Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (769)

Search Parameters:
Keywords = coupler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 13699 KB  
Review
A Comprehensive Review of Magnetic Coupling Mechanisms, Compensation Networks, and Control Strategies for Electric Vehicle Wireless Power Transfer Systems
by Yanxia Wu, Pengqiang Nie, Zhenlin Wang, Lijuan Wang, Seiji Hashimoto and Takahiro Kawaguchi
Processes 2026, 14(2), 287; https://doi.org/10.3390/pr14020287 - 14 Jan 2026
Abstract
Wireless power transfer (WPT) has emerged as a key enabling technology for the large-scale adoption of electric vehicles (EVs), offering enhanced charging flexibility, improved safety, and seamless integration with intelligent transportation and renewable energy infrastructures. This paper presents a comprehensive review and technical [...] Read more.
Wireless power transfer (WPT) has emerged as a key enabling technology for the large-scale adoption of electric vehicles (EVs), offering enhanced charging flexibility, improved safety, and seamless integration with intelligent transportation and renewable energy infrastructures. This paper presents a comprehensive review and technical synthesis of WPT technologies spanning both near-field and far-field domains, including inductive power transfer (IPT), magnetically coupled resonant WPT (MCR-WPT), capacitive power transfer (CPT), microwave power transfer (MPT), and laser wireless charging (LPT). Particular emphasis is placed on MCR-WPT, the most widely adopted approach for EV wireless charging, for which the coupler structures, resonant compensation networks, power converter architectures, and control strategies are systematically analyzed. The review further identifies that hybrid WPT architectures, adaptive compensation design and wide-coverage coupling mechanisms will be central to enabling high-power, long-distance, and misalignment-resilient wireless charging solutions for next-generation electric transportation systems. Full article
Show Figures

Figure 1

18 pages, 4110 KB  
Article
Design of a Dual Path Mixed Coupling Wireless Power Transfer Coupler for Improving Transmit Arrays in UAV Charging
by GwanTae Kim and SangWook Park
Appl. Sci. 2026, 16(2), 827; https://doi.org/10.3390/app16020827 - 13 Jan 2026
Abstract
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at [...] Read more.
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at 6.78 MHz without additional lumped matching networks. A four-port equivalent model is developed by classifying the mutual networks into three coupling types and representing them with a transmission-matrix formulation fitted to three-dimensional full-wave simulations. The model is used to identify the main coupling paths and to evaluate the effect of rotation and lateral/diagonal misalignment on power-transfer characteristics. Simulation results at a transfer distance of 70 mm show a maximum transmission coefficient of about 0.82 at 6.78 MHz and high robustness against rotation. When switch-based port selection is applied on the transmit side, blind spots associated with pose variations that cause an abrupt drop in transmission characteristics are significantly reduced, demonstrating that the DPMPT coupler with switch control provides an effective structural basis for enhancing alignment tolerance in mixed coupling wireless power transfer systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 4348 KB  
Proceeding Paper
Investigation of the Influence of Distributor Valve Position on Longitudinal Train Dynamics During Braking
by Stefan Krastev, Svetoslav Slavchev, Vladislav Maznichki, Petko Sinapov and Magdalen Velev
Eng. Proc. 2026, 121(1), 13; https://doi.org/10.3390/engproc2025121013 - 13 Jan 2026
Viewed by 19
Abstract
The distributor valve is one of the most important components in the pneumatic braking system of trains. It performs the functions of filling and releasing the brake cylinder. The distributor valve most widely used on Bulgarian railways operates in two positions, respectively, in [...] Read more.
The distributor valve is one of the most important components in the pneumatic braking system of trains. It performs the functions of filling and releasing the brake cylinder. The distributor valve most widely used on Bulgarian railways operates in two positions, respectively, in “freight train” mode (G) and in “passenger train mode” (P). The difference between them is determined by the different times for filling and emptying the brake cylinder. These times affect the moment of engagement of the braking system of each wagon in the train composition. This has a significant impact on the longitudinal forces obtained in the couplers. This paper is dedicated to the analysis of the influence of the distributor valve position on the longitudinal forces. A simulation study of the longitudinal behavior of a train set was carried out in Simulink®, which consists of a locomotive and 43 freight wagons attached to it, with 80 t gross mass of each wagon. The railway cars are linked by elastic elements with nonlinear characteristics. The results represent the distribution of longitudinal forces in time. They are used for the investigation of the longitudinal dynamics of the train, with the aim of improving the running-dynamic qualities of the train during braking. Full article
Show Figures

Figure 1

9 pages, 3340 KB  
Communication
Broadband Trilayer Adiabatic Edge Coupler on Thin-Film Lithium Tantalate for NIR Light
by Shiqing Gao, Xinke Xing, Shuai Chen and Kaixuan Chen
Photonics 2026, 13(1), 41; https://doi.org/10.3390/photonics13010041 - 31 Dec 2025
Viewed by 233
Abstract
This work addresses the challenge of realizing broadband, low-loss fiber-to-waveguide coupling in the short-wavelength near-infrared range (700–1050 nm), where the required fine structural dimensions and taper tips approach or even exceed current fabrication limits, resulting in tight fabrication tolerances and degraded coupling efficiency. [...] Read more.
This work addresses the challenge of realizing broadband, low-loss fiber-to-waveguide coupling in the short-wavelength near-infrared range (700–1050 nm), where the required fine structural dimensions and taper tips approach or even exceed current fabrication limits, resulting in tight fabrication tolerances and degraded coupling efficiency. We propose a broadband trilayer adiabatic edge coupler on a thin-film lithium tantalate platform that requires only two standard lithography and etching steps. The design integrates a crossed bilayer taper and a dual-core mode converter to achieve adiabatic mode transformation from a ridge to a thin strip waveguide, ensuring excellent fabrication tolerance and process simplicity. Simulations predict a minimum coupling loss of 0.57 dB at 850 nm, which includes the transmission through the complete edge-coupler structure, along with a 0.5-dB bandwidth exceeding 140 nm. The proposed structure provides a broadband, low-loss, and fabrication-tolerant interface for short-wavelength photonic systems such as quantum photonics, biosensing, and visible-light communications. Full article
(This article belongs to the Special Issue Advanced Photonic Integration Technology and Devices)
Show Figures

Figure 1

9 pages, 1045 KB  
Brief Report
Kerr-Lens Mode-Locked Tm,Ho:Ca(Gd,Y)AlO4 Laser
by Zhang-Lang Lin, Peixiong Zhang, Pavel Loiko, Xavier Mateos, Ge Zhang, Zhen Li, Zhenqiang Chen, Uwe Griebner, Weidong Chen and Valentin Petrov
Photonics 2026, 13(1), 38; https://doi.org/10.3390/photonics13010038 - 31 Dec 2025
Viewed by 223
Abstract
We demonstrate Kerr-lens mode-locked operation of a Tm,Ho:Ca(Gd,Y)AlO4 laser pumped by a narrow-linewidth, continuous-wave Ti:sapphire laser at 797 nm. Soliton pulses as short as 145 fs are generated at 2087.8 nm in σ-polarization via soft-aperture Kerr-lens mode-locking, with an average output power [...] Read more.
We demonstrate Kerr-lens mode-locked operation of a Tm,Ho:Ca(Gd,Y)AlO4 laser pumped by a narrow-linewidth, continuous-wave Ti:sapphire laser at 797 nm. Soliton pulses as short as 145 fs are generated at 2087.8 nm in σ-polarization via soft-aperture Kerr-lens mode-locking, with an average output power of 203 mW (0.5% output coupler) at ~80.5 MHz. To the best of our knowledge, this result represents the first demonstration of a Kerr-lens mode-locked laser based on a Tm,Ho:Ca(Gd,Y)AlO4 crystal exhibiting both structural and compositional disorder. Full article
(This article belongs to the Special Issue Emerging Trends in Rare-Earth Doped Material for Photonics)
Show Figures

Figure 1

18 pages, 3721 KB  
Article
Research on Longitudinal Dynamics of 20,000-Ton Heavy Haul Trains Considering Braking Characteristics
by Bo Zhang, Guoyun Liu, Shun Guo, Zhaorui Chang, Siqi Hu, Xingwen Wu and Wubin Cai
Mathematics 2026, 14(1), 158; https://doi.org/10.3390/math14010158 - 31 Dec 2025
Viewed by 231
Abstract
With the development of heavy-haul trains towards long formation and large axle load, the longitudinal impulse problem of trains is aggravated not only by improving the transport capacity of railway freight cars, but also by the braking characteristics such as the asymmetry in [...] Read more.
With the development of heavy-haul trains towards long formation and large axle load, the longitudinal impulse problem of trains is aggravated not only by improving the transport capacity of railway freight cars, but also by the braking characteristics such as the asymmetry in brake release, which has a greater impact on the longitudinal impulse of trains, seriously affecting the operation safety of trains. In this paper, a 20,000-ton heavy-haul train is taken as the research object, a train air brake system model is established by the parallel method, and the train longitudinal dynamics model is co-simulated to study the influence of braking characteristics on the longitudinal force of the train. The results indicate that the train is primarily subjected to compressive coupler forces during braking, with the maximum compressive force occurring at car 109. Compared to the maximum compressive coupler force observed under a 50 kPa reduction in brake pipe pressure, the maximum forces under 70 kPa and 100 kPa reductions increased by 16.8% and 36.8%, respectively. The controllable tail system influences the braking of middle and rear cars by supplying a braking source to the last car. When the delay time of the controllable tail system is set to 3 s, braking synchronization can be improved. Furthermore, compared to scenarios without last-car charging, the installation of a last-car charging device reduces the maximum tensile coupler force from 780 kN to 489 kN, representing a 37% decrease. The findings of this study provide theoretical insights for ensuring the safe operation of heavy-haul trains and contribute to enhancing their operational performance. Full article
(This article belongs to the Special Issue Recent Developments in Vehicle System Dynamics)
Show Figures

Figure 1

21 pages, 241717 KB  
Article
A Multiport Network-Based Integrated Sensing System Using Rectangular Cavity Resonators for Volatile Organic Compounds
by Haoxiang Wang and Jie Huang
Sensors 2026, 26(1), 189; https://doi.org/10.3390/s26010189 - 27 Dec 2025
Viewed by 356
Abstract
This work presents a novel microwave sensor system for volatile gas detection, integrating sensing elements based on rectangular cavity resonators (RCR) and multiport demodulation circuitry. Initially, a pump-through gas sensing element utilizing an RCR was developed, and its core sensing functionality was experimentally [...] Read more.
This work presents a novel microwave sensor system for volatile gas detection, integrating sensing elements based on rectangular cavity resonators (RCR) and multiport demodulation circuitry. Initially, a pump-through gas sensing element utilizing an RCR was developed, and its core sensing functionality was experimentally validated. Subsequently, a rat-race coupler was employed to seamlessly integrate two such rectangular cavity resonator elements—serving as reference and sensing branches—within the multiport demodulation network. This configuration enabled an in-depth investigation of the network’s operating principle, elucidating the critical relationship between the reference and sensing arms. The demodulation network translates the critical output phase shift into corresponding power readings. The quantitative relationship linking phase shift to power output was rigorously characterized and utilized as the basis for estimating volatile gas concentration. Finally, a dedicated LabVIEW-based platform was developed for real-time, quantitative volatile gas monitoring. This integrated measurement system demonstrates excellent detection limits (300 ppm for acetone, 200 ppm for ethanol) and exhibits robust mitigation of measurement artifacts caused by ambient temperature and humidity fluctuations. Comprehensive theoretical analysis and experimental results jointly validate the efficacy of the proposed multiport network and RCR volatile gas sensing architecture. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

10 pages, 1852 KB  
Communication
Whispering Gallery Mode Resonator Based on In-Fiber Liquid Microsphere and Y-Waveguide Coupler
by Lixiang Zhao, Shuhui Liu, Ruiying Cao, Lin Mao and Zhicong He
Photonics 2026, 13(1), 8; https://doi.org/10.3390/photonics13010008 - 24 Dec 2025
Viewed by 296
Abstract
A reflective in-fiber liquid microsphere whispering gallery mode (WGM) resonator based on a Y-waveguide coupler is proposed and experimentally demonstrated. The sphere resonator is introduced inside a single-mode fiber (SMF) by using femtosecond laser micromachining and fusion splicing. A Y-waveguide coupler is fabricated [...] Read more.
A reflective in-fiber liquid microsphere whispering gallery mode (WGM) resonator based on a Y-waveguide coupler is proposed and experimentally demonstrated. The sphere resonator is introduced inside a single-mode fiber (SMF) by using femtosecond laser micromachining and fusion splicing. A Y-waveguide coupler is fabricated with femtosecond laser direct writing, which is used to simultaneously excite and collect the WGM field through evanescent field coupling. High-index liquids are filled into the sphere through a laser-drilled channel to form a liquid microsphere where the WGM resonation takes place. The WGM resonator is sensitive to the refractive index (RI) of the filled liquids, and a RI sensitivity of 439 nm/RIU is achieved in an index range from 1.672 to 1.692. The liquid microsphere resonator is also sensitive to temperature, with a sensitivity of −307.1 pm/°C obtained. The microsphere resonator is small in size and robust, which has broad application prospects in the field of food and the chemical industry. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing Technologies for Optical Fiber Devices)
Show Figures

Figure 1

9 pages, 4610 KB  
Article
A Single-Layer Full-Color Diffractive Waveguide by Lithography
by Yong Li, Fei Wu, Huihui Li, Haitao Yang, Mengguang Wang and Zhenrong Zheng
Nanomaterials 2026, 16(1), 6; https://doi.org/10.3390/nano16010006 - 19 Dec 2025
Viewed by 430
Abstract
Augmented reality (AR) near-eye displays (NEDs) couple microdisplay image light to the human eye via integrated optical modules, enabling seamless virtual–real fusion. As core components that synergistically transmit and diffract light, diffractive waveguides are promising for next-generation AR NEDs but face two bottlenecks: [...] Read more.
Augmented reality (AR) near-eye displays (NEDs) couple microdisplay image light to the human eye via integrated optical modules, enabling seamless virtual–real fusion. As core components that synergistically transmit and diffract light, diffractive waveguides are promising for next-generation AR NEDs but face two bottlenecks: compromised full-color performance in single-layer structures caused by grating dispersion and lack of scalable fabrication technologies. To address these, we first propose a mass-production-compatible workflow based on deep ultraviolet (DUV) lithography for large-area nanostructured optics. This workflow enables high-precision wafer-level production with 200 mm wafers and nine dies per wafer, overcomes scalability issues, and is fully compatible with straight-configuration nanostructures to ensure manufacturing feasibility. Leveraging this workflow, we develop a single-layer diffractive waveguide system for AR NEDs, which comprises a thin glass substrate, a broadband high-efficiency multi-layer dielectric in-coupler, and a 2D out-coupler that concurrently expands and out-couples light. Rigorous coupled wave analysis (RCWA) optimized coupler diffraction, while ray tracing refined guided light intensity and significantly improved exit pupil uniformity. This work establishes a foundation for full-color, high-efficiency AR waveguides and provides a scalable paradigm for large-area nanostructured optical systems such as telescopes and lithography equipment. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

17 pages, 4256 KB  
Article
Research and Design of a Single-Switch Wireless Power Transfer System with Misalignment-Tolerant Characteristics
by Chuan Yang, Liguo Zhang, Wenge Huang, Yi Yang and Ke Guo
World Electr. Veh. J. 2026, 17(1), 1; https://doi.org/10.3390/wevj17010001 - 19 Dec 2025
Viewed by 266
Abstract
To address the issue that the output voltage and power of medium- and low-power wireless power transfer (WPT) systems cannot remain constant under coil misalignment, this paper proposes a single-switch WPT system with misalignment-tolerant characteristics. Based on a single-switch topology, the system combines [...] Read more.
To address the issue that the output voltage and power of medium- and low-power wireless power transfer (WPT) systems cannot remain constant under coil misalignment, this paper proposes a single-switch WPT system with misalignment-tolerant characteristics. Based on a single-switch topology, the system combines the LCC-S and S-S compensation networks through an input-series and output-series connection, forming a simplified hybrid-compensated single-switch WPT topology. By exploiting the complementary output characteristics of the two compensation networks, a stable output voltage is achieved under varying mutual inductance conditions. To further enhance misalignment adaptability, a grid-type flat spiral (GFSP) coil is designed for the magnetic coupler. This coil configuration avoids magnetic flux cancelation during lateral displacement, while maintaining a consistent mutual inductance variation trend between the dual windings, thereby exhibiting strong tolerance to misalignment along the X-axis. The proposed system is validated through MATLAB/Simulink simulations and experiments on a 50 W prototype. The results demonstrate that the system maintains resonance and achieves zero-voltage switching (ZVS) of the power device under ±60 mm X-axis misalignment, with output voltage fluctuation below 4% and efficiency fluctuation below 3%, verifying the proposed system’s effectiveness in misalignment tolerance. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

14 pages, 1735 KB  
Article
Entanglement Negativity and Exceptional-Point Signatures in a PT-Symmetric Non-Hermitian XY Dimer: Parameter Regimes and Directional-Coupler Mapping
by Linzhi Jiang, Weicheng Miao, Wen-Yang Sun and Wenchao Ma
Photonics 2025, 12(12), 1239; https://doi.org/10.3390/photonics12121239 - 18 Dec 2025
Viewed by 400
Abstract
We investigate a non-Hermitian two-spin XY model driven by alternating real and imaginary transverse fields and derive an explicit analytic formula for the ground-state entanglement negativity. This provides a systematic analytic characterization of how ground-state entanglement behaves across PT-symmetry breaking in a non-Hermitian [...] Read more.
We investigate a non-Hermitian two-spin XY model driven by alternating real and imaginary transverse fields and derive an explicit analytic formula for the ground-state entanglement negativity. This provides a systematic analytic characterization of how ground-state entanglement behaves across PT-symmetry breaking in a non-Hermitian spin dimer. In the PT-symmetric regime, the anisotropy γ enhances entanglement, whereas the real field h0 suppresses it; in the PT-broken regime dominated by φ3, the negativity decreases monotonically with the imaginary field η0. Moreover, the first derivative of the negativity exhibits a cusp-type non-analyticity at the exceptional point (EP), consistent with the ground-state phase boundary and revealing a direct correspondence between entanglement transitions and exceptional-point physics. To facilitate implementation in integrated quantum photonics, we map h0,η0,γ onto the device parameters Δβ,g,κ of a PT-symmetric directional coupler and propose a two-qubit quantum state tomography readout based on local Pauli measurements, thereby offering a concrete entanglement-based probe of exceptional-point signatures in a realistic photonic platform. Within this model, we identify parameter regimes for observing this signature: a cusp feature is expected near Δβ0 and gκ, which remains observable under small detuning and moderate loss mismatch. These results offer a testable avenue for entanglement-based probing of PT-symmetry breaking and may inform device characterization and quantitative assessment in integrated quantum photonics. These combined advances provide both analytical insight into non-Hermitian entanglement structure and a feasible route toward experimentally diagnosing PT-symmetry breaking using entanglement. Full article
(This article belongs to the Special Issue Quantum Optics: Communication, Sensing, Computing, and Simulation)
Show Figures

Figure 1

23 pages, 5291 KB  
Article
Thermal Analysis of High-Power Water-Cooled Permanent Magnet Coupling Based on Rotational Centrifugal Fluid–Structure Coupling Field Inversion
by Yuqin Zhu, Wei Liu, Hao Liu and Chuang Yang
Energies 2025, 18(24), 6556; https://doi.org/10.3390/en18246556 - 15 Dec 2025
Viewed by 255
Abstract
An efficient and reliable heat dissipation system is essential for the safe and stable operation of high-power water-cooled couplers. However, thermal analysis methods accounting for the centrifugal effects on coolant flow remain limited. This paper presents a high-accuracy equivalent thermal network model (ETNM) [...] Read more.
An efficient and reliable heat dissipation system is essential for the safe and stable operation of high-power water-cooled couplers. However, thermal analysis methods accounting for the centrifugal effects on coolant flow remain limited. This paper presents a high-accuracy equivalent thermal network model (ETNM) for analyzing the temperature distribution in water-cooled permanent magnet couplers (WPMCs), based on fluid–structure interaction and rotational centrifugal flow-field inversion. First, the ETNM is established based on key assumptions. Subsequently, an eddy current loss calculation method based on permanent magnet mapping is proposed to accurately determine the heat source distribution. The convective heat transfer coefficient of the coolant is then precisely derived by inverting the flow field obtained from fluid–structure coupling simulations under rotational centrifugal conditions. Finally, the model is applied for temperature analysis, and its accuracy is verified through both finite element simulations and experimental tests. The calculated results show errors of only 3.2% compared to numerical simulation and 5.6% compared to experimental data, indicating strong agreement of the proposed thermal analysis method. The accuracy of copper conductor (CC) temperature prediction is improved by 32.73%, and that of permanent magnet (PM) prediction by 33.33%. Furthermore, this method enables accurate estimation of individual component temperatures, effectively preventing operational failures such as PM demagnetization, CC softening, and severe vibrations caused by overheating. Full article
Show Figures

Figure 1

18 pages, 10014 KB  
Article
Directional Coupling of Surface Plasmon Polaritons at Exceptional Points in the Visible Spectrum
by Amer Abdulghani, Salah Abdo, Khalil As’ham, Ambali Alade Odebowale, Andrey E. Miroshnichenko and Haroldo T. Hattori
Materials 2025, 18(24), 5595; https://doi.org/10.3390/ma18245595 - 12 Dec 2025
Viewed by 377
Abstract
Robust control over the coupling and propagation of surface plasmon polaritons (SPPs) is essential for advancing various plasmonic applications. Traditional planar structures, commonly used to design SPP directional couplers, face limitations such as low extinction ratios and design complexities. These issues frequently hinder [...] Read more.
Robust control over the coupling and propagation of surface plasmon polaritons (SPPs) is essential for advancing various plasmonic applications. Traditional planar structures, commonly used to design SPP directional couplers, face limitations such as low extinction ratios and design complexities. These issues frequently hinder the dense integration and miniaturisation of photonic systems. Recently, exceptional points (EPs)—unique degeneracies within the parameter space of non-Hermitian systems—have garnered significant attention for enabling a range of counterintuitive phenomena in non-conservative photonic systems, including the non-trivial control of light propagation. In this work, we develop a rigorous temporal coupled-mode theory (TCMT) description of a non-Hermitian metagrating composed of alternating silicon–germanium nanostrips and use it to explore the unidirectional excitation of SPPs at EPs in the visible spectrum. Within this framework, EPs, typically associated with the coalescence of eigenvalues and eigenstates, are leveraged to manipulate light propagation in nonconservative photonic systems, facilitating the refined control of SPPs. By spatially modulating the permittivity profile at a dielectric–metal interface, we induce a passive parity–time (PT)-symmetry, which allows for refined tuning of the SPPs’ directional propagation by optimising the structure to operate at EPs. At these EPs, a unidirectional excitation of SPPs with a directional intensity extinction ratio as high as 40 dB between the left and right excited SPP modes can be reached, with potential applications in integrated optical circuits, visible communication technologies, and optical routing, where robust and flexible control of light at the nanoscale is crucial. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

15 pages, 3248 KB  
Article
Design of an Orthogonally Stacked DD Coil-Split Capacitive Plate Hybrid Coupler for UAV Wireless Charging
by Jaehoon Kim and Sangwook Park
Appl. Sci. 2025, 15(24), 12871; https://doi.org/10.3390/app152412871 - 5 Dec 2025
Viewed by 337
Abstract
This study proposes a hybrid wireless power transfer (WPT) coupler that integrates a Double-D (DD) coil and a Split Capacitive Plate (SCP) for unmanned aerial vehicle (UAV) near-field charging stations. The proposed structure arranges the DD coil and SCP orthogonally in a stacked [...] Read more.
This study proposes a hybrid wireless power transfer (WPT) coupler that integrates a Double-D (DD) coil and a Split Capacitive Plate (SCP) for unmanned aerial vehicle (UAV) near-field charging stations. The proposed structure arranges the DD coil and SCP orthogonally in a stacked configuration, enabling simultaneous utilization of both magnetic and electric field coupling paths. The equivalent circuit is composed of integrated inductive and capacitive coupling branches. The overall network is divided into subcircuits to define transmission matrices, which are then converted into a 2 × 2 S-parameter matrix. To verify the analytical model, the equivalent circuit results were compared with 3D full-wave simulation outcomes, showing a discrepancy of less than 8%, which is acceptable considering circuit simplification and parasitic effects. Furthermore, simulation results under positional and rotational misalignment conditions confirm that the proposed coupler maintains stable power transfer efficiency even beyond a 25% offset range. These results demonstrate that the complementary coupling mechanism, where one dominant coupling mode compensates for the attenuation of the other, operates effectively under misalignment. Consequently, the proposed hybrid coupler provides a promising alternative for enhancing misalignment tolerance in UAV near-field wireless charging systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

11 pages, 2479 KB  
Article
Low Power Consumption Silica Thermo-Optic Switch Based on Polymer Cladding
by Tianyu Zhong, Jiale Qin, Wenqian Liu, Yuqi Xie, Chahao An, Yinxiang Qin and Yunji Yi
Polymers 2025, 17(23), 3214; https://doi.org/10.3390/polym17233214 - 2 Dec 2025
Viewed by 357
Abstract
Silica-based splitters, couplers, and arrayed waveguide gratings are key components in optical communication. However, the high tuning power consumption of silica chips limits their development and application in fields such as Reconfigurable Optical Add/Drop Multiplexers and Mode Division Multiplexing. In this work, we [...] Read more.
Silica-based splitters, couplers, and arrayed waveguide gratings are key components in optical communication. However, the high tuning power consumption of silica chips limits their development and application in fields such as Reconfigurable Optical Add/Drop Multiplexers and Mode Division Multiplexing. In this work, we demonstrate a silica thermo-optic switch based on polymer cladding within a Mach–Zehnder Interferometer framework, in which a UV-curable polymer is employed as the upper cladding to enhance thermal efficiency. The device exhibits a power consumption of 48 mW, rise and fall response times were 215 µs and 271 µs, compared to all-silicon switches, the power consumption is reduced by 75%, and the switching speed is improved by nearly a factor of two, while maintaining a comparable insertion loss. Experimental results demonstrate an insertion loss of 8.53 dB and an extinction ratio of 10.12 dB. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop