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Abstract: The Deterministic and Synchronous Multichannel Extension (DSME) of the IEEE 802.15.4
standard was designed to fulfill the requirements of commercial and industrial applications.
DSME overcomes the IEEE 802.15.4 limitation on the maximum number of Guaranteed Time
Slots (GTS) in a superframe and it also exploits channel diversity to increase the communication
reliability. However, DSME suffers from scalability problems, as its multi-superframe structure does
not efficiently handle GTS in networks with a high number of nodes and periodic flows. This paper
proposes the enhanceD DSME (D-DSME), which consists of two extensions that improve the DSME
scalability and reliability exploiting a GTS within the multi-superframe to accommodate multiple
flows or multiple retransmissions of the same flow. The paper describes the proposed extensions and
the performance results of both OMNeT simulations and experiments with real devices implementing
the D-DSME.
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1. Introduction

Presently, a wide range of industrial and automation applications adopt Industrial Wireless
Sensor Networks (IWSNs) to benefit from the deployment flexibility and the support for a large
number of mobile nodes that these networks offer. In this context, the IEEE 802.15.4 standard [1] is
one of the most widely used technologies, as it supports different kinds of traffic through different
medium access strategies, such as TDMA, CSMA/CA and prioritized channel access (PCA) [2]. In 2012,
the IEEE 802.15.4e [3] amendment introduced three new Medium Access Control (MAC) protocols,
namely the Deterministic and Synchronous Multichannel Extension (DSME), the Time Slotted Channel
Hopping (TSCH) [4] and the Low Latency Deterministic Network (LLDN) [5]. Later, DSME and TSCH
were included in the IEEE 802.15.4-2015 standard.

DSME is a MAC protocol designed for critical application domains with stringent requirements,
such as, deterministic delay, high reliability, and adaptability to changes in the network traffic and
operating conditions. DSME uses frequency hopping to mitigate the effects of external interference [6].

As discussed in [7,8], DSME is particularly suitable for several industrial, commercial and
healthcare applications, such as factory automation, home automation, smart metering, smart buildings,
and patient monitoring. DSME can be successfully used in solar tower power plant industries [9],
in WSN applications such as outdoor monitoring (as those reported in [10,11]) and in other
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applications [12] in which the number of network nodes or the generated data flows change over
time [7] in response to an external event. For instance, the work in [13] discusses the use of DSME
in surveillance systems, such as temperature reading or low-resolution images and video, in which
devices send a small amount of data. In particular, in the addressed use cases, the bitrate of a video
stream increases upon movement detection and the sample time of a pollution monitoring system
decreases when the guard levels are exceeded.

DSME uses a tree topology made up of a root node (named the PAN-Coordinator), one or multiple
coordinators, and one or multiple end-nodes [1]. The end-nodes receive (transmit) data only from (to)
their own coordinators. The end nodes use beacons to synchronize with the network time.

The network time is divided into multiple beacon intervals, each one containing m = 2BO−MO

multi-superframes. Each multi-superframe is divided, in turn, into n = 2MO−SO superframes.
The parameters BO, MO and SO (named Beacon order, Multi-superframe order and Superframe order,
respectively) are configurable. Each superframe, as it is shown in Figure 1, includes the beacon slot and
two sections for data transmission, i.e., the Contention Access Period (CAP) and the Contention-Free
Period (CFP).

a) CAP reduction disabled

b) CAP reduction enabled

BO = 6 , SO = 3 , MO = 5

CAP CAP CAP CAP CAP CAP CAP

CAPCAP

CAP

Superframe

Superframe

Beacon interval

Beacon interval

Mul�-superframe Mul�-superframe

Mul�-superframe Mul�-superframe

CFPCFP CFP CFP CFP CFP CFP CFP
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Figure 1. DSME multi-superframe structure.

The CAP is used to transmit the aperiodic traffic. During the CAP, no scheduling of
source-destination node pairs is used, therefore each node can start the transmission according to
the CSMA/CA access mechanism. Conversely, the CFP is divided into multiple GTSs that are used
to transmit periodic traffic in a TDMA-like strategy. The duration of the CAP and of the CFP slots
is customizable.

DSME provides diverse additional options, such as the CAP reduction and the Group
Acknowledgement (ACK). The former enables CAP only in the first superframe of a multi-superframe,
thus providing the remaining superframes in the multi-superframe with a longer CFP, i.e., 15 GTSs
instead of 7. The latter option, instead, allows aggregating the ACK of multiple frames into a
single ACK frame, thus improving the energy efficiency. The Group ACK also allows specifying
a GTS for the retransmissions of the frames not correctly received and reduces the delay, as it
provides a retransmission opportunity within the same multi-superframe in which the original frame
was transmitted.

Motivation. In DSME, each GTS within the multi-superframe can be assigned to at most one flow.
If the flow period is longer than the multi-superframe period, bandwidth waste occurs, as some of
the GTSs reserved to the flow will not be used. Moreover, the rigid structure of the multi-superframe
impairs scalability [4], because in DSME the number of superframes can be set only to powers of 2
(i.e., 1, 2, 4, 16, and so on). As a result, the multi-superframe length exponentially grows, and, with the
CAP reduction enabled, this results in a low CAP frequency (i.e., one CAP every multi-superframe)
and, therefore, in high delays in the transmission of the aperiodic messages. A preliminary approach to
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cope with the DSME scalability problem is addressed in the work [14] which, however, provide neither
a detailed design of the approach nor an extensive performance evaluation. In addition, the work
in [14] does not address the DSME reliability.

Contributions. This work proposes the enhanceD-DSME (D-DSME) extensions, i.e., two novel
extensions that improve the DSME scalability and reliability. The first one, named Shareable D-DSME,
allows GTSs to be shared among multiple periodic flows when the flow period is longer than the
multi-superframe period. This improves scalability, as more flows can be scheduled without increasing
the multi-superframe size and, therefore, without increasing the average delays for the aperiodic
messages transmitted in the CAP, as the CAP frequency obtained using the D-DSME is higher than or
equal to the one in the standard DSME protocol.

The second extension, named Mirror D-DSME, allows using the same GTSs for both message
transmission and retransmissions. This feature improves reliability, as a message is retransmitted
multiple times.

Henceforward, we will use the D-DSME acronym to refer to both the extensions, i.e., the Shareable
and the Mirror DSME.

Organization. The paper is organized as follows. Section 2 deals with related work. Section 3
describes the Shareable D-DSME extension, while Section 4 presents the Mirror D-DSME extension.
Section 5 provides a comparative performance assessment of DSME and D-DSME. Section 6 presents
a proof-of-concept implementation of D-DSME that demonstrates the feasibility of the proposed
extensions. Finally, Section 7 gives conclusions and hints for future work.

2. Related Work

Several works addressed the features and performance of the IEEE 802.15.4 standard. For instance,
the works in [15,16] address the real-time capabilities of IEEE 802.15.4, while in [5,17] multichannel
approaches to improve the protocol scalability were proposed.

Recently, thanks to its ability to cope with timing and reliability requirements, the DSME protocol
is gaining ground over the plain IEEE 802.15.4 for general industrial and commercial applications.
Consequently, several researchers showed high interest in assessing the protocol and in devising
solutions to further improve its performance. As far as interference mitigation is concerned, a DSME
device in channel adaptation mode switches to another available channel if the received signal quality
is less than a threshold value [18,19]. The work in [19] considered a single interfering IEEE 802.11b
(WiFi) source and evaluated the error frame rate introduced in a DSME network, for different traffic
loads and power levels of the WiFi transmission. As the simulation results show, the frame error
rate cannot exceed 25% in DSME, since a WiFi channel can overlap with at most four (out of 16) of
the channels used in DSME. Hence, DSME can exploit the channels that are not affected by WiFi
transmissions to communicate without interference. Other approaches in the literature, such as [20],
propose a new superframe structure in order to mitigate the problems of WiFi and ZigBee interference.
As far as throughput and energy consumption are concerned, the assessment in [18] shows that the
DSME protocol with the CAP reduction enabled performs better than the plain IEEE 802.15.4 protocol.
The works in [21,22] introduce some enhancements for DSME to reduce both the energy consumption
of the end nodes during the CAP and the network discovery time.

In [23] the authors propose a novel DSME access scheme that divides the network nodes in
multiple subsets, each one associated with a CAP slot in the beacon interval. During each CAP
slot, only the nodes in the related subset perform channel contention. This way, the probability of
collision between transmitting nodes is reduced and a lower number or retransmissions are required.
In addition, an improved slot allocation scheme for CFP section is adopted. When a GTS transmission
fails, the next CAP slot within the multi-superframe is used for retransmission. The proposed access
scheme can reduce delay and power consumption. However, it is intended only for a star topology
(not for a mesh topology). The work in [24] addresses the integration of RPL (IPv6 Routing Protocol
for Low Power and Lossy Networks) and proposes Symphony for DSME, a dynamic GTS scheduling
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algorithm that integrates RPL over DSME to provide a QoS efficient schedule for GTS placement.
However, this approach implies that the network schedule is repeated periodically. Thus, every time a
cyclic-scheduling allocation problem needs to be solved. In addition, the devices must implement the
protocol stack proposed in [24].

A new DSME implementation, called openDSME, is presented in [25]. The authors also propose a
method for traffic-aware and decentralized slot scheduling in order to realize scalable IWSNs. It is
a versatile solution, as it does not require routing information and therefore it can be used with any
routing protocol. The works in [26,27] propose a scheduling algorithm, implemented using RPL
integration and OpenDSME, which changes dynamically the multi-superframe structure as a function
of the current number of network nodes, in order to reduce transmission delays.

The work in [28] proposes a DSME-based distributed scheduling algorithm for mobility support
that adaptively assigns GTSs based on the network traffic of each node, thus improving the network
reliability and timeliness.

Differently from D-DSME, the solutions proposed in [13,23–28] do not address any sharing
mechanism to improve the GTSs use, i.e., the ratio between the number of GTSs actually used and the
number of the assigned ones, when the flow period is larger than the multi-superframe one. Moreover,
they do not support unconfirmed retransmission of multiple replicas of the same message in order to
improve reliability. Recently, the growing interest in DSME has also fostered the development and
release of open-source implementations. Among them there are [9,25,29].

3. Shareable D-DSME Extension

In the DSME multi-superframe, each node is assigned one or multiple GTSs for the transmission
of messages belonging to one flow. In Figure 2 the multi-superframe contains two superframes
(TMSF = 2TSF). There are 15 periodic real-time flows, 8 of them 1. . . 8} with period
Pf [1...8] = 4TSF > TMSF and 7 of them {9 . . . 15} with period Pf [9...15] = 2TSF = TMSF. In the plain
DSME schedule, 15 GTSs are assigned for these flows within one multi-superframe. The slots assigned
to the flows {1 . . . 8} are not always used, as Pf [1...8] is larger than the multi-superframe duration TMSF.

Figure 2. Scheduling example using DSME and D-DSME.

The Shareable D-DSME extension introduces the Shareable GTS (shGTS), which can be shared
among multiple periodic flows, i.e., the ones with a period Pf > TMSF, transmitted by the same or
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different nodes. Thanks to the shGTS, Shareable D-DSME can schedule the same flows as DSME using a
lower number of GTSs. This features results in more free CFP slots that can be used either to enable the
CAP in each superframe (as shown in the example in Figure 2) or to accommodate new periodic flows.

In the D-DSME schedule shown in Figure 2, the shGTSs with index {9 . . . 12} are assigned to the
flows {1 . . . 4} in the MSF 1 and to the flows {5 . . . 8} in the MSF 2. This way, the flows 5-8 can be
transmitted in the same GTSs assigned to flows 1-4, but with an offset (i.e., a shift) of TMSF. Instead,
the GTSs {13 . . . 15} and {25 . . . 28} are assigned in every MSF to the flows {9 . . . 11} and {12 . . . 15},
respectively. No sharing is possible for these flows, as Pf [9...15] = TMSF.

The D-DSME does not restrict the applicability of DSME to centralized architectures, as it also
support mesh topologies. The two following subsections describe the DSME and the D-DSME allocation
procedures, respectively.

3.1. Plain DSME Allocation Procedure

The GTSs in the CFP are allocated using a distributed procedure [1], suitable for operating in a
mesh network. In order to support the operation, each node maintains two items in memory:

• the macDSMEACT table, which contains all the slots in the multi-superframe in which the node is
source or destination;

• the macDSMESAB mask, which contains all the slots in the multi-superframe that the node knows
to be busy.

When a node X needs to allocate a slot to transmit to a destination node Y, it sends to Y a
DSME_GTS_REQUEST message (hereinafter named Mreq) containing:

• the item macDSMESAB(X), i.e., the current macDSMESAB mask of node X;
• the identifier of the slot that node X requests to allocate.

The node Y performs the OR operation between its own current macDSMESAB(Y) mask and the
macDSMESAB(X) field in the received Mreq. If the bit corresponding to the required slot in the OR-ed
result is unset, there is no conflict (at least, in the knowledge of X and Y) and Y can allocate the slot to X.
In such a case, the destination node Y updates its local macDSMESAB(Y) mask and sends in broadcast
a DSME_GTS_RESPONSE message (hereinafter named Mresp) to all the other nodes, indicating the
address of the source node X and the id of the newly allocated slot.

When the node X receives Mresp from Y, updates its local macDSMESAB(X) mask and
macDSMEACT(X) table. Next, the node X sends a DSME_GTS_NOTIFY message (hereinafter named
Mnot) in broadcast to all the other nodes, indicating the address of Y and the id of the newly
allocated slot.

The Mresp and Mnot messages are sent broadcast. This way, all the neighbours of the nodes X and
Y are informed that a new slot was allocated, so they can mantain a consistent view of the busy slots.
When a node Z in the neighbourhood of X and Y receives Mresp or Mnot, it verifies that there is no
conflict on the assigned slot using its local macDSMESAB(Z) mask. If no conflict is detected, the mask is
updated. Otherwise, the node Z sends a message to the other nodes and starts a new procedure to
handle the conflict.

3.2. EnhanceD DSME Allocation Procedure

In a mesh network running D-DSME, each node sends the allocation request to its nearest coordinator,
which re-routes the message (through multi-hop transmissions) towards the PAN-Coordinator. Later,
the allocation response generated by the PAN-Coordinator is sent to one coordinator, which re-routes the
message (also, in a multi-hop way) towards the destination node. Only scheduling is centralized, as GTS
allocation is up to the PAN-Coordinator.

Table 1 summarizes the notation used in this subsection.
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Table 1. Summary of notation.

Symbol Definition

TMSF Multi-superframe duration

TSF Superframe duration

nSF Number of superframes a multi-superframe

Pi Period of the i-th flow

shGTSInterval Interval between two consecutive transmissions of a message belonging to a flow f,
expressed in number of multi-superframes.

shGTSO f f set Offset in terms of multi-superframes assigned to a flow

Fs Set of flows assigned to the shGTS s

nFs Number of flows that share the shGTS s

MSFId Multi-superframe id

SFId Index of a superframe in a beacon interval

The D-DSME allocation procedure is performed in four steps, described as follows:
Step 1. When a node needs to allocate a GTS for a flow f , it sends a request to the PAN-Coordinator

indicating the flow period. For each shGTS the PAN-Coordinator checks if, in the case the new flow is
assigned the s-th shGTS, the slot use (U(s)) is lower than or equal to 1, i.e.,

U(s) = TMSF ∑
i∈Fs

1
Pi
≤ 1 (1)

where, Fs are the flows assigned to the shGTS s (including the new flow f ), Pi is the period of the i-th
flow and TMSF is the multi-superframe duration. The slot use indicates the ratio of used GTS during
the time. For instance, if a flow has period 10s and the multi-superframe duration is 2s, only one GTS
out of five will be used for transmitting that flow.

Step 2. If condition (1) is met, the PAN-Coordinator tests if an offset (in terms of the number
of multi-superframes), for each flow that shares the shGTS s, can be found so as to avoid mutual
interference. Hence, it checks if the greatest common divisor (GCD) of the flow periods that share the
shGTS s is greater than or equal to the number of flows that share the shGTS s (nFs ) multiplied by the
multi-superframe duration (TMSF), i.e.,

GCD(Pi) ≥ nFs × TMSF, ∀i ∈ Fs (2)

If condition 2 holds, then the shGTS s can be shared among all the flows belonging to Fs and
consecutive offsets starting from 0 can be assigned to these flows. The PAN-Coordinator assigns to the
flow f the next consecutive offset shGTSOffset, calculated as shGTSOffset = nFs − 1. If no shGTS meets
both the conditions (1) and (2), either the flow will be assigned an unassigned GTS, if any is found,
or the allocation request will be rejected.

Step 3. Once a shGTS is found for the new flow f and the offset shGTSOffset is assigned,
the PAN-Coordinator determines the shared GTS Interval shGTSInterval, i.e., the interval between
two consecutive transmissions of a message belonging to the flow f, expressed in number of
multi-superframes. For example, in Figure 2, the offset shGTSOffset of the flow 5 is equal to 1 (i.e., one
multi-superframe) and its shGTSInterval is equal to 2 (i.e., the flow 5 can be transmitted in its GTS
every two multi-superframes). The shGTSInterval is calculated as in the following formula:

shGTSInterval =

⌊
Pf

TMSF

⌋
(3)
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Step 4. The PAN-Coordinator sends the GTS allocation response to the node indicating the
FlowIdentifier f , the shGTSId (i.e., slot id and superframe id of the assigned shGTS within the
multi-superframe), the assigned shGTSOffset and the shGTSInterval. Once the response is received,
if the allocation was successful, the node requesting the GTS updates its own macDSMESAB mask
and its macDSMEACT table, which was modified (compared with the one used in DSME) in order to
contain these new data fields. The new GTS assignment is communicated through the beacon to all the
other nodes in the network that are compliant with D-DSME. Finally, the node sends a notification
message Mnot broadcast to all the other nodes, indicating the newly allocated GTSs, in order to mantain
compatibility with the nodes compliant with the standard DSME protocol. Mnot is sent only if the GTS
is allocated to one flow for the first time, while no notification is needed when it is shared multiple
times among several flows. This choice is to prevent the nodes that are not compliant with D-DSME
from detecting multiple allocation events.

The Shareable D-DSME allocation procedure is up to the PAN-Coordinator. The nodes requesting
shGTS allocation have to wait for a response from the PAN-Coordinator, otherwise they cannot use any
shGTS. The node that requests a shGTS, after a timeout with no response from the PAN-Coordinator,
will retransmit the allocation request. During the allocation phase messages can be lost, i.e., the
allocation request or the allocation response can be lost. In the first case, as the node requesting the
shGTS allocation does not receive any response, it will retransmit the allocation request. Even in
the case that the allocation response is lost, the node requesting the shGTS allocation will retransmit
the allocation request. In this case the PAN-Coordinator replies to the node with the same allocation
response transmitted following the first request. The process will repeat until either a reply (positive
or negative) is received by the node or a timeout elapses. Hence, termination is always guaranteed.
Conversely, if the PAN-Coordinator replies to a shGTS request and the node is not able to receive
the reply or to transmit other requests (e.g., due to a temporary channel unavailability), the shGTS
allocation may result in an inconsistent state. In fact, the shGTS is allocated, but the node cannot use it.
However, the inconsistent state has a limited duration, as the node that is not able to communicate
will request again a shGTS for the same flow after a given sleep interval and the PAN-Coordinator will
reply with the same shGTS previously assigned.

Transmission on shGTSs. The data in the macDSMEACT table are used by each node to know
when it can transmit in the assigned shGTS. First, the node determines the current multi-superframe
id (MSFId). This is done using the index (SFId) of the superframe that is transmitted by the DSME
coordinator in the beacon (Section 7.4.2.5 in [1]). The SFId specifies the index of the current superframe
in a beacon interval. If each multi-superframe contains nSF superframes, MSFId = (SFId mod nSF).

A node that wants to know if the shGTS with id equal to shGTSId within the current
multi-superframe is assigned to a flow f checks if the following condition is met.

(MSFId− shGTSOffset) mod shGTSInterval = 0 (4)

If condition 4 is met, then the shGTS with id equal to shGTSId is used to transmit the frames of the
flow f .

4. Mirror D-DSME Extension

The standard DSME protocol provides two mechanisms that can be used for acknowledgement
and retransmissions. In the first mechanism a message is acknowledged in the same GTS, right after
the message transmission. The second mechanism is based on the Group ACK option. When the
Group ACK option is enabled, two GTSs, namely GACK1 and GACK2, are used to send ACKs.
To take advantage of the Group ACK, it is important to assign two GTSs per each flow within
a multi-superframe, i.e., one GTS before GACK1 and another GTS between GACK1 and GACK2.
This way, the first GTS is used for the frame transmission. If the transmitted frame is not correctly
received, i.e., the ACK of that frame is not received in the GACK1 slot, the second allocated GTS,
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namely GTSR (i.e., GTS for Retransmission), will be used for the frame retransmission. The outcome
of the retransmission will be checked during the GACK2 slot. Consequently, the Group ACK option
supports retransmissions using GTSs dedicated to this scope, but this increases the number of GTSs
required by a flow within the multi-superframe.

If no Ack is received, the source node must retransmit the message. Retransmission is performed
using another dedicated GTS, but this increases the number of GTSs required by a flow within the
multi-superframe.

In industrial applications, the messages are typically generated with different periods, so it may
happen than for some flow Pf > TMSF and, therefore, some of the GTSs assigned to the flow within
the multi-superframe cannot be used for transmission.

The Mirror D-DSME extension introduces miGTS (Mirror GTS), which exploits these unused GTSs
for multiple retransmissions of the same message. For instance, in the scenario shown in Figure 3 each
multi-superframe is made up of one superframe (i.e., TMSF = TSF). In the CFP, 7 flows [1 . . . 7] are
transmitted, with period Pf = 4TSF = 4TMSF. As Pf > TMSF, the GTS assigned to a flow f is used
for the transmission only one multi-superframe over four. As a consequence, the GTS can be labelled
as miGTS. This way, the three unused occurrences of the GTS are used for message retransmission.
The miGTS allocation procedure performed by the source node is the same as the standard DSME-GTS
allocation one described in Section 3.1.

Figure 3. Example using miGTS.

The messages transmitted through miGTSs are unconfirmed. No Ack reception is supported, so the
source node transmits all the configured replicas of the message, thus leaving to the destination node
the task of discarding any received duplicate. This means that miGTS can reduce the packet loss
rate (thus improving reliability), but it cannot guarantee that no message is lost. However, this is an
acceptable limitation in industrial applications, as the newest value acquired from a sensor is typically
more important than a previous value delivered late.

In typical Industrial WSN applications the network nodes are mains-powered devices; however,
in recent industrial applications battery-powered nodes can also be found. In this case, using the
Mirror D-DSME extension, multiple retransmissions entail an increase in the energy consumption
of the transmitting nodes that is directly proportional to the number of retransmissions allowed for
each node, i.e., deltaEnergy = MsgTxEnergy x NumOfRetransmissions. Conversely, it is possible to
configure the receiving nodes so that they switch to the sleep mode following the correct reception
of a message. Hence, a trade-off between the number of allowed retransmissions (i.e., the reliability)
and the energy consumption has to be found. As both these parameters are strictly related to the
application requirements and the adopted hardware [30], they have to be tuned during the network
design phase.

The miGTSs increase the reliability without requiring the allocation of additional GTSs,
thus miGTSs are useful in networks with nodes that require reliable transmissions. In fact, the adoption
of the miGTS allows working with several GTSs lower than the one that would be needed using the
standard retransmission mechanisms.

5. Performance Assessment

In particular, this section assesses three performance indexes, i.e., scalability, queuing delays
for the aperiodic messages transmitted in the CAP, and packet loss ratio. In Section 5.1 we assess
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the scalability comparing the number of GTSs required to accommodate all the periodic flows in the
case of Shareable DSME-GTS extension enabled and in the case of plain DSME, respectively. For this
reason, a network with a star topology is chosen, in which each node generates two periodic flows,
with periods multiple of the multi-superframe duration. The simulation is performed increasing the
number of nodes. As the assessed metrics, i.e., the number of GTSs required to accommodate all
flows, does not depend on the DSME parameters, in this scenario no settings of BO, SO, etc. are
needed. Conversely, in the second scenario, discussed in Section 5.2, the average queueing time for the
aperiodic messages transmitted in the CAP is assessed. The aim of this assessment is to give some
quantitative insights on the improvement in terms of average delays for aperiodic messages when the
Shareable DSME-GTS extension is adopted. In this scenario we consider a fixed number of nodes that
transmit aperiodic messages and in each simulation run we vary the number of nodes that transmit
periodic messages in the GTS. This way the multi-superframe duration varies and, as a consequence,
the CAP frequency also varies. Finally, in the third scenario, presented in Section 5.3, the packet loss
ratio results of the Mirror D-DSME and the plain DSME protocol, under harsh channel conditions,
are compared varying the distance between the end-nodes and the PAN-Coordinator.

5.1. Scalability Assessment

We consider that CAP reduction is enabled as this option is very suitable for networks with
stringent requirements in terms of delay and reliability, as discussed in [8]. As a consequence,
the number of superframes (nSF) within the multi-superframe that is required to support a set of flows
(i.e., it contains at least nGTS GTSs) is calculated as:

nSF =


1, if nGTS ≤ 7

M
(

1 +
⌈

nGTS−7
15

⌉)
, otherwise

(5)

TheM(x) function is used in Equation (5) because nSF, according to [1], must be a power of 2
(i.e., 2MO−SO). Here we recall that the functionM(x) = 2dlog2(x)e returns the minimum power of 2
that is greater than x (for instanceM(5) = 8).

The number of GTSs required (nGTS_req) within the multi-superframe to schedule all the network
flows without reaching the network saturation must be calculated in order to assess the scalability.

With the CAP reduction enabled, the number of available GTSs (nGTS_avail) as a function of the
number of superframes (nSF) within the multi-superframe is calculated as

nGTS_avail = 7 + [(nSF − 1)× 15] (6)

The network saturation point represents the maximum number of nodes for which nGTS_req is less
than or equal to nGTS_avail , under the assumption that all the nodes generate the same flows.

Algorithm 1 (depicted below) calculates the minimum number of superframes (nSF) that contains
the GTSs (nGTS_req) required to schedule all the flows. When the algorithm starts, a variable named i,
i.e., the value of MO− SO, which determines a “test” number of superframe within a multi-superframe
(nSF_test = 2MO−SO), is initialized to 0. Moreover, the number of required GTSs is inizialized to 0.

Depending on the flow period, the allocation procedure assigns one or multiple GTSs (shared
or not shared) to each flow. Multiple GTSs will be allocated if the flow period is shorter than the
multi-superframe length, otherwise only one GTS will be allocated. Firstly, the boolean variable shared
is initialized to f alse. After that, for each GTS s the algorithm tests if Equations (1) and (2) are met.
In such a case, the GTS s is assigned to the flow f and the flow f is inserted in Fs, i.e., in the set of flows
that were assigned the GTS s. Furthermore, the variable shared is set to true. If no GTS can be assigned
to the flow f , new GTSs (one or multiple) are required. Consequently, the number of required GTSs
is updated.

When the allocation procedure is completed, the algorithm uses the Equation (5) in order to
calculate the number of superframe (nSF_req) required to host nGTS_req GTSs. If nSF_req > nSF_test,
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the duration of the current “test” multi-superframe is not sufficient to schedule the flows. In such a
case, the algorithm increases the nSF_test value by increasing the value of i. Next, the allocation steps are
repeated iteratively for each flow. Otherwise, if nSF_req ≤ nSF_test, the algorithm ends. The final value
of nSF_test provides the MSF duration. The number of “free” GTSs can be calculated as a difference
between the nGTS_avail (according to Equation (6)) and the nGTS_req.

Algorithm 1: Algorithm used to assess the network scalability.

1: for i=0; i<15; i++ do
2: nSF_test ← 2i

3: nGTS_req ← 0
4: for all flow f do
5: shared← f alse
6: for all GTS s do
7: if Equation 1 and (2) are met then
8: insert f to Fs
9: shared← true

10: break
11: end if
12: end for
13: if not shared then
14: nGTS_req ← nGTS_req + ceil(TMSF/Pf )
15: end if
16: end for
17: nSF_req ← nSF as in Equation (5) with nGTS = nGTS_req
18: if nSF_req < nSF_test then
19: return nSF_test
20: end if
21: end for

To assess the scalability, a network with star topology was simulated using Algorithm 1
implemented from scratch in Python. Each node periodically transmits to the PAN-Coordinator two
kinds of real-time messages ( f1 and f2) with periods equal to 4TSF and 8TSF, respectively. In this
assessment no retransmissions and errors are considered, as the aim is to compare the scalability of the
standard DSME protocol with and without the D-DSME extensions. The scalability is assessed
increasing the number of nodes in the network. The number of GTSs (hence, the number of
superframes) within the multi-superframe that are required to schedule all network flows without
reaching the network saturation was calculated according to Algorithm 1. The analytical results are
shown in Figure 4.

The D-DSME scenario requires a lower number of slots (dark lines in Figure 4) compared with the
standard DSME (light lines in Figure 4). This entails a higher scalability even in terms of the number of
flows that can be supported. In fact, in the case of 25 nodes (in Figure 4), the number of available GTSs
with 4 superframe is equal to 52. Using the standard DSME protocol 50 out of 52 GTSs are required.
Conversely, using the D-DSME only 38 out of 52 GTSs are required, thus there are 14 GTSs that can be
assigned to additional flows (12 GTSs more than the standard DSME protocol).
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Figure 4. Superframes required to accommodate all flows.

In both scenarios, when there are more than 39 nodes for the DSME and 40 nodes for the D-DSME,
the network reaches saturation (i.e., the number of required GTSs exceeds the number of available
GTSs, as it was explained at the beginning of this subsection. Hence, in the worst-case, i.e., before
reaching the network saturation, the D-DSME scalability performance are the same than the standard
DSME ones.

The results show that when the multi-superframe period is lower than the period of the flows f2,
in this scenario, the D-DSME provides a higher scalability than the standard DSME protocol. In this
scenario, with nSF = 4, the improvement of the number of nodes that can be supported is 30% higher
than in the standard DSME protocol.

D-DSME, compared to the standard DSME protocol, reduces the number of required GTSs,
with the consequence of a higher number of available GTSs, thus providing two advantages. First,
with a fixed number of superframes within the multi-superframe, the D-DSME provides more room
for new periodic flows. Second, as the number of superframes within the multi-superframe can be
reduced to provide a shorter multi-superframe, the CAP frequency increases and the average delays
for aperiodic non real-time messages are shortened.

5.2. Queuing Delay Assessment

To measure the queuing delay (D) of the aperiodic messages transmitted in the CAP, i.e., the
time spent by aperiodic messages in the queue while waiting for transmission, we run simulations
using the OMNeT++ framework. The IEEE 802.15.4 physical layer model adopted is the one provided
by the INETMANET libraries, while the MAC layer model was developed from scratch. D was
measured both with and without enabling the D-DSME extensions. The simulations were run with the
parameters that are listed in Table 2.

The simulated network includes: 25 aperiodic nodes (ANs) that transmit aperiodic messages of
59B during the CAP; nnd ∈ [1, . . . , 34] real-times nodes (RTNs) that transmit two kinds of real-time
messages ( f1 and f2), respectively, during the CFP; one PAN-Coordinator that receives the messages
transmitted by the end nodes. The aperiodic messages are generated by the ANs with a random period,
following an exponential distribution with mean 31.2 ms. The periodic messages belonging to f1 and
f2 flows are generated by the RTNs with periods equal to Pf1 = 4TSF and Pf2 = 8TSF, respectively.
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Table 2. Simulation parameters.

Parameter Value

Superframe Duration (TSF) 61.44 ms
GroupAck Disabled
CAP reduction Enabled
macMinBE 5
maxMaxBE 5
macMaxCSMABackoffs 4
macMaxQueueLength 590 bytes

As the number nnd of RTNs varies for each simulation, nSF changes according to Equation (5) (and
so, the MSF duration and the CAP frequency). Therefore, the queuing delay D depends on nnd and
varies for each simulation. The measured average D values are shown in Table 3. Every simulation
was repeated multiple times, so as to obtain confidence intervals calculated at 95% in the order of tens
of milliseconds.

Table 3. Simulation results.

Min..Max Supported RTNs (nnd)
nSF

Avg. Queueing

Std. DSME D-DSME Delay D
1. . . 3 1. . . 4 1 0.32 s± 0.005 s

4. . . 11 5. . . 14 2 0.79 s± 0.01 s
12. . . 26 15. . . 34 4 1.60 s± 0.02 s

Table 3 shows that in some cases the queueing delay D can be lower for D-DSME than for DSME.
For instance, using a network with nnd = 13 RTNs, the required SFs are nSF = 4 for DSME and
only nSF = 2 for D-DSME. In such a case, D-DSME outperforms DSME (the measured D values are
respectively 0.79s and 1.60s). This happens because D-DSME allows using a shorter multi-superframe,
thus increasing the CAP frequency.

5.3. Packet Loss Ratio Assessment

To evaluate the improvements introduced by the Mirror D-DSME extension a comparative
assessment was performed using the OMNeT++ framework, with the simulation parameters shown in
Table 2 (i.e., the same ones used in Section 5.2).

The assessed metric is the Packet Loss Ratio (PLR), defined as the percentage of lost messages
over the number of messages generated at the application level, i.e.,

PLR =

(
1− ReceivedMessages

GenMessages

)
× 100 (7)

where ReceivedMessages is the number of messages received at the sink application layer and
GenMessages is the number of messages generated at the source application layer.

The simulated scenario includes one PAN-Coordinator that receives real-time messages from
7 end nodes. Each End node generates a flow f made up of 59-byte messages with a period Pf = 4TSF.

To assess the reliability under different channel conditions, the Log-normal shadowing channel
model with α = 3.44 and σ = 7 was adopted, as these values provide a very harsh channel environment,
similar to a realistic industrial context [31]. Results were obtained increasing the distance of the nodes
from the PAN-Coordinator that acts as the sink.

Two configurations (one for DSME and one for D-DSME) were considered. In the DSME
configuration, the messages are confirmed and the Group ACK is enabled, while in the D-DSME
configuration the messages are unconfirmed and the Group ACK is disabled. The simulation
parameters (excluding the above discussed Group ACK option) are shown in Table 2. In D-DSME



Electronics 2020, 9, 126 13 of 16

each multi-superframe contains only one superframe, therefore TSF = TMSF. As the flow period is
Pf = 4TSF > TMSF, the miGTS in the first multi-superframe can be used to transmit the message.
The miGTSs in the following three multi-superframes are used for retransmissions, and so on.

In the D-DSME configuration, the same (unconfirmed) message can be transmitted (or retransmitted)
four times as a maximum. Conversely, with the standard DSME approach the (confirmed) message is
transmitted twice as a maximum.

Figure 5 shows the measured PLR values. They are significantly lower when the Mirror D-DSME
extension is adopted. This is a reasonable result, as in the D-DSME scenario an end node has more
chances of transmitting the same message than with the standard DSME protocol.

Figure 5. Packet Loss Ratio results.

In particular, the lower the GTS use, the higher are the advantages in terms of PLR that the Mirror
D-DSME extension provides. Clearly, if no flow has period Pf > TMSF there will be no unused slots.
In such a case, the Mirror D-DSME extension does not improve the standard DSME protocol.

6. Implementation of D-DSME on Real Devices

An implementation of the proposed D-DSME extensions was developed on boards equipped with
the PIC24FJ256GB108 microcontroller and the MRF24J40MA transceiver, both produced by Microchip
Tech. The communication between the transceiver and the microcontroller takes place via the Serial
Peripheral Interface (SPI).

The implementation does not require any hardware modifications. The D-DSME extensions
were implemented from scratch and the classic IEEE 802.15.4-2006 MAC layer, implemented in the
transceiver, was disabled. The considered scenario is a network with a tree topology that includes
one PAN-Coordinator, one coordinator, and three end nodes. All the end nodes generate two flows,
f1 and f2, with period equal to 2TSF. The messages (with a 8-bytes payload) are transmitted to the
coordinator that sends them to the PAN-Coordinator. The end-to-end delays are acquired using the
GPIOs integrated in the MCUs of the source and destination nodes. The configuration parameters are
the same as the ones in Table 2. Table 4 shows that the measured end-to-end delays are similar to the
ones obtained in simulation. The time differences, which are always between 1409 µs and 1949 µs,
are due to the processing delays that were not considered in the simulation. These times are acceptable
if compared with the obtained delays. In the considered scenario, no packet was lost.
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Table 4. Comparative end-to-end delays (µs).

Node Flow Flow Flow Flow Flow Flow
ID f1 f2 f1 f2 f1 f2

Simulated Experimental Difference

1 42,976 104,416 44,429 106,365 1453 1949
2 46,816 108,256 48,249 109,975 1433 1719
3 50,656 112,096 52,065 113,750 1409 1654

7. Conclusions

This work proposed the D-DSME extensions, which improve the scalability and reliability of the
DSME protocol. In particular, the Shareable D-DSME extension allows GTSs to be shared between
multiple flows, while the Mirror D-DSME extension allows for multiple retransmissions on the same
GTS. The strong point of the Shareable D-DSME extension is that it is beneficial to both periodic and
aperiodic flows. The first benefit from the slot sharing among multiple flows is that it leaves room
for accommodating in a multi-superframe of the same length a larger number of periodic flows than
DSME. Aperiodic flows, instead, benefit from the reduced multi-superframe length that, in case of
CAP reduction enabled, determines shorter queuing delays for the aperiodic messages waiting for
transmission within the CAP. The strong point of the Mirror D-DSME is that it exploits the same GTS
for both the message transmission and the relevant retransmissions, thus improving reliability without
requiring additional slots. As shown in the paper, both the proposed extensions can be implemented on
commercial devices without hardware modifications. Currently, approaches to optimize the Shareable
GTS assignment algorithm are under study and will be addressed in future work. Moreover, future
works will address the case for Software Defined Networking architectures [32,33] as a mean to make
scheduling and GTS allocation in Shareable D-DSME even more flexible.
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