molecules-logo

Journal Browser

Journal Browser

Recent Advances in the Toxicology and Safety of Medicinal Plants and Natural Products

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 495

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
Interests: natural compounds; plant extracts; medicinal plants; lichens; biological activity; phytochemistry; phytochemical drug analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants have been used in traditional medicine for centuries. Their therapeutic properties have been used to treat a wide range of diseases, and the active compounds isolated from them have gradually become effective medicines and the starting point for synthesizing new therapeutic substances. While the benefits of natural products are undeniable and there has been a resurgence of interest in natural product therapies, it is important to be aware of the potential risks associated with their use. Plants and fungi produce many toxic metabolites, which, despite their therapeutic potential, may pose a threat to human health and life. This danger is related to, among others, the use of excessive doses, the occurrence of interactions with concomitant drugs, or the different types of toxicity exhibited by substances of natural origin. Conversely, in the treatment of aggressive diseases with limited therapeutic options (e.g., cancer), the toxic potential of natural products can be harnessed. Knowledge of the pharmacological (therapeutic and toxic) properties and ability of natural substances to modify the metabolism of various xenobiotics, as well as the development of research into the possibility of reducing the therapeutic toxic effects of compounds of natural origin, can significantly increase the safety of natural therapies and open up new perspectives in medicine.

Dr. Elżbieta Studzińska-Sroka
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • toxicity of natural compounds and plant extracts
  • safety of natural products
  • drug development
  • in silico modeling
  • in vitro study
  • in vivo study

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2717 KiB  
Article
An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity
by Gabriela Siedlarczyk, Paweł Paśko and Agnieszka Galanty
Molecules 2025, 30(14), 2964; https://doi.org/10.3390/molecules30142964 - 14 Jul 2025
Viewed by 212
Abstract
Chirality plays a key role in the effectiveness and toxicity of bioactive compounds. Usnic acid (UA), a lichen metabolite, exists as two enantiomers. Despite numerous studies on its biological properties, enantioselective aspects remain poorly recognized. This study assessed the cytotoxicity of UA enantiomers [...] Read more.
Chirality plays a key role in the effectiveness and toxicity of bioactive compounds. Usnic acid (UA), a lichen metabolite, exists as two enantiomers. Despite numerous studies on its biological properties, enantioselective aspects remain poorly recognized. This study assessed the cytotoxicity of UA enantiomers against colon, prostate, thyroid, brain, and breast cancer cell lines, as well as non-cancerous cells. Cell viability was determined by the MTT assay after 24, 48, and 72 h. Colon cancer HCT116 cells were the most sensitive (IC50 ~10 µg/mL, 72 h), with no enantiomeric dominance. In prostate cancer PC3 cells, (+)-UA was more effective. Moderate cytotoxic effect was noted for thyroid cancer cells; however, this was evaluated for the first time. MDA-MB-231 breast cancer cells were strongly affected (IC50 15.8 and 20.2 µg/mL for (+)- and (−)-UA, 72 h), as compared to MCF7 cells. Brain cancer cells were the least affected, as so were normal astrocytes. UA had no effect on normal colon epithelial cells but showed moderate toxicity in prostate, thyroid, and breast cells. To conclude, the overall cytotoxicity of (+)-UA was stronger than its (−)-enantiomer, while the latter compound was more toxic to normal cells. These findings highlight the advantage of (+)-UA, especially in chemopreventive strategies. Full article
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 1354 KiB  
Review
Flavonol Technology: From the Compounds’ Chemistry to Clinical Research
by Tomasz Przybylski, Joanna Czerniel, Jakub Dobrosielski and Maciej Stawny
Molecules 2025, 30(15), 3113; https://doi.org/10.3390/molecules30153113 - 25 Jul 2025
Abstract
Flavonols, representing a subclass of flavonoids, are an important group of polyphenols. Their activity is associated with a number of beneficial properties, including hepatoprotective, senolytic, neuroprotective, and anticancer properties. They are found abundantly in many fruits, vegetables, and plant products, but flavonols’ chemistry [...] Read more.
Flavonols, representing a subclass of flavonoids, are an important group of polyphenols. Their activity is associated with a number of beneficial properties, including hepatoprotective, senolytic, neuroprotective, and anticancer properties. They are found abundantly in many fruits, vegetables, and plant products, but flavonols’ chemistry and structural properties result in their low bioavailability in vivo. In recent years, more and more studies have emerged that aim to increase the therapeutic potential of compounds belonging to this group, including by developing innovative nanoformulations. The present work focuses on the various steps, such as chemical analysis of the compounds, preformulation studies using drug delivery systems, preclinical studies, and finally clinical trials. Each of these elements is important not only for the innovation and efficacy of the therapy but most importantly for the patient’s health. There are also a limited number of studies assessing the population concentration of flavonols in the blood; therefore, this review presents an up-to-date survey of the most recent developments, using the most important compounds from the flavonol group. Full article
Show Figures

Figure 1

Back to TopTop