You are currently viewing a new version of our website. To view the old version click .

Electronics

Electronics is an international, peer-reviewed, open access journal on the science of electronics and its applications published semimonthly online by MDPI.
The Polish Society of Applied Electromagnetics (PTZE) is affiliated with Electronics and their members receive a discount on article processing charges.
Quartile Ranking JCR - Q2 (Engineering, Electrical and Electronic)

All Articles (27,297)

Existing inspection systems for railway point machines often suffer from high latency and poor interpretability, which impedes the real-time detection of critical mechanical anomalies, thereby increasing the risks of derailment and leading to cascading schedule delays. Addressing these challenges, this study proposes a lightweight computer vision-based detection framework deployed on the RK3588S edge platform. First, to overcome the accuracy degradation of segmentation networks on constrained edge NPUs, a Sensitivity-Aware Mixed-Precision Quantization and Heterogeneous Scheduling (SMPQ-HS) strategy is proposed. Second, a Multimodal Semantic Diagnostic Framework is constructed. By integrating geometric engagement depths—calculated via perspective rectification—with visual features, a Hard-Constrained Knowledge Embedding Paradigm is designed for the Qwen2.5-VL model. This approach constrains the stochastic reasoning of the Qwen2.5-VL model into standardized diagnostic conclusions. Experimental results demonstrate that the optimized model achieves an inference speed of 38.5 FPS and an mIoU of 0.849 on the RK3588S, significantly outperforming standard segmentation models in inference speed while maintaining high precision. Furthermore, the average depth-estimation error remains approximately 3%, and the VLM-based fault identification accuracy reaches 88%. Overall, this work provides a low-cost, deployable, and interpretable solution for intelligent point machine maintenance under edge-computing constraints.

4 January 2026

Schematic diagram of the overall system architecture. Colors denote: data preparation (green), model development (pink), edge deployment (blue), and interaction layers (orange).

Single-phase-to-ground faults occur frequently in distribution networks, while traditional localization methods have limitations such as insufficient feature extraction and poor topological adaptability. To address these issues, this paper proposes a two-stage localization method that integrates the Node Classification Matrix (NCM) and an Improved Binary Particle Swarm Optimization (IBPSO) algorithm. The NCM achieves rapid initial localization, and the IBPSO performs error correction. This paper employs an IEEE 33-node standard distribution network model to design simulations covering scenarios with varying fault locations, multiple fault resistances, and different numbers of node distortions for validation. The results demonstrate that the proposed method achieves a fault location accuracy of 96%, which is 19% higher than that of the NCM alone and 2% higher than that of the IBPSO alone. Moreover,it maintains an accuracy of over 95% under scenarios of 1–3 node distortions, topological switching, and high-impedance faults, and is compatible with existing Feeder Terminal Unit (FTU) devices. This method effectively balances localization speed and robustness, providing a reliable solution for the rapid fault isolation of distribution network.

4 January 2026

The high energy consumption and substantial electricity costs of cloud data centers pose significant challenges related to carbon emissions and operational expenses for service providers. The temporal variability of electricity pricing in real-world scenarios adds complexity to this problem while simultaneously offering novel opportunities for mitigation. This study addresses the task scheduling optimization problem under time-of-use pricing conditions in cloud computing environments by proposing an innovative task scheduling approach. To balance the three competing objectives of electricity cost, energy consumption, and task delay, we formulate a price-aware, multi-objective task scheduling optimization problem and establish a Markov decision process model. By integrating prioritized experience replay with a multi-objective preference vector selection mechanism, we design a dynamic, multi-objective deep reinforcement learning algorithm named TEPTS. The simulation results demonstrate that TEPTS achieves superior convergence and diversity compared to three other multi-objective optimization methods while exhibiting excellent scalability across varying test durations and system workload intensities. Specifically, under the TOU pricing scenario, the task migration rate during peak periods exceeds 33.90%, achieving a 13.89% to 36.89% reduction in energy consumption and a 14.09% to 45.33% reduction in electricity costs.

4 January 2026

Accurate multivariate traffic flow forecasting is critical for intelligent transportation systems yet remains challenging due to the complex interplay of temporal dynamics and spatial interactions. While Transformer-based models have shown promise in capturing long-range temporal dependencies, most existing approaches compress multidimensional observations into flattened sequences—thereby neglecting explicit modeling of cross-dimensional (i.e., spatial or inter-variable) relationships, which are essential for capturing traffic propagation, network-wide congestion, and node-specific behaviors. To address this limitation, we propose TSAformer, a novel Transformer architecture that explicitly preserves and jointly models time and dimension as dual structural axes. TSAformer begins with a multimodal input embedding layer that encodes raw traffic values alongside temporal context (time-of-day and day-of-week) and node-specific positional features, ensuring rich semantic representation. The core of TSAformer is the Two-Stage Attention (TSA) module, which first models intra-dimensional temporal evolution via time-axis self-attention then captures inter-dimensional spatial interactions through a lightweight routing mechanism—avoiding quadratic complexity while enabling all-to-all cross-node communication. Built upon TSA, a hierarchical encoder–decoder (HED) structure further enhances forecasting by modeling traffic patterns across multiple temporal scales, from fine-grained fluctuations to macroscopic trends, and fusing predictions via cross-scale attention. Extensive experiments on three real-world traffic datasets—including urban road networks and highway systems—demonstrate that TSAformer consistently outperforms state-of-the-art baselines across short-term and long-term forecasting horizons. Notably, it achieves top-ranked performance in 36 out of 58 critical evaluation scenarios, including peak-hour and event-driven congestion prediction. By explicitly modeling both temporal and dimensional dependencies without structural compromise, TSAformer provides a scalable, interpretable, and high-performance solution for spatiotemporal traffic forecasting.

4 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Electronics - ISSN 2079-9292