and outdoor factors affecting the level of particulate matter in classrooms of elementary schools. J. Build. Eng. 2023, 75, 106957. [Google Scholar]
- Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X. A chronology of global air quality. Philos. Trans. R. Soc. A 2020, 378, 20190314. [Google Scholar]
- World Health Organization. Results Report Programme Budget 2020–2021; WHO: Geneva, Switzerland, 2022.
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar]
- Zhu, J.; Zhou, Y.; Lin, Q.; Wu, K.; Ma, Y.; Liu, C.; Liu, N.; Tu, T.; Liu, Q. Causal relationship between particulate matter and COVID-19 risk: A mendelian randomization study. Heliyon 2024, 10, e27083. [Google Scholar]
- Song, Y.; Maher, B.A.; Li, F.; Wang, X.; Sun, X.; Zhang, H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar]
- Wang, L.; Li, Y.; Li, J.; Zhang, H.; Zhang, Z.; Ran, W. The state of the art of condensable particulate matter. Fuel 2022, 325, 124807. [Google Scholar]
- Pei, B. Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source. Environ. Monit. China 2010, 26, 9–12. [Google Scholar]
- Yuan, C.; Wang, Z.; Cheng, H.; Liang, S.; Hu, Y.; Dong, X.; Wu, J. Characteristics of water-soluble ions in condensable particulate matter emitted from stationary sources in Wuhan. Fuel 2021, 295, 120626. [Google Scholar]
- Yang, L.; Zhang, B.; Wang, K.-H.; Ma, D.-R.; Sheng, Z.-Y. Conversion characteristics of combustible particles from coal-fired flue gas in WFGD and WESP. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 121–125. [Google Scholar]
- Wang, K.; Yang, L.; Li, J.; Sheng, Z.; He, Q.; Wu, K. Characteristics of condensable particulate matter before and after wet flue gas desulfurization and wet electrostatic precipitator from ultra-low emission coal-fired power plants in China. Fuel 2020, 278, 118206. [Google Scholar]
- Zheng, C.; Hong, Y.; Liu, S.; Yang, Z.; Chang, Q.; Zhang, Y.; Gao, X. Removal and emission characteristics of condensable particulate matter in an ultralow emission power plant. Energy Fuels 2018, 32, 10586–10594. [Google Scholar]
- Yang, F.; Li, Z.; Liu, H.; Feng, P.; Tan, H.; Zhang, S.; Lu, X. Emission characteristics of condensable particulate matter and sulfur trioxide from coal-fired power plants. J. Energy Inst. 2021, 94, 146–156. [Google Scholar]
- Zhang, Z.; Li, Y.; Zhang, X.; Zhang, H.; Wang, L. Review of hazardous materials in condensable particulate matter. Fuel Process. Technol. 2021, 220, 106892. [Google Scholar]
- Qi, Z.; Li, J.; Wu, D.; Xie, W.; Li, X.; Liu, C. Particulate matter emission characteristics and removal efficiencies of a low-low temperature electrostatic precipitator. Energy Fuels 2017, 31, 1741–1746. [Google Scholar]
- Wojtkowski, K.; Wojtkowska, M.; Dlugosz-Lisiecka, M.; Walczak, A. Assessment of the Radiation Situation and the Presence of Heavy Metals in the Soil in the Poleski National Park. Appl. Sci. 2023, 13, 11699. [Google Scholar] [CrossRef]
- Goddard, S.; Brown, R. Investigation into Alternative Sample Preparation Techniques for the Determination of Heavy Metals in Stationary Source Emission Samples Collected on Quartz Filters. Sensors 2014, 14, 21676–21692. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Liu, Y.; Deng, X.; Yu, H.; Li, J.; Xue, T. Risk Assessment and Source Analysis of Atmospheric Heavy Metals Exposure in Spring of Tianjin, China. Aerosol Sci. Eng. 2023, 7, 87–95. [Google Scholar] [CrossRef]
- Popova, E.; Morzhukhina, S.; Ilyushkina, A.; Zuev, B.; Morzhukhin, A.; Omarova, N. Control of the Conditions of the Completeness of the Mineralization (Sample Preparation) of Biomonitor Moss Samples in the Determination of Heavy Metals Entering Them in Transboundary Transfer from Atmospheric Air. J. Anal. Chem. 2022, 77, 1474–1480. [Google Scholar] [CrossRef]
- Assis, R.; Silva, U.; Santos, L.; Melo, A.; Coutinho, J.; Cerqueira, U.; Lemos, V.; Bezerra, M. Sample preparation strategies alternative to mineralization for elemental analysis in foods by spectroanalytical techniques—A review. Microchem. J. 2024, 199, 110059. [Google Scholar] [CrossRef]
- Kaur, M.; Sidhu, N.; Reddy, M. Removal of cadmium and arsenic from water through biomineralization. Environ. Monit. Assess. 2023, 195, 1019. [Google Scholar] [CrossRef]
- Qian, C.; Zhan, Q. Bioremediation of Heavy Metal Ions by Phosphate-mineralization Bacteria and Its Mechanism. J. Chin. Chem. Soc. 2016, 63, 635–639. [Google Scholar] [CrossRef]
- Shahsavani, S.; Shamsedini, N.; Mohammadpour, A.; Hoseini, M. Air quality near Middle East’s large dried lake: Heavy metal emissions, machine learning analysis, and health risks. Phys. Chem. Earth 2025, 137, 103793. [Google Scholar] [CrossRef]
- EN 12341:2023; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. European Standards (EN): Pilsen, Czech Republic, 2023.
- Han, S.; Kim, J.; Ko, S. Advances in air filtration technologies: Structure-based and interaction-based approaches. Mater. Today Adv. 2021, 9, 100134. [Google Scholar]
- SPM, Particulate Matter. Sampling of Ambient Air for Total Suspended Particulate Matter (SPM) and PM10 Using High Volume (HV) Sampler; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999. [Google Scholar]
- Chyzhykov, D.; Widziewicz-Rzońca, K.; Mathews, B. Variability of PM measurement results due to subsampling of filters and water content analysis. Chemosphere 2025, 374, 144177. [Google Scholar]
- Luo, T.; Zhang, J.; Wang, J.; Shi, H.; Hong, Y.; Zhao, R. Sustainable pollution treatment system through Fiber filter materials. Sustain. Mater. Technol. 2024, 42, e01168. [Google Scholar]
- Khalid, B.; Bai, X.; Wei, H.; Huang, Y.; Wu, H.; Cui, Y. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett. 2017, 17, 1140–1148. [Google Scholar]
- Pierpaoli, M.; Giosuè, C.; Czerwińska, N.; Rycewicz, M.; Wieloszyńska, A.; Bogdanowicz, R.; Ruello, M.L. Characterization and filtration efficiency of sustainable PLA fibers obtained via a hybrid 3D-printed/electrospinning technique. Materials 2021, 14, 6766. [Google Scholar] [CrossRef]
- Gao, X.; Li, Z.-K.; Xue, J.; Qian, Y.; Zhang, L.-Z.; Caro, J.; Wang, H. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. J. Membr. Sci. 2019, 586, 162–169. [Google Scholar]
- Hu, J.; Xiong, Z.; Liu, Y.; Lin, J. A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. Int. J. Biol. Macromol. 2022, 204, 419–428. [Google Scholar]
- Zhang, X.; Fan, Y.-s.; Wang, H.; Zhang, J.; Wei, S.; Tian, G.-j.; Xie, W. Experimental study on the structure and properties of modified nonwoven filter fibers by impregnation with carbon black. J. Eng. Fibers Fabr. 2020, 15, 1558925020913018. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Yi, M.; Wang, Y.; Wang, P.; Xu, J.; Niu, F.; Lin, F. High-performance inertial impaction filters for particulate matter removal. Sci. Rep. 2018, 8, 4757. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, S.; Kwoun, J.; Lee, T.; Jo, Y. Analysis of Harmful Heavy Metals and Carbonaceous Components in Urban School PM2.5. Aerosol Air Qual. Res. 2023, 23, 220335. [Google Scholar] [CrossRef]
- Wang, C.; Chin, C.; Chiang, P. Multielement analysis of suspended particulates collected with a beta-gauge monitoring system by ICP atomic emission spectrometry and mass spectrometry. Anal. Sci. 1998, 14, 763–768. [Google Scholar] [CrossRef]
- Gazulla, M.; Rodrigo, M.; Ventura, M.; Orduna, M. Novel Determination of Trace Metals in Geological Materials Employed in Food Products by Microwave Decomposition and Inductively Coupled Plasma—Optical Emission Spectrometry (ICP-OES). Anal. Lett. 2022, 55, 1517–1530. [Google Scholar] [CrossRef]
- Singh, A.; Behera, S.; Choudhary, J.; Shukla, S. Evaluating the role of tree flora in air pollution mitigation and heavy metals accumulation near brick kilns. Atmos. Pollut. Res. 2025, 16, 102436. [Google Scholar] [CrossRef]
- Safeer, M.; Zhang, Y.; Kumar, A.; Bhargava, R.; Raman, V. Application of machine learning algorithms for the detection and removal of heavy metals from water and wastewater. Environ. Technol. Innov. 2022, 28, 102404. [Google Scholar]
- EUR-Lex. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/eli/dir/2008/50/oj/eng (accessed on 20 March 2025).
- EN 14385; Stationary Source Emissions—Determination of the Total Emission of As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl and V. European Standards (EN): Pilsen, Czech Republic, 2024. Available online: En-standard.eu/une-en-14385-2004-stationary-source-emissions-determination-of-the-total-emission-of-as-cd-cr-co-cu-mn-ni-pb-sb-tl-and-v/?gad_source=1&gclid=Cj0KCQjw-e6-BhDmARIsAOxxlxWSJHXBzVT6LcrrU4DRGU8CSLjwvnbU_Ovs0oluC4-PP2BzHfO4xxoaAsbEEALw_wcB (accessed on 20 March 2025).
- Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere (Dichotomous Sampler Method). Available online: https://www.epa.gov/sites/default/files/2021-04/documents/m210_ocr.pdf (accessed on 20 March 2025).
- Zuo, P.; Huang, Y.; Liu, P.; Zhang, J.; Yang, H.; Liu, L.; Bi, J.; Lu, D.; Zhang, Q.; Liu, Q. Stable iron isotopic signature reveals multiple sources of magnetic particulate matter in the 2021 Beijing sandstorms. Environ. Sci. Technol. Lett. 2022, 9, 299–305. [Google Scholar] [CrossRef]
- West, J.B.; Bowen, G.J.; Cerling, T.E.; Ehleringer, J.R. Stable isotopes as one of nature’s ecological recorders. Trends Ecol. Evol. 2006, 21, 408–414. [Google Scholar] [CrossRef]
- Lu, D.; Liu, Q.; Yu, M.; Yang, X.; Fu, Q.; Zhang, X.; Mu, Y.; Jiang, G. Natural silicon isotopic signatures reveal the sources of airborne fine particulate matter. Environ. Sci. Technol. 2018, 52, 1088–1095. [Google Scholar] [CrossRef]
- Takano, S.; Tanimizu, M.; Hirata, T.; Sohrin, Y. Isotopic constraints on biogeochemical cycling of copper in the ocean. Nat. Commun. 2014, 5, 5663. [Google Scholar]
- Li, W.C.; Ouyang, Y.; Ye, Z.H. Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine. Environ. Toxicol. Chem. 2014, 33, 2438–2447. [Google Scholar] [PubMed]
- Liu, J.; Wang, J.; Tsang, D.C.; Xiao, T.; Chen, Y.; Hou, L. Emerging thallium pollution in China and source tracing by thallium isotopes. Environ. Sci. Technol. 2018, 52, 11977–11979. [Google Scholar] [PubMed]
- Huang, Y.; Long, Z.; Zhou, D.; Wang, L.; He, P.; Zhang, G.; Hughes, S.S.; Yu, H.; Huang, F. Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions. Sci. Total Environ. 2021, 791, 148240. [Google Scholar]
- Gulipalli, P.; Mallineni, C.; Jamma, T.; Adusumalli, R. Entrapment of PM2.5 and PM10 dust particles using bleached nanocellulose based filters processed via ultrafine grinding. Cellulose 2025, 32, 1729–1753. [Google Scholar] [CrossRef]
- Gohari, A.; Ahmad, A.; Mokhtar, K.; Manan, T.; Oluwatosin, O.; Gismalla, M.; Latip, A.; Rostami, A.; Sholagberu, A.; Nahi, M. Systematic review of UAV-assisted airborne particulate matter measurement in urban areas. Remote Sens. Appl. Soc. Environ. 2024, 36, 101368. [Google Scholar] [CrossRef]
- Costa, M.; Carvalho, J.; Neto, T.; Anselmo, E.; Lima, B.; Kura, L.; Santos, J. Real-time sampling of particulate matter smaller than 2.5 μm from Amazon forest biomass combustion. Atmos. Environ. 2012, 54, 480–489. [Google Scholar] [CrossRef]
- Seesaard, T.; Kamjornkittikoon, K.; Wongchoosuk, C. A comprehensive review on advancements in sensors for air pollution applications. Sci. Total Environ. 2024, 951, 175696. [Google Scholar] [CrossRef]
- Available online: https://www.apis.ac.uk/overview/pollutants/overview_hm.htm (accessed on 10 February 2025).
- Adnan, M.; Xiao, B.; Ali, M.U.; Xiao, P.; Zhao, P.; Wang, H.; Bibi, S. Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicol. Environ. Saf. 2024, 274, 116189. [Google Scholar]
- Mohammadi, M.J.; Farhadi, M.; Ghanbari, S.; Asban, P.; Kiani, F.; Taherian, M.; Mir, I. Ecological risk assessment of heavy metals in urban dust in Iran: A systematic review and meta-analysis. Toxicol. Rep. 2023, 11, 471–480. [Google Scholar]
- Karyappa, R.; Ong, P.J.; Bu, J.; Tao, L.; Zhu, Q.; Wang, C. Recent advances in immobilization of heavy metals from municipal solid waste incineration fly ash. Fuel 2025, 381, 133216. [Google Scholar]
- Hopke, P.K.; Dai, Q.; Li, L.; Feng, Y. Global review of recent source apportionments for airborne particulate matter. Sci. Total Environ. 2020, 740, 140091. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Thiagarajan, V.; Nah, T.; Xin, X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. Sci. Total Environ. 2024, 950, 175280. [Google Scholar]
- Li, J.; Li, X.; Wang, W.; Wang, X.; Lu, S.; Sun, J.; Mao, Y. Investigation on removal effects and condensation characteristics of condensable particulate matter: Field test and experimental study. Sci. Total Environ. 2021, 783, 146985. [Google Scholar]
- Mandal, M.; Das, S.; Roy, A.; Rakwal, R.; Jones, O.A.; Popek, R.; Agrawal, G.K.; Sarkar, A. Interactive relations between plants, the phyllosphere microbial community, and particulate matter pollution. Sci. Total Environ. 2023, 890, 164352. [Google Scholar]
- Palm, B.B.; de Sá, S.S.; Day, D.A.; Campuzano-Jost, P.; Hu, W.; Seco, R.; Sjostedt, S.J.; Park, J.-H.; Guenther, A.B.; Kim, S. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmos. Chem. Phys. 2018, 18, 467–493. [Google Scholar] [CrossRef]
- Taylor-Blair, H.C.; Siu, A.C.W.; Haysom-McDowell, A.; Kokkinis, S.; Saeid, A.B.; Chellappan, D.K.; Oliver, B.G.; Paudel, K.R.; De Rubis, G.; Dua, K. The impact of airborne particulate matter-based pollution on the cellular and molecular mechanisms in chronic obstructive pulmonary disease (COPD). Sci. Total Environ. 2024, 954, 176413. [Google Scholar]
- Nestola, E.; Sgrigna, G.; Pallozzi, E.; Caccavale, L.; Guidolotti, G.; Calfapietra, C. Experimental characterization of particulate and gaseous emissions from biomass burning of six Mediterranean species and litter. Forests 2022, 13, 322. [Google Scholar] [CrossRef]
- Martin, S.T.; Artaxo, P.; Machado, L.; Manzi, A.O.; Souza, R.d.; Schumacher, C.; Wang, J.; Biscaro, T.; Brito, J.; Calheiros, A. The Green Ocean Amazon experiment (GoAmazon2014/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bull. Am. Meteorol. Soc. 2017, 98, 981–997. [Google Scholar]
- Martin, S.T.; Andreae, M.O.; Althausen, D.; Artaxo, P.; Baars, H.; Borrmann, S.; Chen, Q.; Farmer, D.K.; Guenther, A.; Gunthe, S.S. An overview of the Amazonian aerosol characterization experiment 2008 (AMAZE-08). Atmos. Chem. Phys. 2010, 10, 11415–11438. [Google Scholar]
- Farmer, J.G.; Eades, L.J.; Graham, M.C.; Bacon, J.R. The changing nature of the 206Pb/207Pb isotopic ratio of lead in rainwater, atmospheric particulates, pine needles and leaded petrol in Scotland, 1982–1998. J. Environ. Monit. 2000, 2, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Greaver, T.L.; Sullivan, T.J.; Herrick, J.D.; Barber, M.C.; Baron, J.S.; Cosby, B.J.; Deerhake, M.E.; Dennis, R.L.; Dubois, J.-J.B.; Goodale, C.L. Ecological effects of nitrogen and sulfur air pollution in the US: What do we know? Front. Ecol. Environ. 2012, 10, 365–372. [Google Scholar] [CrossRef]
- Grennfelt, P.; Hultberg, H. Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water Air Soil Pollut. 1986, 30, 945–963. [Google Scholar] [CrossRef]
- Swackhamer, D.; Paerl, H.; Eisenreich, S.; Hurley, J.; Hornbuckle, K.; McLachlan, M.; Mount, D.; Muir, D.; Schindler, D. Impacts of atmospheric pollutant on aquatic ecosystems. Issues Ecol. 2004, 12, 1–19. Available online: https://www.esa.org/esa/wp-content/uploads/2013/03/issue12.pdf (accessed on 10 February 2025).
- Xie, J.J.; Yuan, C.G.; Xie, J.; Shen, Y.W.; He, K.Q.; Zhang, K.G. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China. Environ. Pollut. 2019, 252, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yang, F.; Chan, K.; Ning, Z. Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmos. Pollut. Res. 2014, 5, 236–244. [Google Scholar] [CrossRef]
- Yang, J.; Ma, L.; He, X.; Au, W.; Miao, Y.; Wang, W.; Nah, T. Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong—Insights into factors that control aerosol metaldissolution in an urban site in South China. Atmos. Chem. Phys. 2023, 23, 1403–1419. [Google Scholar] [CrossRef]
- Guellaf, A.; Benhassane, L.; Kettani, K. Physico-Chemical, Bacteriological And Heavy Metals Assessment of Surface Waters in Martil Basin (North-Western Morocco). Univ. Politeh. Buchar. Sci. Bull. Ser. B Chem. Mater. Sci. 2021, 83, 159–170. [Google Scholar]
- Bucşe, A.; Pârvulescu, O.C.; Vasiliu, D.; Lupașcu, N.; Voica, C. Levels of heavy metal concentration in M. galloprovincialis mollusc species from NW Black Sea (Romania). UPB Sci. Bull. 2021, 83, 51–60. [Google Scholar]
- Giles-Corti, B.; Vernez-Moudon, A.; Reis, R.; Turrell, G.; Dannenberg, A.L.; Badland, H.; Foster, S.; Lowe, M.; Sallis, J.F.; Stevenson, M. City planning and population health: A global challenge. Lancet 2016, 388, 2912–2924. [Google Scholar] [CrossRef]
- Lisiak-Zielińska, M.; Borowiak, K.; Budka, A.; Kanclerz, J.; Janicka, E.; Kaczor, A.; Żyromski, A.; Biniak-Pieróg, M.; Podawca, K.; Mleczek, M. How polluted are cities in central Europe?-Heavy metal contamination in Taraxacum officinale and soils collected from different land use areas of three representative cities. Chemosphere 2021, 266, 129113. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-H.; Chen, L.-J.; Yu, L.; Guo, Z.-B.; Shan, C.-Q.; Lin, J.-Q.; Gu, Y.-G.; Yang, Z.-B.; Yang, Y.-X.; Shao, J.-R. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [PubMed]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jiménez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [PubMed]
- Friederike Steingräber, L.; Ludolphy, C.; Metz, J.; Kierdorf, H.; Kierdorf, U. Uptake of lead and zinc from soil by blackberry plants (Rubus fruticosus L. agg.) and translocation from roots to leaves. Environ. Adv. 2022, 9, 100313. [Google Scholar] [CrossRef]
- Goudarzi, G.; Alavi, N.; Geravandi, S.; Idani, E.; Behrooz, H.R.A.; Babaei, A.A.; Alamdari, F.A.; Dobaradaran, S.; Farhadi, M.; Mohammadi, M.J. Health risk assessment on human exposed to heavy metals in the ambient air PM 10 in Ahvaz, southwest Iran. Int. J. Biometeorol. 2018, 62, 1075–1083. [Google Scholar] [CrossRef]
- Singh, A.K.; Choudhary, J.K.; Shukla, S.K.; Bauddh, K.; Pandey, G.; Madhav, S.; Singh, A.; Kumar, M. Agroecosystem Contamination with Heavy Metals Due to Road Transportation: A Global Threat to Safe Food Security. Process Saf. Environ. Prot. 2024, 194, 1265–1282. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2024. Special Report; Health Effects Institute: Boston, MA, USA, 2024. [Google Scholar]
- Das, S.; Raj, R.; Mangwani, N.; Dash, H.R.; Chakraborty, J. Heavy metals and hydrocarbons: Adverse effects and mechanism of toxicity. Microb. Biodegrad. Bioremediation 2014, 23–54. [Google Scholar]
- Salahshoori, I.; Nobre, M.A.; Yazdanbakhsh, A.; Malekshah, R.E.; Asghari, M.; Khonakdar, H.A.; Mohammadi, A.H. Navigating the molecular landscape of environmental science and heavy metal removal: A simulation-based approach. J. Mol. Liq. 2024, 410, 125592. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar]
- Mayegowda, S.B.; Chikkud, V.; Barua, S.; Manjula, N. Heavy metal detection by nanotechnology-based sensors. In Nanotechnology-Based Sensors for Detection of Environmental Pollution; Elsevier: Amsterdam, The Netherlands, 2024; pp. 237–263. [Google Scholar]
- Daly, G.L.; Wania, F. Organic contaminants in mountains. Environ. Sci. Technol. 2005, 39, 385–398. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [PubMed]
- Fulke, A.B.; Ratanpal, S.; Sonker, S. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Mar. Pollut. Bull. 2024, 206, 116707. [Google Scholar]
- Inomata, Y.; Sasaki, N.; Tanahashi, S.; Fujimoto, T.; Akasaka, O.; Fukushi, K.; Natori, S.; Takahashi, Y.; Seto, T. Size-classified aerosol-bound heavy metals and their effects on human health risks in industrial and remote areas in Japan. J. Hazard. Mater. 2024, 466, 133328. [Google Scholar]
- Vilas-Boas, V.; Chatterjee, N.; Carvalho, A.; Alfaro-Moreno, E. Particulate matter-induced oxidative stress–mechanistic insights and antioxidant approaches reported in in vitro studies. Environ. Toxicol. Pharmacol. 2024, 110, 104529. [Google Scholar]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar]
- Available online: https://www.c40knowledgehub.org/s/article/WHO-Air-Quality-Guidelines?language=en_US (accessed on 10 February 2025).
- Wāng, Y. Ambient fine particulate matter provokes multiple modalities of cell death via perturbation of subcellular structures. Environ. Int. 2025, 195, 109193. [Google Scholar]
- Qiao, H.; Xue, W.T.; Li, L.; Fan, Y.; Xiao, L.; Guo, M.M. Atmospheric Particulate Matter 2.5 (PM2. 5) Induces Cell Damage and Pruritus in Human Skin. Biomed. Environ. Sci. 2024, 37, 216–220. [Google Scholar]
- Iqbal, S.; Ramini, A.; Kaja, S. Impact of Particulate Matter and Air Pollution on Ocular Surface Disease: A Systematic Review of Preclinical and Clinical Evidence. Ocul. Surf. 2025, 35, 100–116. [Google Scholar]
- Steinparzer, M.; Schaubmayr, J.; Godbold, D.L.; Rewald, B. Particulate matter accumulation by tree foliage is driven by leaf habit types, urbanization-and pollution levels. Environ. Pollut. 2023, 335, 122289. [Google Scholar]
- Popek, R.; Haynes, A.; Przybysz, A.; Robinson, S.A. How much does weather matter? Effects of rain and wind on PM accumulation by four species of Australian native trees. Atmosphere 2019, 10, 633. [Google Scholar] [CrossRef]
- Santunione, G.; Barbieri, A.; Sgarbi, E. Analysis of particulate matter (PM) trapped by four different plant species in an urban forest: Quantification and characterization. Trees For. People 2024, 16, 100585. [Google Scholar] [CrossRef]
- Mganga, N.; Manoko, M.L.; Rulangaranga, Z.K. Classification of Plants According to Their Heavy Metal Content Around North Mara Gold Mine, Tanzania: Implication for Phytoremediation. Tanzan. J. Sci. 2011, 37, 109–119. [Google Scholar]
- Goretti, E.; Pallottini, M.; Rossi, R.; La Porta, G.; Gardi, T.; Goga, B.C.; Elia, A.; Galletti, M.; Moroni, B.; Petroselli, C. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. Environ. Pollut. 2020, 256, 113388. [Google Scholar] [CrossRef] [PubMed]
- Serban, E.; Stefan, D.; Peticila, A.; Rau, I.; Bosomoiu, M. Comparative study of the bioaccumulation of heavy metals in lavender plants. Univ. Politeh. Buchar. Sci. Bull. Ser. B Chem. Mater. Sci. 2023, 85, 145–156. [Google Scholar]
- Swaileh, K.; Hussein, R.M.; Abu-Elhaj, S. Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank. Arch. Environ. Contam. Toxicol. 2004, 47, 23–30. [Google Scholar] [CrossRef]
- Tripathi, D.P.; Nema, A.K. Evaluation of ecological risk due to suspended particulate matter-bound heavy metals deposited on selected plants in an urban area. Urban Clim. 2025, 59, 102293. [Google Scholar]
- Caselles, J. Levels of lead and other metals in citrus alongside a motor road. Water Air Soil Pollut. 1998, 105, 593–602. [Google Scholar] [CrossRef]
- Markert, B. Plants as Biomonitors: Indicators for Heavy Metals in the Terrestrial Environment; Wiley-Blackwell: Hoboken, NJ, USA, 1993. [Google Scholar]
- Markert, B.A. General Aspects of Biomonitoring Heavy Metals by Plants; VCH Publisher: New York, NY, USA, 1993. [Google Scholar]
- Bini, C.; Wahsha, M.; Fontana, S.; Maleci, L. Effects of heavy metals on morphological characteristics of Taraxacum officinale Web growing on mine soils in NE Italy. J. Geochem. Explor. 2012, 123, 101–108. [Google Scholar] [CrossRef]
- Mikołajczak, P.; Borowiak, K.; Niedzielski, P. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environ. Sci. Pollut. Res. 2017, 24, 14091–14103. [Google Scholar] [CrossRef]
- Lyubomirova, V.; Mihaylova, V.; Djingova, R. Effects of soil properties and anthropogenic activity on the transfer of 52 elements in the system soil/Taraxacum officinale. J. Soils Sediments 2015, 15, 1549–1557. [Google Scholar]
- Djingova, R.; Kuleff, I.; Penev, I.; Sansoni, B. Bromine, copper, manganese and lead content of the leaves of Taraxacum officinale (dandelion). Sci. Total Environ. 1986, 50, 197–208. [Google Scholar] [CrossRef]
- Marr, K.; Fyles, H.; Hendershot, W. Trace metals in Montreal urban soils and the leaves of Taraxacum officinale. Can. J. Soil Sci. 1999, 79, 385–387. [Google Scholar]
- Zhu, Y.; Wang, Y.; He, X.; Li, B.; Du, S. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere 2023, 338, 139475. [Google Scholar]
- Kumar, M.; Sangwan, P.; Chandra, M.; Bhatt, R.; Gaber, A.; Hossain, A. Assessing heavy metal contamination in roadside soils as a consequence of motor vehicle emissions. Int. J. Environ. Sci. Technol. 2024, 21, 7119–7132. [Google Scholar]
- Oliva, S.R.; Valdés, B. Influence of washing on metal concentrations in leaf tissue. Commun. Soil Sci. Plant Anal. 2004, 35, 1543–1552. [Google Scholar]
- Xu, X.; Yu, X.; Bao, L.; Desai, A.R. Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes. Environ. Pollut. 2019, 255, 113234. [Google Scholar]
- Mukhopadhyay, S.; Dutta, R.; Das, P. Greenery planning for urban air pollution control based on biomonitoring potential: Explicit emphasis on foliar accumulation of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). J. Environ. Manag. 2024, 355, 120524. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Zhang, Z. PM2. 5 concentration differences between various forest types and its correlation with forest structure. Atmosphere 2015, 6, 1801–1815. [Google Scholar]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar]
- Zhang, L.; Zhang, Z.; Chen, L.; McNulty, S. An investigation on the leaf accumulation-removal efficiency of atmospheric particulate matter for five urban plant species under different rainfall regimes. Atmos. Environ. 2019, 208, 123–132. [Google Scholar]
- Sgrigna, G.; Baldacchini, C.; Dreveck, S.; Cheng, Z.; Calfapietra, C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Sci. Total Environ. 2020, 718, 137310. [Google Scholar]
- 15 Biggest Environmental Problems of 2025. Available online: https://earth.org/the-biggest-environmental-problems-of-our-lifetime/ (accessed on 21 March 2025).
No. crt. | Filter Material | Efficiency % | Other Characteristics | Reference |
---|---|---|---|---|
1 | PAN nanofiber on window mesh | 92.6% for PM10 91.2% for PM10 and PM2.5 90.6% for PM2.5 | PM2.5 mass concentration >708 μg/m3 | [66] |
2 | PLA with high molecular weight | 92.6% for PM0.3 | 630 nm size | [67] |
3 | PAN nanofiber filters Ti3C2Tx MXene nanosheets | 95% for PM1, PM2.5, and PM10 | Low pressure drop of ∼42 Pa MXene nanosheets strongly inhibit the propagation of bacteria (e.g., E. coli and S. aureus) in the filters | [68] |
4 | Zein fibers | 99% (PM0.3) | Lower pressure drop (109 Pa) | [69] |
5 | Nonwoven filter fibers activated with carbon black | 32.9–46.0% for PM10 18.7–30.8% for PM2.5 12.6–24.2% for PM1.0 | Filtration velocity of 0.8 m/s | [70] |
No. Crt. | HM Type | Soil, mg/kg | Roots, mg/kg | Leaves/Needles, mg/kg | Plants | Ref. |
---|---|---|---|---|---|---|
1 | Cd industry area; Roadside; Suburban area | 10 3.2 2.1 | 3.5 2.20 0.55 | Aleppo pine (Pinus halepensis L.) | [23] | |
Cd | 0.4–3.6 | 0.4–2.8 | 0.5–3.9 | Taraxacum officinale | [115] | |
0.27 | 0.10 | Inula viscosa L. | [142] | |||
2.80 | 1.29 1.55 0.72 0.65 | T. officinale P. lanceolata B. pendula R. pseudoacacia | [142] | |||
2.65 | F. religiosa | [143] | ||||
2 | Cr | 23.2–40.6 | 14.0–26.1 | 15.8–24.8 | Taraxacum officinale | [115] |
3 | Ni | 2.1–13.2 | 0.2–42.1 | 0–3.9 | [115] | |
65.40 | B. glabra | [143] | ||||
18.9 | 4.87 | Inula viscosa L. | [142] | |||
4 | Pb | 27.0–231.5 | 4.3–34.2 | 3.0–9.5 | Taraxacum officinale | [115] |
12–19 | Citrus limon (L.) | [144] | ||||
98 | 28.07 25.38 16.02 11.08 | Taraxacum officinale Plantago lanceolata, Betula pendula Robinia pseudoacacia | [6] | |||
87.4 | 7.25 | Inula viscosa L. | [142] | |||
63.18 | F. benghalensis | [143] | ||||
Pb industry area; Roadside; Suburban area | 160 500 80 | 90 196 40 | Aleppo pine (Pinus halepensis L.) | [23] | ||
5 | Zn industry area; Roadside; Suburban area | 1210 215 115 | 262 95 55 | Aleppo pine (Pinus halepensis L.) | [23] | |
Zn | 46 | Citrus limon (L.) | [144] | |||
82.2 | 47.6 | Inula viscosa L. | [142] | |||
550.1 | 179.82 97.62 389.05 57.72 | Taraxacum officinale Plantago lanceolata, Betula pendula Robinia pseudoacacia | [6] | |||
460.13 | F. religiosa | [143] | ||||
6 | Cu industry area; Roadside; Suburban area | 40 85 18 | 29.5 37 16.5 | Aleppo pine (Pinus halepensis L.) | [23] | |
Cu | 12 | Citrus limon (L.) | [144] | |||
60.4 | 10.6 | Inula viscosa L. | [142] | |||
14.65 | 10.09 5.85 2.94 1.78 | Taraxacum officinale Plantago lanceolata, Betula pendula Robinia pseudoacacia | [6] | |||
391.02 | P. longifolia | [143] | ||||
7 | Mn | 20 to 56 | Citrus limon (L.) | [144] | ||
224 | 140 | Inula viscosa L. | [142] | |||
244.3 | 24.76 47.12 63.27 25.18 | Taraxacum officinale Plantago lanceolata, Betula pendula Robinia pseudoacacia | [6] | |||
163.82 | F. religiosa | [143] | ||||
8 | Fe | 15,700 | 730 | Inula viscosa L. | [142] | |
4800.81 | F. benghalensis | [143] | ||||
1021.3 | 159.18 299.05 260.02 192.11 | Taraxacum officinale Plantago lanceolata, Betula pendula Robinia pseudoacacia | [6] | |||
9 | Cr | 42.4 | 7.03 | Inula viscosa L. | [142] | |
358.27 | P. longifolia | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, E.; Râpă, M.; Mateș, I.M.; Popescu, A.-F.; Bădiceanu, A.; Balint, A.I.; Covaliu-Mierlă, C.I. Heavy Metals in Particulate Matter—Trends and Impacts on Environment. Molecules 2025, 30, 1455. https://doi.org/10.3390/molecules30071455
Matei E, Râpă M, Mateș IM, Popescu A-F, Bădiceanu A, Balint AI, Covaliu-Mierlă CI. Heavy Metals in Particulate Matter—Trends and Impacts on Environment. Molecules. 2025; 30(7):1455. https://doi.org/10.3390/molecules30071455
Chicago/Turabian StyleMatei, Ecaterina, Maria Râpă, Ileana Mariana Mateș, Anca-Florentina Popescu, Alexandra Bădiceanu, Alexandru Ioan Balint, and Cristina Ileana Covaliu-Mierlă. 2025. "Heavy Metals in Particulate Matter—Trends and Impacts on Environment" Molecules 30, no. 7: 1455. https://doi.org/10.3390/molecules30071455
APA StyleMatei, E., Râpă, M., Mateș, I. M., Popescu, A.-F., Bădiceanu, A., Balint, A. I., & Covaliu-Mierlă, C. I. (2025). Heavy Metals in Particulate Matter—Trends and Impacts on Environment. Molecules, 30(7), 1455. https://doi.org/10.3390/molecules30071455