A Compact 3.3–3.5 GHz Filter Based on Modified Composite Right-/Left-Handed Resonator Units
Abstract
:1. Introduction
2. Filter Structure and Analysis
3. Filter Design and Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, L.; Yuan, N. A Compact Wideband SIW Bandpass Filter with Wide Stopband and High Selectivity. Electronics 2019, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Jia, D.; Feng, Q.; Xiang, Q.; Wu, K. Multilayer Substrate Integrated Waveguide (SIW) Filters with Higher-Order Mode Suppression. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 678–680. [Google Scholar] [CrossRef]
- Li, P.; Chu, H.; Zhao, D.; Chen, R.S. Compact Dual-Band Balanced SIW Bandpass Filter With Improved Common-Mode Suppression. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 347–349. [Google Scholar] [CrossRef]
- Lovato, R.; Gong, X. A Third-Order SIW Integrated Filter/Antenna Using Two Resonant Cavities. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 505–508. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, W.; Wu, W. Miniaturized Dual-Band SIW Filters Using E-Shaped Slotlines with Controllable Center Frequencies. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 3111–3313. [Google Scholar] [CrossRef]
- Saghati, A.P.; Entesari, K. Ultra-Miniature SIW Cavity Resonators and Filters. IEEE Trans. Microw. Theory Tech. 2015, 63, 4329–4340. [Google Scholar] [CrossRef]
- Sun, L.; Sun, B.; Yuan, J.P.; Tang, W.; Wu, H. Low Profile, Quasi-Omnidirectional, Substrate Integrated Waveguide (SIW) Multi-Horn Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 818–821. [Google Scholar] [CrossRef]
- Martinezros, A.J.; Gomeztornero, J.L.; Goussetis, G. Multifunctional Angular Bandpass Filter SIW Leaky-Wave Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 936–939. [Google Scholar] [CrossRef]
- Jin, H.; Luo, G.Q.; Wang, W.; Che, W.; Chin, K.S. Integration Design of Millimeter-Wave Filtering Patch Antenna Array with SIW Four-Way Anti-Phase Filtering Power Divider. IEEE Access 2019, 7, 49804–49808. [Google Scholar] [CrossRef]
- Hesari, S.S.; Bornemann, J. Design of a SIW Variable Phase Shifter for Beam Steering Antenna Systems. Electronics 2019, 8, 1013. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimpouri, M.; Nikmehr, S.; Pourziad, A. Broadband Compact SIW Phase Shifter Using Omega Particles. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 748–750. [Google Scholar] [CrossRef]
- Ghaffar, F.A.; Shamim, A. A Partially Magnetized Ferrite LTCC Based SIW Phase Shifter for Phased Array Applications. IEEE Trans. Magn. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Muneer, B.; Qi, Z.; Shanjia, X. A Broadband Tunable Multilayer Substrate Integrated Waveguide Phase Shifter. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 220–222. [Google Scholar] [CrossRef]
- Nafe, A.; Shamim, A. An Integrable SIW Phase Shifter in a Partially Magnetized Ferrite LTCC Package. IEEE Trans. Microw. Theory Tech. 2015, 63, 2264–2274. [Google Scholar] [CrossRef] [Green Version]
- Djerafi, T.; Hammou, D.; Wu, K.; Tatu, S.O. Ring-Shaped Substrate Integrated Waveguide Wilkinson Power Dividers/Combiners. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 1461–1469. [Google Scholar] [CrossRef]
- Khan, A.A.; Mandal, M.K. Miniaturized Substrate Integrated Waveguide (SIW) Power Dividers. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 1–3. [Google Scholar] [CrossRef]
- Danaeian, M.; Moznebi, A.R.; Afrooz, K.; Hakimi, H. Miniaturised equal/unequal SIW power divider with bandpass response loaded by CSRRs. Electron. Lett. 2016, 52, 1864–1866. [Google Scholar] [CrossRef]
- Huang, Y.M.; Jiang, W.; Jin, H.; Zhou, Y.; Leng, S.; Wang, G.; Wu, K. Substrate-Integrated Waveguide Power Combiner/Divider Incorporating Absorbing Material. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1–3. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, Y.; Huang, Y.M.; Ding, S.; Wu, K. Miniaturized Broadband Coupler Made of Slow-Wave Half-Mode Substrate Integrated Waveguide. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 132–134. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, G. Design of SIW-Based Multi-Aperture Couplers Using Ray Tracing Method. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 106–113. [Google Scholar] [CrossRef]
- Lian, J.W.; Ban, Y.L.; Zhu, J.Q.; Kang, K.; Nie, Z. Compact 2-D Scanning Multibeam Array Utilizing SIW Three-Way Couplers at 28 GHz. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1915–1919. [Google Scholar] [CrossRef]
- Hagag, M.F.; Zhang, R.; Peroulis, D. High-Performance Tunable Narrowband SIW Cavity-Based Quadrature Hybrid Coupler. IEEE Microw. Wirel. Compon. Lett. 2018, 29, 1–3. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, J.H. Zeroth Order Resonance Loop Antenna. IEEE Trans. Antennas Propag. 2007, 55, 994–997. [Google Scholar] [CrossRef]
- Mohan, M.P.; Alphones, A.; Karim, M.F. Triple Band Filter Based on Double Periodic CRLH Resonator. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 212–214. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Mahmoud, K.S. A compact SIW metamaterial coupled gap zeroth order bandpass filter with two transmission zeros. In Proceedings of the International Congress on Advanced Electromagnetic Materials in Microwaves & Optics, Chania, Greece, 19–22 September 2016. [Google Scholar]
- Daw, A.F.; Hussein, O.T.; Abdelhamid, H.S.; Abdalla, M.A. Ultra compact quad band resonator based on novel D-CRLH configuration. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017. [Google Scholar]
- Yang, T.; Chi, P.L.; Xu, R.; Lin, W. Folded Substrate Integrated Waveguide Based Composite Right/Left-Handed Transmission Line and Its Application to Partial -Plane Filters. IEEE Trans. Microw. Theory Tech. 2013, 61, 789–799. [Google Scholar] [CrossRef]
- Karim, M.F.; Ong, L.C.; Luo, B.; Chiam, T.M. A compact SIW bandpass filter based on modified CRLH. In Proceedings of the 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 4–7 December 2012. [Google Scholar]
Physical | Value (mm) | Physical Size | Value (mm) |
---|---|---|---|
W1 | 10 | L1 | 1.4 |
W2 | 1 | L2 | 5.8 |
W3 | 0.5 | L3 | 7.4 |
W4 | 1 | L4 | 5.1 |
W5 | 0.6 | L5 | 0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Hu, Y.; Zheng, H.; Zhu, W.; Gao, Y.; Zhang, X. A Compact 3.3–3.5 GHz Filter Based on Modified Composite Right-/Left-Handed Resonator Units. Electronics 2020, 9, 1. https://doi.org/10.3390/electronics9010001
Hu S, Hu Y, Zheng H, Zhu W, Gao Y, Zhang X. A Compact 3.3–3.5 GHz Filter Based on Modified Composite Right-/Left-Handed Resonator Units. Electronics. 2020; 9(1):1. https://doi.org/10.3390/electronics9010001
Chicago/Turabian StyleHu, Shanwen, Yunqing Hu, Haiyu Zheng, Weiguang Zhu, Yiting Gao, and Xiaodong Zhang. 2020. "A Compact 3.3–3.5 GHz Filter Based on Modified Composite Right-/Left-Handed Resonator Units" Electronics 9, no. 1: 1. https://doi.org/10.3390/electronics9010001
APA StyleHu, S., Hu, Y., Zheng, H., Zhu, W., Gao, Y., & Zhang, X. (2020). A Compact 3.3–3.5 GHz Filter Based on Modified Composite Right-/Left-Handed Resonator Units. Electronics, 9(1), 1. https://doi.org/10.3390/electronics9010001