A Buck-Boost Transformerless DC–DC Converter Based on IGBT Modules for Fast Charge of Electric Vehicles
Abstract
1. Introduction
2. Analysis of the Proposed Converter
3. Experimental Data
4. Conclusions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Type | Voltage [V] | Current [A] | Eon [mJ] | Eoff [mJ] | Er [mJ] | Rth(j-c) [K/W] |
---|---|---|---|---|---|---|
Semikron [49] | ||||||
SEMiX452GAL126HDs | 1200 | 319 | 35 | 45 | 33 | 0.15 |
SKM400GB125D | 300 | 17 | 18 | 16 | 0.05 | |
SKM400GAL126D SKM400GAR126D | 300 | 29 | 48 | 27 | 0.08 | |
SEMiX302GAL12E4s SEMiX302GAR12E4s | 356 | 30 | 44 | 19 | 0.096 | |
SKiiP39GB12E4V1 | 312 | 20 | 49.7 | 30.2 | 0.19 | |
SEMiX503GB126HDs | 466 | 20 | 44 | 32.5 | 0.08 | |
Infineon [50] | ||||||
FF300R12KS4HOSA1 | 1200 | 300 | 25 | 15 | 15 | 0.064 |
FF300R12KE3HOSA1 | 440 | 25 | 44 | 26 | 0.15 | |
FF450R12KT4 | 450 | 30 | 40 | 35 | 0.11 | |
Mitsubishielectric [51] | ||||||
CM300DX-24T1 | 1200 | 300 | 36 | 29 | 18 | 0.1 |
CM450DX-24T1 | 450 | 56.6 | 42 | 23 | 0.08 | |
Fuji electric [52] | ||||||
2MBI300U4H-120 | 1200 | 300 | 17 | 19 | 10 | 0.08 |
2MBI400VD-120-50 | 400 | 16 | 18 | 17 | 0.045 | |
1MBI200VA-120L-50 | 200 | 15 | 22 | 18 | 0.17 | |
1MBI900VXA-120PC-50 1MBI900VXA-120PD-50 | 900 | 20 | 40 | 15 | 0.03 | |
Microsemi [53] | ||||||
APTGT200A120G | 1200 | 400 | 20 | 20 | 18 | 0.14 |
IXYS [54] | ||||||
MIXA225PF1200TSF | 1200 | 360 | 20 | 27 | 11.7 | 0.14 |
MID 300-12A4 | 330 | 32 | 29 | - | 0.15 | |
MDI 300-12A4 | ||||||
MID 550-12 A4 MDI 550-12 A4 | 460 | 64 | 59 | - | 0.05 |
References
- Wolbertus, R.; Hoed, R.V.D. Electric Vehicle Fast Charging Needs in Cities and along Corridors. World Electr. Veh. J. 2019, 10, 45. [Google Scholar] [CrossRef]
- Khan, W.; Ahmad, F.; Alam, M.S. Fast EV charging station integration with grid ensuring optimal and quality power exchange. Eng. Sci. Technol. Int. J. 2019, 22, 143–152. [Google Scholar] [CrossRef]
- Neaimeha, M.; Salisbury, S.; Hill, G.; Blythe, P.; Scoffield, D.; Francfort, J. Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles. Energy Policy 2017, 108, 474–486. [Google Scholar] [CrossRef]
- Gnanna, T.; Funkea, S.; Jakobsson, N.; Plotza, P.; Sprei, F.; Bennehag, A. Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transp. Res. Part. D Transp. Environ. 2018, 62, 314–329. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, M.S.; Nengroo, S.H.; Kim, C.H.; Kim, H.J. LLC Resonant Converter for LEV (Light Electric Vehicle) Fast Chargers. Electronics 2019, 8, 362. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Zhang, B.; Jia, Z.; Tian, Y.; Zeng, H.; Lv, Z. Virtual Synchronous Motor Based-Control of a Three-Phase Electric Vehicle Off-Board Charger for Providing Fast-Charging Service. Appl. Sci. 2018, 8, 856. [Google Scholar] [CrossRef]
- Lia, J.; Wang, D.; Wang, W.; Jiang, J. Minimize Current Stress of Dual-Active-Bridge DC-DC Converters for Electric Vehicles Based on Lagrange Multipliers Method. Energy Procedia 2017, 105, 2733–2738. [Google Scholar] [CrossRef]
- Lee, I.; Lee, J. A High-Power DC-DC Converter Topology for Battery Charging Applications. Energies 2017, 10, 871. [Google Scholar] [CrossRef]
- Al-Ogaili, A.; Aris, I.; Verayiah, R.; Ramasamy, A.; Marsadek, M.; Rahmat, N.; Hoon, Y.; Aljanad, A.; Al-Masri, A. A Three-Level Universal Electric Vehicle Charger Based on Voltage-Oriented Control and Pulse-Width Modulation. Energies 2019, 12, 2375. [Google Scholar] [CrossRef]
- Khan, S.; Mehmood, K.; Haider, Z.; Bukhari, S.; Lee, S.; Rafique, M.; Kim, C. Energy Management Scheme for an EV Smart Charger V2G/G2V Application with an EV Power Allocation Technique and Voltage Regulation. Appl. Sci. 2018, 8, 648. [Google Scholar] [CrossRef]
- Perpina, X.; Serviere, J.F.; Jorda, X.; Fauquet, A.; Hidalgo, S.; Ibanez, J.; Rebollo, J.; Mermet-Guyennet, M. IGBT module failure analysis in railway applications. Microelectron. Reliab. 2008, 48, 1427–1431. [Google Scholar] [CrossRef]
- Gorecki, P.; Gorecki, K. Modelling a Switching Process of IGBTs with Influence of Temperature Taken into Account. Energies 2019, 12, 1894. [Google Scholar] [CrossRef]
- Napoli, F.; Magnani, A.; Coppola, M.; Guerriero, P.; D’Alessandro, V.; Codecasa, L.; Tricoli, P.; Daliento, S. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction. Energies 2017, 10, 189. [Google Scholar] [CrossRef]
- Chang, Y.; Li, W.; Luo, H.; He, X.; Iannuzzo, F.; Blaabjerg, F.; Lin, W. A 3D Thermal Network Model for Monitoring Imbalanced Thermal Distribution of Press-Pack IGBT Modules in MMC-HVDC Applications. Energies 2019, 12, 1319. [Google Scholar] [CrossRef]
- Lucas, A.; Trentadue, G.; Scholz, H.; Otura, M. Power Quality Performance of Fast-Charging under Extreme Temperature Conditions. Energies 2018, 11, 2635. [Google Scholar] [CrossRef]
- Hocine, R.; Pulko, S.; Stambouli, A.; Saidane, A. TLM method for thermal investigation of IGBT modules in PWM mode. Microelectron. Eng. 2009, 86, 2053–2062. [Google Scholar] [CrossRef]
- An, N.; Du, M.; Hu, Z.; Wei, K. A High-Precision Adaptive Thermal Network Model for Monitoring of Temperature Variations in Insulated Gate Bipolar Transistor (IGBT) Modules. Energies 2018, 11, 595. [Google Scholar] [CrossRef]
- Jung, E.; Cho, Y.; Kang, E.; Kim, Y.; Sung, M. A Study on the Design and Electrical Characteristics Enhancement of the Floating Island IGBT with Low On-Resistance. J. Electr. Eng. Technol. 2012, 7, 601–605. [Google Scholar] [CrossRef][Green Version]
- Huang, X.; Chang, D.; Ling, C.; Zheng, T. Research on Single-Phase PWM Converter with Reverse Conducting IGBT Based on Loss Threshold Desaturation Control. Energies 2017, 10, 1845. [Google Scholar] [CrossRef]
- Huang, X.; Ling, C.; Chang, D.; You, X.; Zheng, T. Loss Characteristics of 6.5 kV RC-IGBT Applied to a Traction Converter. Energies 2017, 10, 891. [Google Scholar] [CrossRef]
- Benmansour, A.; Azzopardi, S.; Martin, J.; Woirgard, E. Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions. Microelectron. Reliab. 2007, 47, 1730–1734. [Google Scholar] [CrossRef]
- Benmansour, A.; Azzopardi, S.; Martin, J.C.; Woirgard, E. A step by step methodology to analyze the IGBT failure mechanisms under short circuit and turn-off inductive conditions using 2D physically based device simulation. Microelectron. Reliab. 2007, 47, 1800–1805. [Google Scholar] [CrossRef]
- Jeong, J.; Hong, S.; Park, S. Field failure mechanism and improvement of EOS failure of integrated IGBT inverter modules. Microelectron. Reliab. 2007, 47, 1795–1799. [Google Scholar] [CrossRef]
- Belmehdi, Y.; Azzopardi, S.; Benmansour, A.; Deletage, J.; Woirgard, E. Uni-axial mechanical stress effect on Trench Punch through IGBT under short-circuit operation. Microelectron. Reliab. 2009, 49, 1398–1403. [Google Scholar] [CrossRef]
- Urresti-Ibanez, J.; Castellazzi, A.; Piton, M.; Rebollo, J.; Mermet-Guyennet, M.; Ciappa, M. Robustness test and failure analysis of IGBT modules during turn-off. Microelectron. Reliab. 2007, 47, 1725–1729. [Google Scholar] [CrossRef]
- Busatto, G.; Abbate, C.; Abbate, B.; Iannuzzo, F. IGBT modules robustness during turn-off commutation. Microelectron. Reliab. 2008, 48, 1435–1439. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Cheng, S.; Liu, L.; Deng, L. Stability analysis and AC modeling of high-efficiency Buck/Boost converter. In Proceedings of the 2008 IEEE International Conference on Electron Devices and Solid-State Circuits, Hong Kong, China, 8–10 December 2008. [Google Scholar]
- Ren, X.; Ruan, X.; Qian, H.; Li, M.; Chen, Q. Dual-Edge Modulated Four-Switch Buck-Boost Converter. In Proceedings of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008. [Google Scholar]
- Wei, C.; Chen, C.; Wu, K.; Ko, I. Design of an Average-Current-Mode Noninverting Buck–Boost DC–DC Converter with Reduced Switching and Conduction Losses. IEEE Trans. Power Electron. 2012, 27, 1894. [Google Scholar] [CrossRef]
- Lin, R.; Wang, R. Non-inverting Buck-Boost Power-Factor-Correction Converter with Wide Input-Voltage-Range Applications. In Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010. [Google Scholar]
- Zhang, F.; Xu, J.; Yang, P.; Chen, Z. Single-Phase Two-Switch PCCM Buck-Boost PFC Converter with Fast Dynamic Response for Universal Input Voltage. In Proceedings of the 8th International Conference on Power Electronics—ECCE Asia, The Shilla Jeju, Korea, 30 May–3 June 2011. [Google Scholar]
- Ren, X.; Tang, Z.; Ruan, X.; Wei, J.; Hua, G. Four Switch Buck-Boost Converter for Telecom DC-DC Power Supply Applications. In Proceedings of the Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 24–28 February 2008. [Google Scholar]
- Dening, D. A buck-or-boost converter module with embedded inductor and fast current limit. IEEE Trans. Power Electron. 2011, 26, 3874–3883. [Google Scholar] [CrossRef]
- Shiau, J.; Cheng, C. Design of a non-inverting synchronous Buck-Boost DC/DC power converter with moderate power level. Robot. Comput. Manuf. 2010, 26, 263–267. [Google Scholar] [CrossRef]
- Angkititrakul, S.; Hu, H.; Liang, Z. Active Inductor Current Balancing for Interleaving Multi-Phase Buck-Boost Converter. In Proceedings of the Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009. [Google Scholar]
- Chang, C.; Wei, C. Single-inductor four-switch non-inverting buck-boost dc-dc converter. In Proceedings of the 2011 International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 25–28 April 2011. [Google Scholar]
- Lee, Y.; Khaligh, A.; Chakraborty, A.; Emadi, A. Digital Combination of Buck and Boost Converters to Control a Positive Buck–Boost Converter and Improve the Output Transients. IEEE Trans. Power Electron. 2009, 24, 1267–1279. [Google Scholar] [CrossRef]
- Application note AN4449, Buck-Boost Converter Using the STM32F334 Discovery kit, STMicroelectronics. 2014. Available online: https://www.st.com/resource/en/application_note/dm00108726.pdf (accessed on 27 February 2020).
- Application note TND6253/D, Dv/dt Induced False Turn−on Issue in 4-Switch Noninverting Buck-Boost Converters, Semiconductor Components Industries, LLC. September 2018. Available online: https://www.onsemi.com/pub/Collateral/TND6253-D.PDF (accessed on 27 February 2020).
- Application Note SLVA535A, Basic Calculations for Buck-Boost Converters, Texas Instruments 2012. Available online: www.ti.com/lit/an/slva535b/slva535b.pdf (accessed on 27 February 2020).
- Application Note: PMP21529, 4-Switch Buck-Boost Bi-Directional DC-DC Converter Reference Design. Available online: www.ti.com/lit/ug/tidt046/tidt046.pdf (accessed on 27 February 2020).
- Pressman, A. Switching Power Supply Design; McGraw-Hill, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Billings, K.; Morey, T. Switch Mode Power Supply Handbook, 3rd ed. 2011. Available online: https://lib.hpu.edu.vn/handle/123456789/23388 (accessed on 27 February 2020).
- IGBT Application Note, R07AN0001EJ0410, Renesas Electronics, Rev.4.10. Available online: https://www.renesas.com/us/en/doc/products/igbt/apn/r07an0001ej0410_igbt.pdf (accessed on 27 February 2020).
- Wintrich, A.; Nicolai, U.; Tursky, W.; Reimann, T. Application Manual Power Semiconductors, SEMIKRON International 2015. Available online: https://www.semikron.com/dl/service-support/downloads/download/semikron-application-manual-power-semiconductors-english-en-2015.pdf (accessed on 27 February 2020).
- Baliga, B. The IGBT Device Physics, Design and Applications of the Insulated Gate Bipolar Transistor. Elsevier Inc., 2015. Available online: https://www.elsevier.com/books/the-igbt-device/baliga/978-1-4557-3143-5 (accessed on 27 February 2020).
- Volke, A.; Hornkamp, M. IGBT Modules, Technology, Driver and Application; Infineon Technologies AG: Neubiberg, Germany, 2017. [Google Scholar]
- Khanna, V. The Insulated Gate Bipolar Transistor IGBT Theory and Design; Wiley-Interscience: Piscataway, NJ, USA, 2003; ISBN 0-471-23845-7. [Google Scholar]
- IGBT Generation 7. The New Benchmark for Motor Drives. Available online: https://www.semikron.com/ (accessed on 27 February 2020).
- Infineon Technologies: Semiconductor & System Solutions. Available online: https://www.infineon.com/ (accessed on 27 February 2020).
- Mitsubishi Electric Global Website. Available online: http://www.mitsubishielectric.com/ (accessed on 27 February 2020).
- Fuji Electric Global. Available online: https://www.fujielectric.com/ (accessed on 27 February 2020).
- Microsemi: Semiconductor & System Solutions, Power Matters. Available online: https://www.microsemi.com/ (accessed on 27 February 2020).
- Littelfuse Coompletes IXYS Acquisition. Available online: http://www.ixys.com/ (accessed on 27 February 2020).
Buck | Boost |
---|---|
Duty Cycle | |
Inductor | |
Maximum output current | |
Maximum switching current | |
Output Voltage to the Charged Battery (V) | Switching Frequency (kHz)/Period (µs) | Duty cycle | On-Time (µs) | Off-Time (µs) | Output Current Ripple (A)/(%) |
---|---|---|---|---|---|
Buck mode of operation (Buck module M1) | |||||
300 | 12/83.33 | 0.45 | 37.93 | 45.41 | 27.31/18.2 |
350 | 12/83.33 | 0.53 | 44.23 | 39.1 | 27.42/18.28 |
400 | 12/83.33 | 0.61 | 50.54 | 32.79 | 26.28/17.52 |
450 | 12/83.33 | 0.68 | 56.85 | 26.49 | 23.88/15.92 |
Buck-Boost mode of operation (Buck module M1; the output voltages given for this mode of operation are after Buck module M1) | |||||
500 | 10/100 | 0.76 | 75.78 | 24.22 | 24.25/16.17 |
525 | 10/100 | 0.79 | 79.57 | 20.43 | 21.48/14.32 |
550 | 10/100 | 0.83 | 83.35 | 16.65 | 18.34/12.22 |
Buck-Boost mode of operation (Boost module M2; the output voltages given for this mode of operation are at the output of the converter) | |||||
600 | 10/100 | 0.17 | 16.76 | 83.24 | 16.76/9.3 |
650 | 10/100 | 0.19 | 19.32 | 80.68 | 20.28/10.91 |
700 | 10/100 | 0.22 | 21.51 | 78.49 | 23.66/12.38 |
Boost mode of operation (Boost module M2) | |||||
750 | 12/83.33 | 0.12 | 10.07 | 73.26 | 13.29/7.79 |
800 | 12/83.33 | 0.17 | 14.64 | 68.69 | 19.33/10.62 |
850 | 12/83.33 | 0.22 | 18.68 | 64.65 | 24.66/12.75 |
900 | 12/83.33 | 0.27 | 22.27 | 61.06 | 29.4/14.36 |
950 | 12/83.33 | 0.31 | 25.48 | 57.85 | 33.64/15.57 |
1000 | 12/83.33 | 0.34 | 28.37 | 54.96 | 37.45/16.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, B.; Hayatleh, K.; Barker, S.; Collier, G.; Sharkh, S.; Cruden, A. A Buck-Boost Transformerless DC–DC Converter Based on IGBT Modules for Fast Charge of Electric Vehicles. Electronics 2020, 9, 397. https://doi.org/10.3390/electronics9030397
Dimitrov B, Hayatleh K, Barker S, Collier G, Sharkh S, Cruden A. A Buck-Boost Transformerless DC–DC Converter Based on IGBT Modules for Fast Charge of Electric Vehicles. Electronics. 2020; 9(3):397. https://doi.org/10.3390/electronics9030397
Chicago/Turabian StyleDimitrov, Borislav, Khaled Hayatleh, Steve Barker, Gordana Collier, Suleiman Sharkh, and Andrew Cruden. 2020. "A Buck-Boost Transformerless DC–DC Converter Based on IGBT Modules for Fast Charge of Electric Vehicles" Electronics 9, no. 3: 397. https://doi.org/10.3390/electronics9030397
APA StyleDimitrov, B., Hayatleh, K., Barker, S., Collier, G., Sharkh, S., & Cruden, A. (2020). A Buck-Boost Transformerless DC–DC Converter Based on IGBT Modules for Fast Charge of Electric Vehicles. Electronics, 9(3), 397. https://doi.org/10.3390/electronics9030397