electronics-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3513 KB  
Article
Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting
by Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu and Fan Yang
Electronics 2019, 8(8), 876; https://doi.org/10.3390/electronics8080876 - 7 Aug 2019
Cited by 300 | Viewed by 28744
Abstract
Multivariable time series prediction has been widely studied in power energy, aerology, meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns and are inefficient to capture long-term multivariate dependencies of data for desired forecasting accuracy. To address such concerns, various deep learning [...] Read more.
Multivariable time series prediction has been widely studied in power energy, aerology, meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns and are inefficient to capture long-term multivariate dependencies of data for desired forecasting accuracy. To address such concerns, various deep learning models based on Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve the prediction accuracy and minimize the multivariate time series data dependence for aperiodic data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel residual blocks in parallel with asymmetric structure based on deep convolution neural network is proposed. The results are compared with rich competitive algorithms of long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction accuracy, robust and generalization of our model. Full article
Show Figures

Figure 1

34 pages, 364 KB  
Review
Machine Learning Interpretability: A Survey on Methods and Metrics
by Diogo V. Carvalho, Eduardo M. Pereira and Jaime S. Cardoso
Electronics 2019, 8(8), 832; https://doi.org/10.3390/electronics8080832 - 26 Jul 2019
Cited by 1312 | Viewed by 71878
Abstract
Machine learning systems are becoming increasingly ubiquitous. These systems’s adoption has been expanding, accelerating the shift towards a more algorithmic society, meaning that algorithmically informed decisions have greater potential for significant social impact. However, most of these accurate decision support systems remain complex [...] Read more.
Machine learning systems are becoming increasingly ubiquitous. These systems’s adoption has been expanding, accelerating the shift towards a more algorithmic society, meaning that algorithmically informed decisions have greater potential for significant social impact. However, most of these accurate decision support systems remain complex black boxes, meaning their internal logic and inner workings are hidden to the user and even experts cannot fully understand the rationale behind their predictions. Moreover, new regulations and highly regulated domains have made the audit and verifiability of decisions mandatory, increasing the demand for the ability to question, understand, and trust machine learning systems, for which interpretability is indispensable. The research community has recognized this interpretability problem and focused on developing both interpretable models and explanation methods over the past few years. However, the emergence of these methods shows there is no consensus on how to assess the explanation quality. Which are the most suitable metrics to assess the quality of an explanation? The aim of this article is to provide a review of the current state of the research field on machine learning interpretability while focusing on the societal impact and on the developed methods and metrics. Furthermore, a complete literature review is presented in order to identify future directions of work on this field. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop