Next Issue
Volume 30, July-2
Previous Issue
Volume 30, June-2
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 30, Issue 13 (July-1 2025) – 224 articles

Cover Story (view full-size image): Molecules (ISSN 1420-3049, CODEN: MOLEFW) provides an advanced forum for science of chemistry and all interfacing disciplines. Our aim is to provide rigorous peer review and enable rapid publication of cutting-edge research to educate and inspire the scientific community worldwide. Scientists are encouraged to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the maximum length of the papers. Full experimental details must be provided so that the results can be reproduced. In addition, the availability of compound samples is published and considered important information, and authors are encouraged to register or deposit their chemical samples.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 4549 KiB  
Brief Report
Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol
by Concepción Medrano-Padial, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Molecules 2025, 30(13), 2889; https://doi.org/10.3390/molecules30132889 - 7 Jul 2025
Viewed by 296
Abstract
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability [...] Read more.
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. Nonetheless, the effect of lipophilic esterification on some cellular processes, particularly at the mitochondrial level, remains underexplored. According to this knowledge gap, the present study uncovered the cytotoxic and mitochondrial effects of PEGCG, in vitro, upon the liver hepatocarcinoma cell line HepG2. The range of determinations developed, including the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, flow cytometry, and electron microscopy, allowed describing the distinct biological potential for both EGCG and PEGCG. Thus, while EGCG exhibited minimal cytotoxicity and apoptosis induction, PEGCG reduced cell viability dose-dependently at 24 h and triggered significant mitochondrial damage, including fragmentation and cristae loss, at 1 µmol/L. However, at 48 h, PEGCG-treated cells recovered viability and mitochondrial structure, suggesting the activation of adaptive mechanisms for the molecular changes induced by PEGCG. These findings underscore the dynamic interplay between lipophilic catechins and cellular stress responses, offering valuable insights into the PEGCG’s potential as a therapeutic agent and laying a foundation for further exploration of its biological power. Full article
Show Figures

Figure 1

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 498
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

25 pages, 1312 KiB  
Article
The Role of Exchange Energy in Modeling Core-Electron Binding Energies of Strongly Polar Bonds
by Feng Wang and Delano P. Chong
Molecules 2025, 30(13), 2887; https://doi.org/10.3390/molecules30132887 - 7 Jul 2025
Viewed by 232
Abstract
Accurate determination of carbon core-electron binding energies (C1s CEBEs) is crucial for X-ray photoelectron spectroscopy (XPS) assignments and predictive computational modeling. This study evaluates density functional theory (DFT)-based methods for calculating C1s core-electron binding energies (CEBEs), comparing three functionals—PW86x-PW91c (DFTpw), mPW1PW, and PBE50—across [...] Read more.
Accurate determination of carbon core-electron binding energies (C1s CEBEs) is crucial for X-ray photoelectron spectroscopy (XPS) assignments and predictive computational modeling. This study evaluates density functional theory (DFT)-based methods for calculating C1s core-electron binding energies (CEBEs), comparing three functionals—PW86x-PW91c (DFTpw), mPW1PW, and PBE50—across 68 C1s cases in small hydrocarbons and halogenated molecules (alkyl halides), using the delta self-consistent field ΔSCF (or ΔDFT) method developed by one of the authors over the past decade. The PW86x-PW91c functional achieves a root mean square deviation (RMSD) of 0.1735 eV, with improved accuracy for polar C-X bonds (X=O, F) using mPW1PW and PBE50, reducing the average absolute deviation (AAD) to ~0.132 eV. The study emphasizes the role of Hartree–Fock (HF) exchange in refining CEBE predictions and highlights the synergy between theoretical and experimental approaches. These insights lay the groundwork for machine learning (ML)-driven spectral analysis, advancing materials characterization, and catalysis through more reliable automated XPS assignments. Full article
Show Figures

Graphical abstract

21 pages, 6308 KiB  
Article
Revealing Serotonin Derivatives in Safflower Seed Meal as Potential Anti-Ulcerative Colitis Drugs: In Vitro and Computational Evidence
by Liang Zhang, Md Hasan Ali, Chao Jiang, Furong Fan, Furong Zhu, Yating Lu, Mengwei Jia, Haipeng Yin, Jianwang Wei, Dongsen Wu, Shenghui Chu and Min Liu
Molecules 2025, 30(13), 2886; https://doi.org/10.3390/molecules30132886 - 7 Jul 2025
Viewed by 243
Abstract
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed [...] Read more.
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed NMR and UPLC-Q-TOF-MS/MS with literature comparisons. Anti-inflammatory efficacy was assessed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Network pharmacology predicted targets, molecular docking analyzed binding interactions and molecular dynamics simulations assessed complex stability. Eleven serotonin derivatives were isolated; N-trans-Feruloyl-3,5-dihydroxyindolin-2-one (1) and Bufoserotonin A (2) were identified in safflower seed meal for the first time. Compounds 1, 37 and 10 significantly reduced inflammatory factors, with N-feruloyl serotonin (4, FS) showing the strongest activity. Mechanistic studies revealed FS targets key molecules (STAT3, EGFR, ESR1, PTGS2, NF-κB1, and JUN), modulating PI3K-Akt, MAPK and cancer-related pathways. Molecular dynamics simulations confirmed FS-EGFR complex stability. Thus, two novel derivatives were isolated and FS demonstrated significant anti-inflammatory and potential anti-ulcerative colitis effects through multi-target, multi-pathway synergy, providing a foundation for developing safflower seed meal therapeutics. Full article
Show Figures

Figure 1

15 pages, 2891 KiB  
Article
Polysaccharide Hydrogels with Waste Wool Fibre as Matrix for Potential Use as CRF Fertiliser
by Ewa Szczepanik, Edyta Molik and Kinga Pielichowska
Molecules 2025, 30(13), 2885; https://doi.org/10.3390/molecules30132885 - 7 Jul 2025
Viewed by 199
Abstract
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a [...] Read more.
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a hydrogel to obtain a stable material that could improve water retention and could serve as a fertiliser material matrix. Wool fibres and hydrogel were chosen because of their ability to store water and their degradability. An evaluation of the swelling degree of different alginate-based hydrogel matrices was performed to select the matrix. The stability and water bonding of hydrogels with different wool fibre content were analysed and evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The microstructure and the effect of fibres on the uniformity of the hydrogel were assessed using SEM and optical microscopy. The degree of water retention in the soil was also evaluated. The results showed that it is possible to incorporate wool fibres into the hydrogel matrix and the wool fibres make the composite porous, which allows water penetration into the material much more easily. This research has shown the possibility of using waste wool fibres as an active ingredient in sustainable fertiliser materials. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

46 pages, 5003 KiB  
Article
Optimization of Kerosene-like Fuels Produced via Catalytic Pyrolysis of Packaging Plastic Waste via Central Composite Design and Response Surface Methodology: Performance of Iron-Doped Dolomite and Activated Carbon
by Oratepin Arjharnwong, Tharapong Vitidsant, Aminta Permpoonwiwat, Naphat Phowan and Witchakorn Charusiri
Molecules 2025, 30(13), 2884; https://doi.org/10.3390/molecules30132884 - 7 Jul 2025
Viewed by 247
Abstract
Rapid economic growth has led to an increase in the use of multilayer plastic packaging, which involves complex polymer compositions and hinders recycling. This study investigated the catalytic pyrolysis of plastic packaging waste in a 3000 cm3 semibatch reactor, aiming to optimize [...] Read more.
Rapid economic growth has led to an increase in the use of multilayer plastic packaging, which involves complex polymer compositions and hinders recycling. This study investigated the catalytic pyrolysis of plastic packaging waste in a 3000 cm3 semibatch reactor, aiming to optimize kerosene-like hydrocarbon production. The temperature (420–500 °C), N2 flow rate (25–125 mL/min), and catalyst loading (5–20 wt.%) were examined individually and in combination with activated carbon and an Fe-doped dolomite (Fe/DM) catalyst. Central composite design (CCD) and response surface methodology (RSM) were used to identify the optimal conditions and synergistic effects. Pyrolysis product analysis involved simulation distillation gas chromatography (Sim-DGC), gas chromatography/mass spectrometry (GC/MS), and Fourier transform infrared (FT-IR) spectroscopy. The optimal conditions (440 °C, 50 mL/min N2 flow, catalyst loading of 10 wt.% using a 5 wt.% Fe-doped dolomite-activated carbon 0.6:0.4 mass/molar ratio) yielded the highest pyrolysis oil (79.6 ± 0.35 wt.%) and kerosene-like fraction (22.3 ± 0.22 wt.%). The positive synergistic effect of Fe/DM and activated carbon (0.6:0.4) enhanced the catalytic activity, promoting long-chain polymer degradation into mid-range hydrocarbons, with secondary cracking yielding smaller hydrocarbons. The pore structure and acid sites of the catalyst improved the conversion of intermediate hydrocarbons into aliphatic compounds (C5–C15), increasing kerosene-like hydrocarbon production. Full article
(This article belongs to the Special Issue Advances in Thermochemical Conversion of Solid Wastes)
Show Figures

Figure 1

47 pages, 1796 KiB  
Review
Oxysterol-Induced Inflammation in Human Diseases: Strategies for Treatment with Natural Compounds and Synthetic Molecules
by Fatiha Brahmi, John J. Mackrill, Imen Ghzaiel, Leila Rezig, Rym Benkhalifa, Amira Zarrouk, Pierre Jouanny, Anne Vejux and Gérard Lizard
Molecules 2025, 30(13), 2883; https://doi.org/10.3390/molecules30132883 - 7 Jul 2025
Viewed by 771
Abstract
Oxysterols can be derived from the diet, physiologically produced via specific enzymes, or are generated by autoxidation. These molecules have physiological properties and can also adversely affect vital organs. Indeed, some of them have pro-oxidant and pro-inflammatory activities and can lead to major [...] Read more.
Oxysterols can be derived from the diet, physiologically produced via specific enzymes, or are generated by autoxidation. These molecules have physiological properties and can also adversely affect vital organs. Indeed, some of them have pro-oxidant and pro-inflammatory activities and can lead to major pathologies. The present review focuses on oxysterols (7-ketocholesterol, 7β-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, and cholestane-3β, 5α, 6β-triol) involved either in cholesterol metabolism, age-related diseases (such as cardiovascular, neurodegenerative, and eye diseases, e.g., sarcopenia), and inflammatory diseases (especially Behcet’s disease and bowel and lung diseases (e.g., sarcoidosis, COVID-19)). Metabolic pathways associated with oxysterol-induced inflammation are discussed considering the cytokinic TLR4 pathway, non-cytokinic pathways, and the contribution of Ca2+ and K+ channels. Therapeutic approaches targeting oxysterol-induced inflammation either by natural or synthetic molecules are also presented. Full article
Show Figures

Graphical abstract

25 pages, 1560 KiB  
Article
Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke
by Dorcas Tlhapi, Ntsoaki Malebo, Idah Tichaidza Manduna, Monizi Mawunu and Ramakwala Christinah Chokwe
Molecules 2025, 30(13), 2882; https://doi.org/10.3390/molecules30132882 - 7 Jul 2025
Viewed by 263
Abstract
Lippia multiflora Moldenke is widely used in Angola, on the African continent, and beyond for the treatment of many health conditions such as hypertension, enteritis, colds, gastrointestinal disturbances, stomachaches, jaundice, coughs, fevers, nausea, bronchial inflammation, conjunctivitis, malaria, and venereal diseases. However, there is [...] Read more.
Lippia multiflora Moldenke is widely used in Angola, on the African continent, and beyond for the treatment of many health conditions such as hypertension, enteritis, colds, gastrointestinal disturbances, stomachaches, jaundice, coughs, fevers, nausea, bronchial inflammation, conjunctivitis, malaria, and venereal diseases. However, there is limited literature about the active compounds linked with the reported biological activities. This study aims to assess the chemical profiles, antioxidant properties, and the cytotoxicity effects of the roots, stem bark, and leaves of L. multiflora. Chemical characterization of the crude extracts was assessed through quantification of total phenolic and flavonoid contents followed by Q exactive plus orbitrap™ ultra-high-performance liquid chromatography-mass spectrometer (UHPLC-MS) screening. The correlation between the extracts and the correlation between the compounds were studied using the multivariate analysis. Principal component analysis (PCA) loading scores and principal component analysis (PCA) biplots and correlation plots were used to connect specific compounds with observed biological activities. The antioxidant activities of the crude extracts were carried out in vitro using DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays, while the in vitro toxicology of the crude extracts was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A total of twenty constituents were characterized and identified using the UHPLC–Q/Orbitrap/MS. The methanol leaf extract showed the highest antioxidant activity in the DPPH free radical scavenging activity (IC50 = 0.559 ± 0.269 μg/mL); however, the stem bark extract had the highest reducing power (IC0.5 = 0.029 ± 0.026 μg/mL). High phenolic and flavonoid content was found in the dichloromethane leaf extract (32.100 ± 1.780 mg GAE/g) and stem bark extract (624.153 ± 29.442 mg QE/g), respectively. The results show the stem bark, methanol leaf, and dichloromethane leaf extracts were well-tolerated by the Vero cell line at concentrations up to 50 µg/mL. However, at 100 µg/mL onward, some toxicity was observed in the root, methanol leaf, and dichloromethane leaf extracts. The UHPLC–Q/Orbitrap/MS profiles showed the presence of terpenoids (n = 5), flavonoids (n = 5), phenols (n = 4), alkaloids (n = 3), coumarins (n = 1), fatty acids (n = 1), and organic acids (n = 1). According to several studies, these secondary metabolites have been reported and proven to be the most abundant for antioxidant potential. The identified flavonoids (catechin, quercitrin, and (−)-epigallocatechin) and phenolic compound (6-gingerol) can significantly contribute to the antioxidant properties of different plant parts of L. multiflora. The research findings obtained in this study provide a complete phytochemical profile of various parts of L. multiflora that are responsible for the antioxidant activity using UHPLC–Q/Orbitrap/MS analysis. Furthermore, the results obtained in this study contribute to the scientific information or data on the therapeutic properties of Lippia multiflora and provide a basis for further assessment of its potential as a natural remedy. Full article
Show Figures

Graphical abstract

21 pages, 8891 KiB  
Article
Urolithin A Attenuates Periodontitis in Mice via Dual Anti-Inflammatory and Osteoclastogenesis Inhibition: A Natural Metabolite-Based Therapeutic Strategy
by Yishu Xia, Danni Wu, Linyi Zhou, Xinyu Wu and Jianzhi Chen
Molecules 2025, 30(13), 2881; https://doi.org/10.3390/molecules30132881 - 7 Jul 2025
Viewed by 236
Abstract
Periodontitis is an inflammatory disease that affects the periodontal supporting tissues. Its cardinal clinical manifestations encompass gingival inflammation, periodontal pocket formation, and alveolar bone resorption. Urolithin A (UA), a gut microbiota-derived metabolite of ellagitannins, is known for its anti-inflammatory and osseous-protective properties. Nonetheless, [...] Read more.
Periodontitis is an inflammatory disease that affects the periodontal supporting tissues. Its cardinal clinical manifestations encompass gingival inflammation, periodontal pocket formation, and alveolar bone resorption. Urolithin A (UA), a gut microbiota-derived metabolite of ellagitannins, is known for its anti-inflammatory and osseous-protective properties. Nonetheless, the impact of UA on periodontitis remains unknown. To investigate the preventive effect of UA, we employed a lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 mouse macrophages, a receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation model, and a ligature-induced periodontitis model in mice. The expression of inflammatory factors (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6) was analyzed to assess anti-inflammatory efficacy. Bone loss in mice with periodontitis was assessed through histological and imaging techniques, including haematoxylin and eosin staining to evaluate alveolar bone morphology, Masson’s trichrome staining to visualize collagen fiber distribution, and micro-computed tomography scanning to quantify bone structural parameters. Additionally, we investigated the underlying mechanisms by examining osteoclast activity through tartrate-resistant acid phosphatase staining and the expression levels of proteins RANKL and osteoprotegerin (OPG). We found that UA reduced IL-6 and TNF-α levels in vitro and in vivo, inhibited osteoclast differentiation, and decreased the RANKL/OPG ratio in periodontitis mice. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 2998 KiB  
Article
Synthesis of Novel Tetra-Substituted Pyrazole Derivatives Using Microwave Irradiation and Their Anti-Leukemic Activity Against Jurkat Cells
by Felipe P. Machado, Maria Clara Campos, Juliana Echevarria-Lima, Diego P. Sangi, Carlos Serpa, Otávio Augusto Chaves and Aurea Echevarria
Molecules 2025, 30(13), 2880; https://doi.org/10.3390/molecules30132880 - 7 Jul 2025
Viewed by 267
Abstract
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in [...] Read more.
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in agreement with some of the principles of green chemistry. The proposed structures were determined using various spectroscopic techniques, including infrared spectroscopy and hydrogen and carbon-13 nuclear magnetic resonance. Furthermore, the compounds underwent in-silico evaluations using CLC-Pred and AdmetSAR software to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. This was combined with molecular docking calculations for four main cancer-related targets for pyrazole core, to facilitate screening for subsequent biological assessments. Based on the data generated from these analyses, it was identified two pyrazoles (11 and 18) likely to exhibit anti-tumor activity, while also demonstrating low toxicity levels. Upon selection, these two pyrazoles were subjected to toxicity assessments using the Artemia salina method and evaluated for their effects on the viability of Jurkat cancer cells with a potency of 45.05 and 14.85 µM to 11 and 18, respectively, and with a potency of above 100 µM for the non-carcinogenic cells HEK 293. Overall, the findings from these studies indicate pyrazole derivatives as potential anti-tumor candidates. Full article
Show Figures

Figure 1

18 pages, 2180 KiB  
Article
Novel Magnetically Recoverable Amino-Functionalized MIL-101(Fe) Composite with Enhanced Adsorption Capacity for Pb(II) and Cd(II) Ions
by Claudia Maria Simonescu, Daniela C. Culita, Gabriela Marinescu, Irina Atkinson, Virgil Marinescu, Ovidiu Oprea and Nicolae Stanica
Molecules 2025, 30(13), 2879; https://doi.org/10.3390/molecules30132879 - 7 Jul 2025
Viewed by 215
Abstract
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This [...] Read more.
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This hybrid composite retains the high adsorption capacity of NH2-MIL-101(Fe) while benefiting from the easy magnetic separation enabled by Fe3O4 nanoparticles. The mesoporous silica forms a protective porous coating around the magnetic nanoparticles, significantly enhancing its chemical stability and preventing clumping. Beyond protection, the mesoporous silica layer provides a high-surface-area scaffold that promotes the uniform in situ growth of NH2-MIL-101(Fe). Functionalization of the silica surface with chloride groups enables strong electrostatic interactions between the magnetic component and metal organic framework (MOF), ensuring a homogeneous and stable hybrid structure. The new composite’s capacity to remove Pb(II) and Cd(II) ions from aqueous solutions was systematically investigated. The adsorption data showed a good fit with the Langmuir isotherm model for both ions, the maximum adsorption capacities calculated being 214.6 mg g−1 for Pb(II) and 181.6 mg g−1 Cd(II). Furthermore, the kinetic behavior of the adsorption process was accurately described by the pseudo-second-order model. These findings confirm the effectiveness of this composite for the removal of Pb(II) and Cd(II) ions from aqueous solutions, demonstrating its potential as an efficient material for environmental remediation. The combination of magnetic recovery, high adsorption capacity, and stability makes this novel composite a promising candidate for heavy metal removal applications in water treatment processes. Full article
Show Figures

Figure 1

22 pages, 2427 KiB  
Article
Cyclodextrin-Based Quercetin Powders for Potential Nose-to-Brain Transport: Formulation and In Vitro Assessment
by Elmina-Marina Saitani, Paraskevi Papakyriakopoulou, Theodora Bogri, Georgia Choleva, Kyriaki Kontopoulou, Spyridon Roboras, Maria Samiou, Antiopi Vardaxi, Stergios Pispas, Georgia Valsami and Natassa Pippa
Molecules 2025, 30(13), 2878; https://doi.org/10.3390/molecules30132878 - 7 Jul 2025
Viewed by 304
Abstract
Quercetin (Que) is widely recognized for its antioxidant and neuroprotective properties; however, its clinical potential remains limited due to poor solubility and low oral bioavailability. Nasal powders have emerged as a promising strategy to overcome these limitations, taking advantage of nose-to-brain delivery, offering [...] Read more.
Quercetin (Que) is widely recognized for its antioxidant and neuroprotective properties; however, its clinical potential remains limited due to poor solubility and low oral bioavailability. Nasal powders have emerged as a promising strategy to overcome these limitations, taking advantage of nose-to-brain delivery, offering a direct, non-invasive route to the central nervous system while bypassing first-pass metabolism. This study aims to extend previous work by systematically investigating the impact of different preparation methods (spray drying vs. lyophilization) and the incorporation of hydroxypropyl methylcellulose (HPMC) and mannitol/lecithin microparticles (MLMPs) on the physicochemical characteristics, structural properties, and in vitro diffusion behavior of HPβCD-based nasal powder formulations of Que. Thermal behavior and stability were analyzed using TGA, while morphology and particle distribution were assessed via Scanning Electron Microscopy. In vitro diffusion studies using Franz cells and regenerated cellulose membranes were conducted under simulated nasal conditions. Among all tested formulations, the spray-dried HPβCD/Que powder (F4) showed the highest permeation (0.11 ± 0.01 mg/cm2 at 120 min). The inclusion of HPMC improved thermal stability but reduced Que diffusion, likely due to increased viscosity and matrix formation. Blending with MLMPs enhanced powder flow and dose placement, although it modestly reduced diffusion efficiency. Overall, this study highlights the potential of HPβCD-based spray-dried powders for nasal Que delivery and demonstrates how HPMC and MLMPs can be strategically employed to tailor performance characteristics. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

24 pages, 6390 KiB  
Review
A Review on the Recent Advancements of Ni-Based Sulfides and Mixed Sulfides for Supercapacitors and Electrocatalysis (Oxygen Evolution Reaction)
by Ganesh Dhakal, Sumanta Sahoo, Krishna Prasad Sharma and Guang-Lin Zhao
Molecules 2025, 30(13), 2877; https://doi.org/10.3390/molecules30132877 - 7 Jul 2025
Viewed by 204
Abstract
Energy storage and conversion units have been considered the backbone of modern energy science and technology. In recent years, the Ni-based sulfides (NS) and mixed sulfides (NMS) have been significantly utilized as promising electrodes for various energy-related applications. This article summarizes the recent [...] Read more.
Energy storage and conversion units have been considered the backbone of modern energy science and technology. In recent years, the Ni-based sulfides (NS) and mixed sulfides (NMS) have been significantly utilized as promising electrodes for various energy-related applications. This article summarizes the recent progress of NS and NMS materials in the fields of energy storage (supercapacitors) and conversion (oxygen evolution reactions). The synthetic approaches have been thoroughly discussed. A brief overview of the electrochemical performance of these materials as the electrodes for energy storage and conversion is systematically represented in the article. For such applications, these materials are frequently combined with other advanced materials, such as metal oxides, metal sulfides, and carbonaceous materials. The article ends with the existing challenges and future research directions in these research fields. Full article
Show Figures

Figure 1

29 pages, 7438 KiB  
Article
Comparison of High-Efficiency MgO/Na2CO3 and MgO/K2CO3 as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil
by Xiangyang Li, Xunxiang Jia, Weiji Li, Shufan Jia, Siwei Zhang, Jiliang Song and Jiao Wang
Molecules 2025, 30(13), 2876; https://doi.org/10.3390/molecules30132876 - 7 Jul 2025
Viewed by 282
Abstract
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 [...] Read more.
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 catalysts were systematically compared using soybean oil as the raw material. By regulating the calcination temperature (500–700 °C), alcohol-to-oil ratio (3:1–24:1), and metal carbonate loading (10–50%), combined with N2 adsorption–desorption, CO2-TPD, XRD, SEM-EDS, and cycling experiments, the regulatory mechanisms of the ionic radius differences between sodium and potassium on the catalyst structure and performance were revealed. The results showed that MgO/Na2CO3-600 °C achieved a FAME yield of 97.5% under optimal conditions, which was 1.7% higher than MgO/K2CO3-600 °C (95.8%); this was attributed to its higher specific surface area (148.6 m2/g vs. 126.3 m2/g), homogeneous mesoporous structure, and strong basic site density. In addition, the cycle stability of MgO/K2CO3 was significantly lower, retaining only 65.2% of the yield after five cycles, while that of MgO/Na2CO3 was 88.2%. This stability difference stems from the disparity in their solubility in the reaction system. K2CO3 has a higher solubility in methanol (3.25 g/100 g at 60 °C compared to 1.15 g/100 g for Na2CO3), which is also reflected in the ion leaching rate (27.7% for K+ versus 18.9% for Na+). This study confirms that Na+ incorporation into the MgO lattice can optimize the distribution of active sites. Although K+ surface enrichment can enhance structural stability, the higher leaching rate leads to a rapid decline in catalyst activity, providing a theoretical basis for balancing catalyst activity and durability in sustainable biodiesel production. Full article
(This article belongs to the Special Issue Catalytic Green Reductions and Oxidations, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 1758 KiB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 394
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

27 pages, 7874 KiB  
Article
Electronic Structure of the Ground and Low-Lying States of MoLi
by Constantinos Demetriou and Demeter Tzeli
Molecules 2025, 30(13), 2874; https://doi.org/10.3390/molecules30132874 - 6 Jul 2025
Viewed by 189
Abstract
Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding [...] Read more.
Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding of the ground and 40 low-lying states of the MoLi molecule are explored, employing multireference methodologies, i.e., CASSCF and MRCISD(+Q) in conjunction with the aug-cc-pV5z(-PP) basis set. Bond distances, dissociation energies, dipole moments as well as common spectroscopic constants are given, while the potential energy curves are plotted. For the ground state, XΣ+6, it is found that Re = 2.708 Å, De = 24.1 kcal/mol, ωe = 316.8 cm1, ωexe = 2.11 cm1, and μ = 3.63 D. Overall, the calculated states present a variety of bonds, from weak van der Waals up to the formation of 2.5 bonds. The dissociation energies of the calculated states range from 2.3 kcal/mol (aΣ+8) to 34.7 (cΠ4), while the bond distances range from 2.513 Å to 3.354 Å. Finally, dipole moment values up to 3.72 D are calculated. In most states, a 2s2pz hybridization on Li and a 4dz25s5pz or 5s5pz hybridization on Mo are found. Moreover, it is observed that the excited Li(P2) atom forms the shortest bonds because its empty 2s0 orbital can easily accept electrons, resulting in a strong σ dative bond. Finally, the present work highlights the exceptional ability of lithium atoms to participate in a variety of bonding schemes, and it could provide the opening gate for further investigation of this species or associated material and complexes. Full article
Show Figures

Figure 1

30 pages, 5942 KiB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Viewed by 275
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

15 pages, 3934 KiB  
Article
Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism
by Jingxuan Han, Shaoning Li, Huihui Li, Yu Li, Jiaqiao Qin, Fuxiang Wang and Qinhe Pan
Molecules 2025, 30(13), 2872; https://doi.org/10.3390/molecules30132872 - 6 Jul 2025
Viewed by 233
Abstract
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic [...] Read more.
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic stimuli of UV irradiation and a chemical reductant (such as Na2SO3). UV irradiation induced single electron transfer from the chemical reductant to MV@β-zeolite, leading to enhanced absorption at 610 nm together with a daylight color change from pale yellow to blue. Meanwhile, the nanopores of β-zeolite inhibited aggregation-caused quenching of MV, enabling MV to emit cyan fluorescence at 500 nm. After the single electron transfer of the chemical reductant under UV irradiation, the cyan fluorescence of MV@β-zeolite was quenched. Additionally, MV@β-zeolite exhibited a short stimulus response time (250 s) and good color change reversibility. These findings in this work provide valuable insights into the design of multi-mode and synergistic stimuli-responsive viologen-based chromic materials, particularly for applications in secure high-throughput information storage, high-level anti-counterfeiting and multi-target multi-mode sensing. Full article
(This article belongs to the Special Issue Novel Organic-Inorganic Hybrid Porous Photochromic Materials)
Show Figures

Figure 1

14 pages, 4981 KiB  
Article
Integrating Graph Convolution and Attention Mechanism for Kinase Inhibition Prediction
by Hamza Zahid, Kil To Chong and Hilal Tayara
Molecules 2025, 30(13), 2871; https://doi.org/10.3390/molecules30132871 - 6 Jul 2025
Viewed by 319
Abstract
Kinase is an enzyme responsible for cell signaling and other complex processes. Mutations or changes in kinase can cause cancer and other diseases in humans, including leukemia, neuroblastomas, glioblastomas, and more. Considering these concerns, inhibiting overexpressed or dysregulated kinases through small drug molecules [...] Read more.
Kinase is an enzyme responsible for cell signaling and other complex processes. Mutations or changes in kinase can cause cancer and other diseases in humans, including leukemia, neuroblastomas, glioblastomas, and more. Considering these concerns, inhibiting overexpressed or dysregulated kinases through small drug molecules is very important. In the past, many machine learning and deep learning approaches have been used to inhibit unregulated kinase enzymes. In this work, we employ a Graph Neural Network (GNN) to predict the inhibition activities of kinases. A separate Graph Convolution Network (GCN) and combined Graph Convolution and Graph Attention Network (GCN_GAT) are developed and trained on two large datasets (Kinase Datasets 1 and 2) consisting of small drug molecules against the targeted kinase using 10-fold cross-validation. Furthermore, a wide range of molecules are used as independent datasets on which the performance of the models is evaluated. On both independent kinase datasets, our model combining GCN and GAT provides the best evaluation and outperforms previous models in terms of accuracy, Matthews Correlation Coefficient (MCC), sensitivity, specificity, and precision. On the independent Kinase Dataset 1, the values of accuracy, MCC, sensitivity, specificity, and precision are 0.96, 0.89, 0.90, 0.98, and 0.91, respectively. Similarly, the performance of our model combining GCN and GAT on the independent Kinase Dataset 2 is 0.97, 0.90, 0.91, 0.99, and 0.92 in terms of accuracy, MCC, sensitivity, specificity, and precision, respectively. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications, 3rd Edition)
Show Figures

Figure 1

20 pages, 3533 KiB  
Article
Creation of Crystalline Orientation of Tin(II) Oxide Polycrystals with High Photocatalytic Activity
by Svetlana A. Kuznetsova, Olga S. Khalipova and Yu-Wen Chen
Molecules 2025, 30(13), 2870; https://doi.org/10.3390/molecules30132870 - 6 Jul 2025
Viewed by 303
Abstract
Tin(II) oxide is a promising material for photocatalytic wastewater treatment. However, the established relationships between particle size, shape, and photocatalytic activity of SnO are contradictory, indicating the influence of other factors. In this work, the effect of the SnO crystallographic texture on its [...] Read more.
Tin(II) oxide is a promising material for photocatalytic wastewater treatment. However, the established relationships between particle size, shape, and photocatalytic activity of SnO are contradictory, indicating the influence of other factors. In this work, the effect of the SnO crystallographic texture on its band gap and photocatalytic activity was shown for the first time. The relationship between the methods (microwave and hydrothermal microwave) and synthesis conditions (time, pressure, and chemical composition of the suspension) of polycrystalline tin oxide(II) and the crystallographic texture was studied. The crystallographic texture was estimated by the Harris method using the repeatability factor and the Lotgering coefficient. The formation of crystallites oriented in the growth plane (00l) was facilitated by the carbonate medium of the suspension. In the ammonia medium, crystallites were preferably formed in the plane (h0l). Increasing the time and pressure leads to the recrystallization of SnO. The band gap energy of the SnO increases from 3.0 to 3.6 eV, and the rate of photodestruction of methyl orange decreases with the growth of crystallites in the (00l) plane from 17 to 40%. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

17 pages, 3602 KiB  
Article
Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate
by Yanni Wang, Bo Liu, Yanmei Dai, Zijuan Tao, Lan Tang and Zhimin Ou
Molecules 2025, 30(13), 2869; https://doi.org/10.3390/molecules30132869 - 6 Jul 2025
Viewed by 267
Abstract
In this study, CGMCC NO:28566, a strain that can efficiently convert Ethyl 4-chloroacetoacetate(COBE) to (R)-4-chloro-3-hydroxybutyrate((R)-CHBE), was screened by soil-sieving bacteria. In order to improve the transformation effect of the strain, the natural low-eutectic solvent (NADES), which can alter the [...] Read more.
In this study, CGMCC NO:28566, a strain that can efficiently convert Ethyl 4-chloroacetoacetate(COBE) to (R)-4-chloro-3-hydroxybutyrate((R)-CHBE), was screened by soil-sieving bacteria. In order to improve the transformation effect of the strain, the natural low-eutectic solvent (NADES), which can alter the cell permeability, was utilized for assisted catalysis, and a better catalytic effect was achieved. This study was carried out using a co-culture of strains with NADES and secondary addition of NADES on the basis of co-culture, and 10 NADESs were screened at the same time. The co-catalytic effect of 0.5% (w/v) choline chloride: urea (1:2) (ChCl:U (1:2)) was found to be the most significant, with a yield of (R)-CHBE reaching 89.1%, which was 58.2% higher than that of the control group, with a 99% ee value. Furthermore, the catalytic results demonstrated that the co-culture of the strain with NADES during fermentation yielded superior outcomes to the secondary addition of NADES during the reaction buffer. Furthermore, the catalytic effect of ChCl:U (1:2) was demonstrated to be superior to that of its individual components or single-component blends, due to its distinctive valence bonding advantage. The results indicate that the addition of 0.5% (w/v) ChCl:U (1:2) during the co-culture process has the effect of improving cell permeability to a certain extent, thereby increasing the contact between the substrate and the enzyme during the whole-cell catalytic reactions. Full article
(This article belongs to the Special Issue Current Development of Asymmetric Catalysis and Synthesis)
Show Figures

Graphical abstract

26 pages, 2597 KiB  
Review
Strategies Used for the Discovery of New Microbial Metabolites with Antibiotic Activity
by Pablo Dasí-Delgado, Cecilia Andreu and Marcel·lí del Olmo
Molecules 2025, 30(13), 2868; https://doi.org/10.3390/molecules30132868 - 6 Jul 2025
Viewed by 388
Abstract
The discovery of new microbial metabolites is essential to combat the alarming rise in antimicrobial resistance and to meet emerging medical needs. This work critically reviews current strategies for identifying antimicrobial compounds, emphasizing the potential of microorganisms as a rich source of bioactive [...] Read more.
The discovery of new microbial metabolites is essential to combat the alarming rise in antimicrobial resistance and to meet emerging medical needs. This work critically reviews current strategies for identifying antimicrobial compounds, emphasizing the potential of microorganisms as a rich source of bioactive secondary metabolites. This review explores innovative methods, such as investigating extreme environments where adverse conditions favor the emergence of unique metabolites; developing techniques, like the iChip, to cultivate previously uncultivable bacteria; using metagenomics to analyze complex samples that are difficult to isolate; and integrates artificial intelligence to accelerate genomic mining, structural prediction, and drug discovery optimization processes. The importance of overcoming current challenges, such as replicating findings, low research investment, and the lack of adapted collection technologies, is also emphasized. Additionally, this work analyzes the crucial role of bacterial resistance and the necessity of a holistic approach involving new technologies, sustained investment, and interdisciplinary collaboration. This work emphasizes not only the current state of metabolite discovery but also the challenges that must be addressed to ensure a continuous flow of new therapeutic molecules in the coming decades. Full article
Show Figures

Figure 1

14 pages, 4441 KiB  
Article
Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats
by Maria Luiza Fidelis da Silva, Erdi Can Aytar and Arquimedes Gasparotto Junior
Molecules 2025, 30(13), 2867; https://doi.org/10.3390/molecules30132867 - 6 Jul 2025
Viewed by 260
Abstract
We used molecular docking as a computational tool to predict the binding affinities and interactions of quercetin 3-O-malonylglucoside (Q3MG) with vascular target proteins. First, the proteins 1M9M (human endothelial nitric oxide synthase; eNOS) and 6ND0 (human large-conductance voltage- and calcium-activated K+ channels; [...] Read more.
We used molecular docking as a computational tool to predict the binding affinities and interactions of quercetin 3-O-malonylglucoside (Q3MG) with vascular target proteins. First, the proteins 1M9M (human endothelial nitric oxide synthase; eNOS) and 6ND0 (human large-conductance voltage- and calcium-activated K+ channels; BKCa) were downloaded from the Protein Data Bank and submitted to molecular docking studies, revealing Q3MG binding affinities for both proteins. The vascular effect of Q3MG was investigated in the perfused mesenteric vascular beds (MVBs) of spontaneously hypertensive rats. In preparations with functional endothelium, Q3MG dose-dependently reduced the perfusion pressure in MVBs. Removal of the endothelium or inhibition of the nitric oxide synthase enzyme by L-NAME blocked the vasodilation induced by Q3MG. Perfusion with a physiological solution containing high KCl or the use of a non-selective blocker of K+ channels, as well as perfusion with iberiotoxin, completely abolished the vasodilatory effects of Q3MG. The data obtained suggest that the vascular effects of Q3MG involve the activation of the NO/cGMP pathway followed by the opening of BKCa. Full article
Show Figures

Figure 1

16 pages, 1409 KiB  
Article
Development and Validation of a Stability-Indicating RP-HPLC Method for Edaravone Quantification
by Riuna O’Neill, Okhee Yoo, Philip Burcham, Minh Nguyen and Lee Yong Lim
Molecules 2025, 30(13), 2866; https://doi.org/10.3390/molecules30132866 - 5 Jul 2025
Viewed by 345
Abstract
Edaravone is used to treat motor neurone disease (MND) by slowing disease progression and prolonging survival time. Currently, it is available as an IV infusion (Radicava®, Jersey City, NJ, USA) and an oral liquid suspension (Radicava ORS®, Jersey City, [...] Read more.
Edaravone is used to treat motor neurone disease (MND) by slowing disease progression and prolonging survival time. Currently, it is available as an IV infusion (Radicava®, Jersey City, NJ, USA) and an oral liquid suspension (Radicava ORS®, Jersey City, NJ, USA). Development of novel edaravone formulations is still an active field of research that requires a validated stability-indicating assay capable of providing specific, precise, and accurate quantification of edaravone content. In this study, we developed and validated a stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method for edaravone quantification. Ten RP-HPLC methods based on the previously published literature were evaluated during method development. The optimal method employed a gradient method on an Agilent ZORBAX Extend-C18 column (150 × 4.6 mm, 5 µm) and produced a sharp and symmetrical drug peak. The method was further validated according to ICH Q2(R2) guidelines for specificity, linearity, sensitivity, accuracy, and precision. Successful separation of edaravone from void signals and degradant products was achieved. The method was precise and accurate at the concentration range of 6.8–68.6 µg/mL and was recommended to use without methyl hydroxybenzoate (MHB) as an internal standard. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Graphical abstract

21 pages, 2002 KiB  
Article
Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles?
by Aleksandra Sentkowska, Julia Folcik, Jakub Szmytke and Anna Grudniak
Molecules 2025, 30(13), 2865; https://doi.org/10.3390/molecules30132865 - 5 Jul 2025
Viewed by 362
Abstract
Selenium nanoparticles (SeNPs) show enormous potential in biomedical applications. In recent years, green methods of their synthesis have become very popular. In this work, the influence of green synthesis conditions on the properties of the obtained nanoparticles was investigated. For this purpose, extracts [...] Read more.
Selenium nanoparticles (SeNPs) show enormous potential in biomedical applications. In recent years, green methods of their synthesis have become very popular. In this work, the influence of green synthesis conditions on the properties of the obtained nanoparticles was investigated. For this purpose, extracts of eight medicinal herbs were used, and the reaction was carried out with changing ratios of reagents and variable temperature. All obtained SeNPs were characterized by high stability, which is confirmed by the negative values of their zeta potential ranging from −11.8 to −29.4 mV. The highest correlation coefficient was determined between the size of the obtained SeNPs and the ratio of reagents used for the synthesis (the correlation coefficient is 0.681 for the synthesis carried out at room temperature and 0.914 for elevated temperature). In each case, the smallest nanoparticles were obtained from the synthesis carried out in a 1:1 reagent ratio. It was assessed that sometimes it is difficult to determine correlations between the results collected for all syntheses; therefore, the same correlations determined for specific herbs were also analyzed. Full article
Show Figures

Graphical abstract

26 pages, 690 KiB  
Review
Modern Bioimaging Techniques for Elemental Tissue Analysis: Key Parameters, Challenges and Medical Impact
by Jan Sawicki, Marcin Feldo, Agnieszka Skalska-Kamińska and Ireneusz Sowa
Molecules 2025, 30(13), 2864; https://doi.org/10.3390/molecules30132864 - 5 Jul 2025
Viewed by 312
Abstract
(1) Background: Elemental imaging methods such as XRF, SEM/TEM-EDS, LIBS and LA-ICP-MS are widely used in clinical diagnostics. Based on the results obtained, it is possible to assess the safety of both standard and innovative therapies, diagnose diseases, detect pathogens or determine intracellular [...] Read more.
(1) Background: Elemental imaging methods such as XRF, SEM/TEM-EDS, LIBS and LA-ICP-MS are widely used in clinical diagnostics. Based on the results obtained, it is possible to assess the safety of both standard and innovative therapies, diagnose diseases, detect pathogens or determine intracellular processes. In addition to bioimaging, these techniques are used for semi-quantitative and quantitative analyses. Some of them also enable highly valuable speciation of analytes. However, the quality of information about elemental tissue composition depends on a number of different factors. Although the crucial parameters of quantitative analysis are the same for each technique, their impact varies depending on the bioimaging method. Due to the fact that imaging results are often crucial in clinical decision-making, it is important to clearly indicate and describe the parameters affecting the quality of results in each technique. Therefore, the aim of this review is to describe the influence of these crucial parameters on bioimaging results based on the methodology and results of studies published in the last ten years. (2) Methods: In order to collect relevant publications, the Scopus database was searched using the keywords “element AND imaging AND human tissue”. Next, studies were selected in which methodological aspects allowed relevant conclusions to be made regarding the quality of the results obtained. (3) Results: One of the most important parameters for all techniques is measurement selectivity resulting from the complexity of human tissue. Quantitative analyses using bioimaging techniques are difficult due to the lack of suitable calibration materials. For the same reason, it is challenging to assess the accuracy of the results obtained. Particular attention should be paid to the results obtained for trace elements. (4) Conclusions: The discussed bioimaging techniques are a powerful tool in the elemental analysis of human tissues. Nevertheless, in order to obtain reliable results, a number of factors influencing the measurements must be taken into account. Full article
Show Figures

Figure 1

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Viewed by 455
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

26 pages, 5505 KiB  
Article
Activated Carbon-Supported Pt Catalysts Intended for the Hydroprocessing of Lipid Feedstocks: Effects of Support Surface Composition and Impregnation Protocol
by Ruana D. Brandão, Antônio M. de Freitas Júnior, José J. Linares, Paulo A. Z. Suarez, Romulo C. Dutra, Jeremie Garnier, Myller S. Tonhá, Daniel Ballesteros-Plata, Enrique Rodríguez-Castellón and Marcos J. Prauchner
Molecules 2025, 30(13), 2862; https://doi.org/10.3390/molecules30132862 - 4 Jul 2025
Viewed by 234
Abstract
This work concerns the preparation of Pt/AC catalysts (Pt supported on activated carbon) and their application to the synthesis of hydrocarbon biofuels through the HEFA (hydroprocessing of esters and fatty acids) route. The key motivation for the work was that catalysts based on [...] Read more.
This work concerns the preparation of Pt/AC catalysts (Pt supported on activated carbon) and their application to the synthesis of hydrocarbon biofuels through the HEFA (hydroprocessing of esters and fatty acids) route. The key motivation for the work was that catalysts based on sulfided Mo supported on γ-Al2O3, traditionally employed in the hydroprocessing of petroleum derivatives, (i) are unstable in the HDO (hydrodeoxygenation) of biomass-derived feedstocks and (ii) can contaminate the resulting biofuels with sulfur. In this context, a systematic study on the effects of preparation conditions on the properties of the resulting Pt/AC catalysts and their performance in HEFA was carried out for the first time. Efficient catalysts were obtained, which led to the complete deoxygenation of lauric acid and coconut oil, yielding products composed primarily of n-alkanes. The highest HDO activity was verified for the catalyst prepared using as a support an AC previously subjected to thermal treatment up to 800 °C in a H2 atmosphere (which removed most of the surface acidic oxygenated groups), depositing Pt over the surface of this support via wet impregnation using a H2PtCl6 solution acidified with HCl. The obtained results showed the great potential of the Pt/AC catalysts for the production of hydrocarbon biofuels through the HEFA route. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

22 pages, 2066 KiB  
Article
Evaluation of Oil Displacement by Polysaccharide Fermentation Broth of Athelia rolfsii Under Extreme Reservoir Conditions
by Haowei Fu, Jianlong Xiu, Lixin Huang, Lina Yi, Yuandong Ma and Sicai Wang
Molecules 2025, 30(13), 2861; https://doi.org/10.3390/molecules30132861 - 4 Jul 2025
Viewed by 197
Abstract
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms [...] Read more.
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms in a simulated high-temperature and high-salinity oil reservoir environment. The polysaccharide was identified as scleroglucan through IR and NMR analysis. Its stability and rheological properties were comprehensively evaluated under extreme conditions, including temperatures up to 150 °C, pH levels ranging from 1 to 13, and salinities up to 22 × 104 mg/L. The results demonstrated that EPS maintained excellent viscosity and stability, particularly at 76.6 °C and 22 × 104 mg/L salinity, where its viscosity remained above 80% for 35 days. This highlights its significant viscoelasticity and stability in high-temperature and high-salinity oil reservoirs. Additionally, this study, for the first time, examined the rheological properties of the original fermentation broth of scleroglucan, specifically assessing its injectability and enhanced oil recovery (EOR) performance in a simulated Middle Eastern high-temperature, high-salinity, medium-low permeability reservoir environment. The findings revealed an effective EOR exceeding 15%, confirming the feasibility of using the original fermentation broth as a biopolymer for enhancing oil recovery in extreme reservoir conditions. Based on these experimental results, it is concluded that the original fermentation broth of Athelia rolfsii exhibits superior performance under high-temperature and high-salinity conditions in medium–low permeability reservoirs, offering a promising strategy for future biopolymer flooding in oil field development. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

13 pages, 2729 KiB  
Article
Natural Colorants for a Bio-Based Economy—Recovering a Lost Knowledge for Novel Applications of Chrozophora tinctoria Extracts as Paints Through a Multi-Analytical Approach
by Imogen Cleveland, Andrew Beeby, Márcia Vieira, Fernando Pina, Paula S. Branco, Paula Nabais and Maria J. Melo
Molecules 2025, 30(13), 2860; https://doi.org/10.3390/molecules30132860 - 4 Jul 2025
Viewed by 296
Abstract
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential [...] Read more.
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential of sustainable solutions in our field. As part of our research, we prepared three medieval temperas using gum arabic, parchment glue, and casein glue. These tempera were explicitly designed to protect the purples obtained from Chrozophora tinctoria extracts. A comprehensive multi-analytical approach guides our research on natural colorants. Central to this approach is the use of molecular fluorescence by microspectrofluorimetry, a key tool in our study. By analyzing the emission and excitation spectra in the visible range, we can identify specific formulations. This method is further supported by fingerprinting techniques, including Fourier Transform Infrared Spectroscopy (FTIR) and High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD). These are further complemented by Fiber Optics Reflectance Spectroscopy (FORS) and colorimetry. Building on our understanding of orcein purples, we have extended our research to purples derived from Chrozophora tinctoria extracts. Our findings reveal the unique properties of Chrozophora tinctoria, which can be accurately distinguished from orcein purples, highlighting the distinctiveness of each. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop