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Abstract: Classical direct torque control (DTC) is considered one of the simplest and fastest
control algorithms in motor drives. However, it produces high torque and flux ripples due to
the implementation of the three-level hysteresis torque regulator (HTR). Although, increasing the
level of HTR and utilizing multilevel inverters has a great contribution in torque and flux ripples
reduction, stator flux magnitude of induction motor (IM) droops at every switching sector transition,
particularly at low-speed operation. This problem occurs due to the utilization of a zero voltage
vector, where the domination of stator resistance is very high. A simple flux regulation strategy
(SFRS) is applied for low-speed operation for DTC of IM. The proposed DTC-SFRS modifies the
output status of the five-level HTR depending on the flux error, torque error, and stator flux position.
This method regulates the stator flux for both forward and reverse rotational directions of IM with
retaining the basic structure of classical DTC. By using the proposed algorithm, the stator flux is
regulated, hence pure sinusoidal current waveform is achieved, which results in lower total harmonics
distortion (THD). The effectiveness of the proposed DTC-SFRS is verified through simulation and
experimental results.

Keywords: direct torque control; flux-regulation; induction motor; low-speed; three-level
neutral-point-clamped inverter

1. Introduction

Approximately 60% of the total industrial applications utilize induction motor (IM) drives for its
simple mechanical construction, reliability, ruggedness, low-cost, and low maintenance requirements.
However, the nonlinear system of IM is complex due to instantaneous changes during its operation [1].
Therefore, the development of a variable speed drive with a robust control technique is compulsory
for improving the performance and efficiency of the IM drives [2]. Among these control techniques
are direct torque control (DTC), which is well known for its simplicity and quick dynamic response
compared to field orientated control (FOC) [3]. Despite its fast dynamic control and less sophisticated
control structure, there are some associated drawbacks of classical DTC; high torque and flux ripples,
variable switching frequency, and stator flux-droop at low-speed regions of induction motor (IM)
drives [4,5].

As reported in the literature, there has been some effort to improve the operation of classical DTC.
The first approach was introducing space vector modulation (SVM) to DTC [6–8]. This technique uses
the reference voltage vector; however, the appropriate reference voltage cannot be easily estimated.
In addition, for the proper regulation of torque and flux, additional control techniques are required [9–13].
Model predictive control (MPC) is considered as the second alternative control strategy that requires a
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predefined cost function to predict output states to obtain state variables and execute control object
optimization [14–21]. Another approach to improving DTC is by controlling the duty-ratio of applied
voltage vectors (DDTC) [22,23]. In DDTC, the duty-ratio of applied voltage vectors are adjusted to
reduce the ripples of torque and flux. The critical issue in implanting the DDTC is how to determine
the duty-ratio. Thus far, there are a variety of methods to obtain the duty-ratio and they differ in
the optimization aims and vector numbers. The specific methods include an analytical calculation
based on torque ripple minimization [24] or equalizing the torque with the reference value over one
cycle [25]. Although the torque ripple is reduced, these methods are usually complex depending on
the knowledge of machine parameters. In addition, the switching frequency is not fixed, and it has
poor performance for the low-speed operation of IM.

In addition to the merits of these sophisticated algorithms used to improve the performance of
classical DTC, torque and flux ripples can be minimized if multilevel inverters (MLIs) are employed
because the output voltage of MLIs is synthesized with more discrete levels compared to a two-level
inverter. Among MLIs topologies used in DTC drives, the three-level neutral-point clamped (NPC)
inverter is the most prominent. In DTC fed by a three-level NPC inverter, the selection of applied
voltage vectors is expanded, thus different speeds of stator flux linkage can be achieved to have a
predominant control of torque and flux [26–29].

Recently, to meet the requirements of most advanced industrial applications such as cranes,
tractions, and winches, researchers have focused on improving the low-speed operation of IM in
both forward and reverse directions, where the stator flux is unregulated due to the domination of
stator resistance and extensive utilization of zero voltage vector. In references [30,31], the authors
have replaced the classical HTR by an overlapping-carriers regulator. Lower torque and flux ripples
and constant switching frequency were achieved. Moreover, the stator flux of IM is regulated at the
low-speed region. However, the dynamic response is slow because of the proportional-integral (PI)
controller as compared to the classical DTC and it has some limitations when implementing on the
DSP control board.

This paper proposes a simple flux regulation strategy (SFRS) based DTC to improve the low-speed
operation of IM fed by a three-level NPC inverter. This method modifies the output status of the
conventional five-level HTR depending on flux error, torque error, and stator flux position. Based
on the torque error, the proposed DTC-SFRS detects the rotational direction of the IM. Moreover, the
position of the stator flux vector is checked by using a simple arrangement of space vector diagram of
the three-level NPC inverter. By using the proposed DTC-SFRS, the stator flux of IM is regulated while
retaining the basic structure of classical DTC. Furthermore, the pure sinusoidal current waveform
is achieved, which results in lower total harmonics distortion (THD). Simulation and experimental
results validate the effectiveness of the proposed DTC-SFRS.

2. Mathematical Model of IM

IM can be mathematically modelled as expressed [20]:

vs = Rsis +
dλs

dt
(1)

0 = Rrir − jωrλr +
dλr

dt
(2)

λs = Lsis + Lmir (3)

λr = Lrir + Lmis (4)

Te =
3
2

p.Im(λs · is) (5)
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where vs denotes the stator voltage vector, ψs and ψr represent the stator, and rotor flux vectors,
respectively. is and ir are the stator and rotor currents vectors. ωr is the rotor angular motor velocity
in rad/s. Ls, Lr, Lm, Rs, and Rr represent the stator inductor, rotor inductor, mutual inductor, stator
resistor, and rotor resistor, respectively. p represents the number of pole pairs, while Te denotes the
electromagnetic torque.

3. Three-Level Neutral-Point-Clamped Inverter for DTC of IM

Among multilevel inverters, a three-level neutral-point clamped (NPC) inverter is the most
commonly used topology in DTC drives. It contributes to torque and flux ripples reduction. Moreover,
the degree of freedom for selecting the voltage vectors is higher; therefore, the stator flux of IM can be
controlled for various speed operation. The basic structure of a three-level NPC inverter is illustrated
in Figure 1. It can be seen from the circuit topology that a three-level NPC consists of three legs and
four switches in each leg. The space vector diagram and switching states of three-level NPC inverter
are shown in Figure 2.
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Figure 1. Circuit topology of three-level neutral-point clamped (NPC) inverter.
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There are 19 distinct voltage vectors: Large (V1−V6), medium (V7−V12), small (V13−V18), and
zero (V0). These voltage vectors generate 27 switching states, which represent the connection of stator
to the DC power supply “−1,” “0,” and “1,” which denotes a connection to the negative DC rail, neutral
point, and positive DC rail, respectively. Simplicity, the space vector diagram will be divided into
6 sectors and each sector will have two subsectors “a” and “b”. This arrangement will reduce the
complexity of the three-level NPC inverter for DTC of IM drives.

4. Classical DTC of IM and Its Limitations at Low-Speed Regions

Figure 3 shows the complete structure of classical DTC for controlling the IM fed by a three-level
NPC inverter. The main idea of this topology is applying hysteresis torque and flux regulators for
controlling both stator fluxψs and electromagnetic torque Te. The designs of these hysteresis regulators
are shown in Figure 4. With the output of the hysteresis regulators, the inverter switching states can be
selected from a predefined switching table (see Table 1).

Table 1. Switching table for the direct torque controller (DTC) fed by a three-level NPC inverter.

ψs Status Te Status Sec 1a Sec 1b Sec 2a Sec 2b Sec 3a Sec 3b Sec 4a Sec 4b Sec 5a Sec 5b Sec 6a Sec 6b

+2 V8 V3 V9 V4 V10 V5 V11 V6 V12 V1 V7 V2
+1 V14 V15 V15 V16 V16 V17 V17 V18 V18 V13 V13 V14

1 0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0
−1 V17 V18 V18 V13 V13 V14 V14 V15 V15 V16 V16 V17
−2 V5 V11 V6 V12 V1 V7 V2 V8 V3 V9 V4 V10
+2 V7 V2 V8 V3 V9 V4 V10 V5 V11 V6 V12 V1
+1 V13 V14 V14 V15 V15 V16 V16 V17 V17 V18 V18 V13

0 0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0
−1 V18 V13 V13 V14 V14 V15 V15 V16 V16 V17 V17 V18
−2 V6 V12 V1 V7 V2 V8 V3 V9 V4 V10 V5 V11

The output rules for the five-level HTR are expressed as:

Te status =



+2 f or Te error ≥ ∆Te

+1 f or ∆Te /2 < Te error < ∆Te

+0 f or 0 < Te error < ∆Te /2
−0 f or − ∆Te /2 < Te error < 0
−1 f or − ∆Te < Te error < −∆Te /2
−2 f or Te error ≤ −∆Te

(6)

where Te status is the torque status, which can be either of the following states +2, +1, +0, −0, −1, −2.
The positive torque status indicates the IM is rotating in the forward direction, while the negative
status represents the reverse rotation of IM.

Similarly, the flux regulator used in this topology is shown in Figure 4b. It is shown that this
regulator is a two-level HFR, which has the following states either 1 or 0. The output rules for the
two-level HFR are expressed as:

ψs status =

{
1 f or ψs error ≥ +∆ψs/2
0 f or ψs error ≤ −∆ψs/2

(7)

It is worthy to note that all calculations are carried out in the stationary reference frame for
estimating the ψs and Te from the α-β components of stator current is and stator voltage vs as follow:∣∣∣ψs

∣∣∣ = √
ψ2sα +ψ2sβ (8)

Te =
3
2

p
(
ψsαisβ −ψsβisα

)
(9)
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where
ψsα = (vsα − isαRs) dt (10)

ψsβ = (vsβ − isβRs) dt (11)
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Figure 4. Hysteresis regulators: (a) Five-level hysteresis torque regulator (HTR); (b) two-level HFR.

Although the five-level HTR provides an excellent reduction of torque and flux ripples for DTC
of IM fed by a three-level NPC inverter, the |ψs| droops at some sectors depending on the rotational
direction of the IM low-speed, as shown in Figure 5. This drawback of the five-level HTR deteriorates
the overall performance of the corresponding response of the stator current resulting in high THD,
which is not desirable for some advanced industrial applications.

Figure 5a demonstrates the poor performance of DTC when IM is rotating in the forward direction.
It is evident that the |ψs| droops at every “a” subsector. For example, at subsector “2a”, the small
voltage vector v15 is applied to increase the Te, while the zero vector v0 is applied to reduce it. The |ψs|

droops at the beginning of this subsector because the correspondent applied vector is too weak to
regulate the ψs. Similarly, this problem is happening at every “b” subsector when the IM rotates in the
reverse direction (see Figure 5b). For instance, at subsector “6b”, the small voltage vector v17 fails to
regulate the ψs. This drop of the ψs affects the performance of the IM drives and results in high THD
of the is.
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 Figure 5. Sector flux-droop of the induction motor (IM) at low-speed: (a) Forward direction;
(b) reverse direction.

5. Low-Speed Performance Improvement

To mitigate the problem of the stator flux-droop mentioned in Section 4, previous techniques
reported in the literature [20,21] used constant-switching-frequency regulators instead of the classical
HTR. Although lower torque and flux ripples and constant switching frequency were achieved,
the dynamic response was slow because of the proportional-integral (PI) controller as compared to the
classical DTC, and it had some limitations when implementing on the DSP control board. The proposed
DTC-SFRS modified the output status of the five-level HTR depending on flux error, torque error, and
stator flux position. Figure 6 shows the flow-chart of the proposed DTC-SFRS. Unlike the previous
flux-regulation methods reported in the literature, the proposed strategy retains the basic control
structure of the classical DTC. The proposed DTC-SFRS modifies the output status of the five-level
HTR when the |ψs| droops by reading the flux error, torque error, and stator flux position. Based on
the torque error, the rotational direction of the IM is detected and then the effected subsector where
the |ψs| droops are selected. If the IM rotates in the forward direction and there is a droop of |ψs|, the
Te statues of v0 will be changed to a “−1”, which indicates that the reverse active voltage vectors will be
in charge of controlling the torque instead of v0. For example, to minimize the |ψs| droop at subsector
“2a”, the v0 will be replaced with the correspondent reverse active vector v18. By using this technique,
the ψs will be regulated within the HFR bands.

On the other hand, the proposed DTC-SFRS is also effective in improving the low-speed operation
of IM when it is rotating in the reverse direction where the torque error is negative. After detecting that
the IM is rotating in the reverse direction, the proposed DTC-SFRS check, which subsectors are affected
by the droop of |ψs|. Similarly, the Te statues of v0 will be changed to a “+1”, which indicates that the
forward active voltage vectors will be in charge of controlling the torque instead of v0. For example, to
minimize the |ψs| droop at subsector “6b”, the v0 will be replaced with the correspondent forward
active vector v14. This is going to keep the ψs regulated within the HFR bands.

Furthermore, the proposed DTC-SFRS keeps the simple operational principle of classical DTC
when the speed of the motor is high enough to control the ψs. By using the proposed DTC-SFRS, the
operation of the IM at the low-speed region will be improved, thus a lower THD of is is achieved.
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6. Simulation Results

To verify the effectiveness of the proposed DTC-SFRS, simulation using the PSIM tool was
carried out using real experimental settings, where sampling time was set to 70 µs. The parameters
of the IM motor are listed in Table 2. The band size of HTR was set to be 10% of the rated torque
(i.e., ∆Te/2 = 2 Nm), whereas the stator flux band was 0.0015 Wb. Figure 7 shows the simulation results
of the sectors, stator flux, stator flux α-β components, and stator current when the IM operates at
50 r/min in the forward direction with a light mechanical load of 4 Nm. It can be noticed that the
proposed DTC-SFRS can regulate the ψs, which resulted in pure sinusoidal waveforms of both stator
flux α-β components and stator current. Similarly, the proposed DTC-SFRS maintained its effectiveness,
even when the IM operates in the reverse direction at 50 r/min with the same torque load as shown
in Figure 8. Overall, the proposed DTC-SFRS reduced the THD of both stator flux α-β components
and stator current, which lead to the smoother and more stable operation of the IM particularly at
very low-speed.
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Figure 7. Sectors, stator flux, α-β components of stator flux and stator current responses of five-level
HTR at 50 r/min in the forward direction of IM: (a) Classical DTC; (b) proposed DTC-SFRS.
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Figure 8. Sectors, stator flux, α-β components of stator flux and stator current responses of five-level
HTR at 50 r/min in reverse direction of IM: (a) Classical DTC; (b) proposed DTC-SFRS.

7. Experimental Results

To validate the effectiveness of the proposed DTC-SFRS, the experimental setup shown in Figure 9
was used. It consisted of a TMS320F28335 DSP control board and a three-level NPC inverter equipped
with IGBTs. A 5.5 kW mechanical load was connected to the IM and it was controlled by a Yaskawa
inverter. To maintain the same operational conditions as the simulation, the sampling time was
set to 70 µs and the same parameters of the IM motor, which is listed in Table 2, were considered.
In this section, the results will show the problem associated with the classical DTC at low-speed and
how its poor performance was affecting the corresponding waveform of the stator current, which
resulted in high THD. The results will be divided into two subsections; steady-state and transient-state
operations. Each subsection will analyze and compare the classical DTC and proposed SFRS based
DTC for both forward and reverse operations of the IM fed by the three-level NPC inverter. In addition,
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a full set of analytical data was presented to show the robustness of the proposed SFRS based DTC
method in minimizing the stator flux-droop at low-speed. Moreover, the THD of the stator current
was significantly reduced.

7.1. Steady-State Operation

It was important to note that the experiments were carried for low-speed operation of IM, where
the stator flux magnitude significantly droops.

Table 2. Induction motor specifications.

Parameter Value

Nominal power 3.7 kW
Nominal torque 20.36 Nm
Nominal speed 1750 r/min

Nominal current 8.28 A
Reference flux 0.6 Wb

Number of pole-pairs 2
Rotor inductance 146.2 mH
Rotor resistance 1.225 Ω

Stator inductance 146.2 mH
Stator resistance 0.934 Ω

Mutual inductance 139.52 mH
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Figure 9. Experimental setup.

Figures 10 and 11 show the experimental results of stator flux, sectors, and stator current when the
IM operates at 50 r/min in both rotational directions with 4 Nm of load torque. It can be observed that
the proposed DTC-SFRS can keep the stator flux regulated regardless of the rotational direction of the
IM by replacing the zero voltage vectors with the reverse active voltage vector in the subsector, which
is affected by stator flux-droop. Moreover, the responses of stator flux α-β components are shown in
Figures 12 and 13 for both forward and reverse operations of the IM, respectively. It is evident that
the proposed DTC-SFRS can minimize the THD of the stator flux α-β components that result in pure
sinusoidal waveforms.

In addition, an investigation of the stator flux trajectory response has been done to verify the
problem at low-speed of IM at 50 and −50 r/min, as shown in Figures 14 and 15. It is shown that
the classical DTC has 6 subsectors where the magnitude of the stator flux droops. The proposed
DTC-SFRS managed to solve the problem unregulated stator flux at these particular subsectors owning
to the simple algorithm used in this topology, which resulted in a pure circular shape trajectory of the
stator flux.
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7.2. Transient-State Operation

Figures 16 and 17 show the results of stator flux, sectors, and stator current when the IM speed
stepped down from 150 r/min to at 50 r/min for the forward operation and from −150 r/min to −50 r/min
with a light load torque of 4 Nm. It can be observed that the problem of the stator flux-droop was
significant at very low-speed of the IM, where the effect of the stator resistance became high. By using
the proposed DTC-SFRS, the stator flux is regulated at all speed regions including the critical very
low-speed of the IM. Furthermore, an improvement has been achieved using the proposed DTC-SFRS
on the stator current waveform with less THD as compared to the classical DTC.
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8. Conclusions 

In this paper, a simple flux regulation strategy (SFRS) is proposed to improve the low-speed 
performance of DTC for IM drives fed by three-level NPC inverter. The proposed DTC-SFRS method 
shows excellent performance for both steady-state and transient-state operations of IM. In addition, 
the responses of stator current and flux have been improved by regulating the stator flux of the IM 
at very low-speed. The main advantage of the proposed method is its simple implementation while 
retaining the feature of the classical DTC. The effectiveness of the proposed method was 
demonstrated by the simulation and experimental results. 

Author Contributions: Conceptualization, methodology, and formal analysis, S.S.H. and I.M.A.; experimental 
validation, S.S.H.; writing—original draft preparation, S.S.H.; writing—review and editing the final manuscript, 
S.S.H., I.M.A., and K.-B.L.; resources and supervision, K.-B.L. 

Funding: This research was supported in part by the Korea Electric Power Corporation (KEPCO) under Grant 
R19XO01-20, and in part by the Railroad Technology Research Program (RTRP), funded by the Ministry of 
Trade, Industry, and Energy (MOTIE) under Grant 19RTRP-B146008-02. 

Acknowledgments: The authors would like to thank Power Electronics Laboratory colleagues of the Electrical 
and Computer Engineering Department, Ajou University, South Korea. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 17. Speed transient from 150 r/min to 50 r/min: stator flux, sectors and current responses of
five-level HTR in reverse direction of IM: (a) classical DTC; (b) proposed DTC-SFRS.

Finally, the analytical data of the stator flux error and stator current THD is presented in Figure 18.
It is shown that the proposed DTC-SFRS successfully manages to maintain the stator flux error within
the bands even at zero speed where the stator flux magnitude droops by 0.21 Wb. Moreover, the
proposed DTC-SFRS reduced the THD of stator current to less than 10% over various speed regions
including zero speed to have a robust control of the IM for advanced industrial applications.
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8. Conclusions 

In this paper, a simple flux regulation strategy (SFRS) is proposed to improve the low-speed 
performance of DTC for IM drives fed by three-level NPC inverter. The proposed DTC-SFRS method 
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8. Conclusions

In this paper, a simple flux regulation strategy (SFRS) is proposed to improve the low-speed
performance of DTC for IM drives fed by three-level NPC inverter. The proposed DTC-SFRS method
shows excellent performance for both steady-state and transient-state operations of IM. In addition,
the responses of stator current and flux have been improved by regulating the stator flux of the IM
at very low-speed. The main advantage of the proposed method is its simple implementation while
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