State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications
Abstract
:1. Introduction
2. Fabrication and Operation Principle
2.1. Fabrication
2.2. Operation Principle
3. Sensing Applications
3.1. Physical Sensors
3.1.1. RI Sensors
3.1.2. Temperature Sensors
3.1.3. Humidity Sensors
3.1.4. Magnetic Field Sensors
3.1.5. Other Physical Sensors
3.2. Chemical Sensors and Biosensors
3.2.1. Chemical Sensors
3.2.2. Label-Free Biological Sensors
4. Conclusions and Prospects
Funding
Conflicts of Interest
References
- Patrick, H.J.; Williams, G.M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technol. Lett. 1996, 8, 1223–1225. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A. Fiber grating sensors. J. Lightwave Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.Y.; Liu, H.L.; Dong, X.; Tam, H.Y.; Wai, K.A.; Lu, C. High-speed fibre Bragg grating sensor interrogation using dispersion-compensation fibre. Electron. Lett. 2008, 44, 618–619. [Google Scholar] [CrossRef] [Green Version]
- Vengsarkar, A.M. Long-period fiber grating as band-rejection filters. J. Lightwave Technol. 1996, 14, 58–65. [Google Scholar] [CrossRef]
- Bock, W.J.; Chen, J.; Mikulic, P.; Eftimov, T. A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring. IEEE T Instrum. Meas 2007, 56, 1176–1180. [Google Scholar] [CrossRef]
- Fu, H.Y.; Tam, H.Y.; Shao, L.Y.; Dong, X.; Khijwania, S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008, 47, 2835–2839. [Google Scholar] [CrossRef]
- Ran, Z.L.; Rao, Y.J.; Deng, H.Y.; Xian, L. Miniature in-line photonic-crystal-fiber etalon sensor fabricated by 157nm laser micromachining. In Proceedings of the International Conference on Optical Fibre Sensors, Perth, Australia, 14–18 April 2008. [Google Scholar]
- Saitoh, K.; Matsuo, S. Multicore Fiber Technology. J. Lightwave Technol. 2016, 34, 55–66. [Google Scholar] [CrossRef]
- Villatoro, J.; Van Newkirk, A.; Antonio-Lopez, E.; Zubia, J.; Schulzgen, A.; Amezcua-Correa, R. Ultrasensitive vector bending sensor based on multicore optical fiber. Opt. Lett. 2016, 41, 832–835. [Google Scholar] [CrossRef]
- Kim, J.A.; Hwang, T.; Dugasani, S.R.; Amin, R.; Kulkarni, A.; Park, S.H.; Kim, T. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sens. Actuators B Chem. 2013, 187, 426–433. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Tong, R.J.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.-T. Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sens. Actuators B Chem. 2018, 275, 332–338. [Google Scholar] [CrossRef]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426, 816–819. [Google Scholar] [CrossRef]
- Lou, J.; Wang, Y.; Tong, L. Microfiber optical sensors: A review. Sensors 2014, 14, 5823–5844. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Tong, L.; Vienne, G.; Guo, X.; Tsao, A.; Yang, Q.; Yang, D. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 2006, 88, 223501. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Vienne, G.; Tong, L. All-fiber add-drop filters based on microfiber knot resonators. Opt. Lett. 2007, 32, 1710–1712. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Fini, J.M.; Hale, A. Optical microfiber loop resonator. Appl. Phys. Lett. 2005, 86, 161108. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Fini, J.M.; Hale, A.; Digiovanni, D.J. The microfiber loop resonator: Theory, experiment, and application. J. Lightwave Technol. 2006, 24, 242–250. [Google Scholar] [CrossRef]
- Xu, F.; Horak, P.; Brambilla, G. Optical microfiber coil resonator refractometric sensor. Opt. Express 2007, 15, 7888. [Google Scholar] [CrossRef]
- Xu, F.; Brambilla, G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl. Phys. Lett. 2008, 92, 5742. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, B.S.; Hill, K.O.; Lamont, R.G. Biconical-taper single-mode fiber coupler. Opt. Lett. 1981, 6, 327–328. [Google Scholar] [CrossRef]
- Digonnet, M.J.F.; Shaw, H.J. Analysis of a Tunable Single Mode Optical Fiber Coupler. IEEE J. Quantum. Electron. 1982, 18, 746–754. [Google Scholar] [CrossRef]
- Ding, M.; Wang, P.; Brambilla, G. A microfiber coupler tip thermometer. Opt. Express 2012, 20, 5402–5408. [Google Scholar] [CrossRef]
- Ding, M.; Wang, P.; Brambilla, G. Fast-Response High-Temperature Microfiber Coupler Tip Thermometer. IEEE Photonics Technol. Lett. 2012, 24, 1209–1211. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, J.; Tan, Y.; Shen, X.; Guan, B.O. Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity. Opt. Express 2012, 20, 10180–10185. [Google Scholar] [CrossRef]
- Zu, L.; Zhang, H.; Miao, Y.; Li, B.; Yao, J. Microfiber coupler with a Sagnac loop for water pollution detection. Appl. Opt. 2019, 58, 5859–5864. [Google Scholar] [CrossRef]
- Chen, Y.; Semenova, Y.; Farrell, G.; Xu, F.; Lu, Y.-Q. A Compact Sagnac Loop Based on a Microfiber Coupler for Twist Sensing. IEEE Photonics Technol. Lett. 2015, 27, 2579–2582. [Google Scholar] [CrossRef]
- Lewis, E.; Wei, F.; Farrell, G.; Wu, Q.; Semenova, Y. Utilising a loop structure to allow a microfiber coupler with larger taper diameters to be used for sensing. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 31 May–3 June 2016. [Google Scholar]
- Pu, S.; Luo, L.; Tang, J.; Mao, L.; Zeng, X. Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop. IEEE Photonics Technol. Lett. 2016, 28, 1073–1076. [Google Scholar] [CrossRef]
- Wei, F.; Mallik, A.K.; Liu, D.; Wu, Q.; Peng, G.D.; Farrell, G.; Semenova, Y. Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Sci. Rep. 2017, 7, 4725. [Google Scholar] [CrossRef]
- Bai, Y.; Miao, Y.; Zhang, H.; Yao, J. Simultaneous measurement of temperature and relative humidity based on a microfiber Sagnac loop and MoS2. J. Lightwave Technol. 2019, 38, 840–845. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Chen, Y.; Wang, J. Simultaneous measurement of temperature and RI based on an optical microfiber coupler assembled by a polarization maintaining fiber. Appl. Phys. Lett. 2019, 114, 151903. [Google Scholar] [CrossRef]
- Jung, Y.; Brambilla, G.; Richardson, D.J. Optical microfiber coupler for broadband single-mode operation. Opt. Express 2009, 17, 5273–5278. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.T.; Cho, K.J.; Im, K.; Baik, S.-J.; Lee, C.-H.; Lee, J. High Sensitivity Refractive Index Sensor Based on a Wet-Etched Fused Fiber Coupler. IEEE Sens. J. 2011, 11, 1568–1572. [Google Scholar] [CrossRef]
- Liao, C.R.; Wang, D.N.; He, X.; Yang, M.W. Twisted Optical Microfibers for Refractive Index Sensing. IEEE Photonics Technol. Lett. 2011, 23, 848–850. [Google Scholar] [CrossRef]
- Bo, L.; Wang, P.; Semenova, Y.; Farrell, G. High Sensitivity Fiber Refractometer Based on an Optical Microfiber Coupler. IEEE Photonics Technol. Lett. 2013, 25, 228–230. [Google Scholar] [CrossRef]
- Wang, S.; Liao, Y.; Yang, H.; Wang, X.; Wang, J. Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers. Appl. Opt. 2015, 54, 10283–10289. [Google Scholar] [CrossRef]
- Hernandez-Arriaga, M.V.; Bello-Jimenez, M.A.; Rodriguez-Cobos, A.; Andres, M.V. Experimental Investigation of Fused Biconical Fiber Couplers for Measuring Refractive Index Changes in Aqueous Solutions. IEEE Sens. J. 2016, 16, 132–136. [Google Scholar] [CrossRef]
- Li, K.; Zhang, T.; Liu, G.; Zhang, N.; Zhang, M.; Wei, L. Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Appl. Phys. Lett. 2016, 109, 101101. [Google Scholar] [CrossRef]
- Hernandez-Arriaga, M.V.; Bello-Jimenez, M.A.; Rodriguez-Cobos, A.; Lopez-Estopier, R.; Andres, M.V. High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers. IEEE Sens. J. 2017, 17, 333–339. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, J.; Cheng, B.; Song, Y.; Hua, L.; Xiao, H. A microfiber half coupler for refractive index sensing. IEEE Photonics Technol. Lett. 2017. [Google Scholar] [CrossRef]
- Li, K.; Zhang, N.M.Y.; Zhang, N.; Zhang, T.; Liu, G.; Wei, L. Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers. J. Lightwave Technol. 2018, 36, 2409–2415. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Wang, J.; Chen, Y. Highly sensitive temperature sensor based on an isopropanol-sealed optical microfiber coupler. Appl. Phys. Lett. 2018, 113, 111901. [Google Scholar] [CrossRef]
- Li, K.; Nan, Z.; Ying, Z.N.M.; Liu, G.; Zhang, T.; Lei, W. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. Opt. Lett. 2018, 43, 679–682. [Google Scholar] [CrossRef]
- Li, K.; Zhang, T.; Liu, G.; Nan, Z.; Wei, L. Extraordinary sensitivity in optical microfiber based refractive index sensors near the turning point of turning point of effective group index difference. In Proceedings of the Asia Communications and Photonics Conference, Wuhan, China, 2–5 November 2016. [Google Scholar]
- Wanvisa, T.; Rand, I.; Timothy, L.; Martynas, B.; Gilberto, B. Optical Nanofiber Coupler Sensors Operating in the Cut-Off Wavelength Region. IEEE Sens. J. 2018, 18, 2782–2787. [Google Scholar]
- Wang, P.; Jiang, Y.; Yi, Y.; Brambilla, G. Ultra-high-sensitivity refractive index sensor based on dual-microfiber coupler structure with Vernier effect. Opt. Lett. 2020, 45, 1268–1271. [Google Scholar]
- Chen, G.-T.; Zhang, Y.-X.; Zhang, W.-G.; Kong, L.-X.; Zhao, X.; Zhang, Y.; Li, Z.; Yan, T.-Y. Double helix microfiber coupler enhances refractive index sensing based on Vernier effect. Opt. Fiber Technol. 2020, 54, 102112. [Google Scholar] [CrossRef]
- Tazawa, H.; Kanie, T.; Katayama, M. Fiber-optic coupler based refractive index sensor and its application to biosensing. Appl. Phys. Lett. 2007, 91, 113901.113901–113901.113903. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, S.C.; Zheng, X.; Xu, F.; Lu, Y.Q. A miniature reflective micro-force sensor based on a microfiber coupler. Opt. Express 2014, 22, 2443–2450. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.D.; Lee, S.-G.; Lee, K.; Lee, S.B. A Tunable-Transmission Sagnac Interferometer Using an Optical Microfiber. Jpn. J. Appl. Phys. 2010, 49, 082502. [Google Scholar] [CrossRef]
- Chang, J.; Ma, L.; Liu, T.; Wang, H.; Huo, D.; Ni, J.; Shi, Z. Fiber optic vibration sensor based on over-coupled fused coupler. In Proceedings of the Fundamental Problems of Optoelectronics & Microelectronics III, Harbin, China, 5 March 2007. [Google Scholar]
- Zhao, L.; Zhang, Y.; Chen, Y.; Chen, Y.; Yi, G.; Wang, J. A Fiber Strain Sensor with High Resolution and Large Measurement Scale. IEEE Sens. J. 2020, 20, 2991–2996. [Google Scholar] [CrossRef]
- Kim, K.-T.; Park, K.-H. Fiber-Optic Temperature Sensor Based on Single Mode Fused Fiber Coupler. J. Opt. Soc. Korea 2008, 12, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ding, M.; Brambilla, G.; Semenova, Y.; Wu, Q.; Farrell, G. High temperature performance of an optical microfibre coupler and its potential use as a sensor. Electron. Lett. 2012, 48, 283–284. [Google Scholar] [CrossRef] [Green Version]
- Jaroszewicz, L.R.; Semenova, Y.; Bo, L.; Wang, P.; Mathews, S.; Wu, Q.; Teng, M.; Yu, C.; Farrell, G. Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors, Krakow, Poland, 19–22 May 2013. [Google Scholar]
- Sun, L.; Semenova, Y.; Wu, Q.; Liu, D.; Yuan, J.; Sang, X.; Yan, B.; Wang, K.; Yu, C.; Farrell, G. Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Z.; Du, Y.; Lewis, E.; Farrell, G.; Wang, P. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids. Opt. Express 2018, 26, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Pang, F.; Zeng, X.; Chen, N.; Chen, Z.; Wang, T. Temperature sensor using an optical fiber coupler with a thin film. Appl. Opt. 2008, 47, 3530. [Google Scholar] [CrossRef]
- Cao, L.; Yu, Y.; Xiao, M.; Yang, J.; Zhang, X.; Meng, Z. High sensitivity conductivity-temperature-depth sensing based on an optical microfiber coupler combined fiber loop. Chin. Opt. Lett. 2020, 18, 011202. [Google Scholar] [CrossRef]
- Bo, L.; Wang, P.; Semenova, Y.; Farrell, G. Optical microfiber coupler based humidity sensor with a polyethylene oxide coating. Microw. Opt. Technol. Lett. 2015, 57, 457–460. [Google Scholar] [CrossRef]
- Sun, L.; Semenova, Y.; Wu, Q.; Liu, D.; Yuan, J.; Ma, T.; Sang, X.; Yan, B.; Wang, K.; Yu, C.; et al. High Sensitivity Ammonia Gas Sensor Based on a Silica-Gel-Coated Microfiber Coupler. J. Lightwave Technol. 2017, 35, 2864–2870. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Peng, Y.; Chen, M.-Q.; Tong, R.-J. Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay. Sens. Actuators B Chem. 2018, 263, 312–318. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, Y.; Chen, M.-Q.; Xia, F.; Tong, R.-J. U-shaped microfiber coupler coated with polyvinyl alcohol film for highly sensitive humidity detection. Sens. Actuators A Phys. 2019, 285, 628–636. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, Y.; Hu, X.-G.; Chen, M.-Q. Humidity sensor based on unsymmetrical U-shaped twisted microfiber coupler with wide detection range. Sens. Actuators B Chem. 2019, 290, 406–413. [Google Scholar] [CrossRef]
- Bai, Y.; Miao, Y.; Zhang, H.; Yao, J. Simultaneous measurement of relative humidity and temperature using a microfiber coupler coated with molybdenum disulfide nanosheets. Opt. Mater. Express 2019, 9, 2846–2858. [Google Scholar] [CrossRef]
- Luo, L.; Pu, S.; Tang, J.; Zeng, X.; Lahoubi, M. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid. Appl. Phys. Lett. 2015, 106, 193507. [Google Scholar] [CrossRef]
- Yan, S.-C.; Chen, Y.; Li, C.; Xu, F.; Lu, Y.-Q. Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler. Opt. Express 2015, 23, 9407–9414. [Google Scholar] [CrossRef]
- Pu, S.; Mao, L.; Yao, T.; Gu, J.; Lahoubi, M.; Zeng, X. Microfiber Coupling Structures for Magnetic Field Sensing With Enhanced Sensitivity. IEEE Sens. J. 2017, 17, 5857–5861. [Google Scholar] [CrossRef]
- Yan, S.-C.; Liu, Z.-Y.; Li, C.; Ge, S.-J.; Xu, F.; Lu, Y.-Q. “Hot-wire” microfluidic flowmeter based on a microfiber coupler. Opt. Lett. 2016, 41, 5680–5683. [Google Scholar] [CrossRef]
- Liu, D.; Han, W.; Mallik, A.K.; Yuan, J.; Yu, C.; Farrell, G.; Semenova, Y.; Wu, Q. High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water. Opt. Express 2016, 24, 24179–24187. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-R.; Wu, G.-X.; Chen, J.-H.; Yan, S.-C.; Liu, Z.-Y.; Xu, F.; Lu, Y.-Q. Ethanol Gas Sensor Based on a Hybrid Polymethyl Methacrylate–Silica Microfiber Coupler. J. Lightwave Technol. 2018, 36, 2031–2036. [Google Scholar] [CrossRef]
- Liu, D.; Kumar, R.; Wei, F.; Han, W.; Mallik, A.K.; Yuan, J.; Wan, S.; He, X.; Kang, Z.; Li, F.; et al. High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol. Sens. Actuators B Chem. 2018, 271, 1–8. [Google Scholar] [CrossRef]
- Zhou, G.; Niu, L.; Jiang, Y.; Liu, H.; Xie, X.; Yan, H.; Yan, L.; Liu, J.; Chen, J.; Miao, X.; et al. Sensing of airborne molecular contaminants based on microfiber coupler with mesoporous silica coating. Sens. Actuators A Phys. 2019, 287, 1–7. [Google Scholar] [CrossRef]
- Bo, L.; O’Mahony, C.C.; Semenova, Y.; Gilmartin, N.; Wang, P.; Farrell, G. Microfiber coupler based label-free immunosensor. Opt. Express 2014, 22, 8150–8155. [Google Scholar] [CrossRef] [Green Version]
- Yadav, T.K.; Narayanaswamy, R.; Abu Bakar, M.H.; Kamil, Y.M.; Mahdi, M.A. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express 2014, 22, 22802–22807. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Wei, Y.; Hao, P.; Chi, M.; Liu, Y.; Wu, Y. Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect. Biosens. Bioelectron. 2018, 106, 99–104. [Google Scholar] [CrossRef]
- Ismaeel, R.; Lee, T.; Melvin, T.; Brambilla, G. Sensitive Optical Microfiber-Based Biosensors for DNA Detection; Optical Society of America: Barcelona, Spain, 2014. [Google Scholar]
- Ismaeel, R.; Lee, T.; Gouveia, M.; Ming, D.; Melvin, T.; Brambilla, G. Design and Optimization of a Microfiber Coupler for Biosensing; Optical Society of America: Rio Grande, Puerto Rico, USA, 2013. [Google Scholar]
- Kaiwei, L.; Nan, Z.; Meng, Y.Z.N.; Wenchao, Z.; Ting, Z.; Ming, C.; Lei, W. Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing. Sens. Actuators B Chem. 2018, 275, 16–24. [Google Scholar]
- Henning, M. Fiber optic couplers for protein detection. Sens. Mater. 2002, 14, 339–345. [Google Scholar]
- Yu, J.B.; Chen, Z.; Luo, Y.H.; Ge, J.; Yu, J.H. A fused side-adhered optical fiber coupler based on side-polished fibers. J. Optoelectron. Laser. 2013, 24, 897–902. [Google Scholar]
- Parriaux, O.; Gidon, S.; Kuznetsov, A.A. Distributed coupling on polished single-mode optical fibers. Appl. Opt. 1981, 20, 2420–2423. [Google Scholar] [CrossRef]
- Danh, T.; Kee, K.; Sang, S. Single-mode fiber directional couplers fabricated by twist-etching techniques (stabilization). IEEE J. Quantum. Elect. 1981, 17, 988–991. [Google Scholar] [CrossRef]
- Son, G.; Jung, Y.; Yu, K. Tapered Optical Fiber Couplers Fabricated by Droplet-Based Chemical Etching. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Tong, L. Micro/Nanofibre Optical Sensors: Challenges and Prospects. Sensors 2018, 18, 903. [Google Scholar] [CrossRef] [Green Version]
- Payne, F.P.; Hussey, C.D.; Yataki, M.S. Polarisation analysis of strongly fused and weakly fused tapered couplers. Electron. Lett. 1985, 21, 561. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Bo, L.; Semenova, Y.; Farrell, G.; Brambilla, G. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing. Biosensors 2015, 5, 471–499. [Google Scholar] [CrossRef] [Green Version]
- Morishita, K.; Yamazaki, K. Wavelength and Polarization Dependences of Fused Fiber Couplers. J. Lightwave Technol. 2011, 29, 330–334. [Google Scholar] [CrossRef]
- Morishita, K.; Takashina, K. Polarization properties of fused fiber couplers and polarizing beamsplitters. J. Lightwave Technol. 1991, 9, 1503–1507. [Google Scholar] [CrossRef]
- Szu-Wen, Y.; Tzong-Lin, W.; Cheng Wen, W.; Hung-Chun, C. Numerical modeling of weakly fused fiber-optic polarization beamsplitters. Part II: The three-dimensional electromagnetic model. J. Lightwave Technol. 1998, 16, 691–696. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Zhang, W.; Kong, L.; Zhao, X.; Zhang, Y.; Li, Z.; Yan, T. High-sensitivity temperature sensor based on ethanol-sealed double helix microfiber coupler. Opt. Eng. 2020, 59, 027109. [Google Scholar] [CrossRef]
- Lin, C.; Wang, Y.; Huang, Y.; Liao, C.; Bai, Z.; Hou, M.; Wang, Y. Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement. Photonics Res. 2017, 5, 132–136. [Google Scholar] [CrossRef]
- Wen, X.; Ning, T.; Bai, Y.; Li, C.; Li, J.; Zhang, C. Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove. Opt. Express 2015, 23, 11526. [Google Scholar] [CrossRef]
- Chen, R.; Fernando, G.F.; Butler, T.; Badcock, R.A. A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler. Meas. Sci. Technol. 2004, 15, 1490–1495. [Google Scholar] [CrossRef]
- Wang, S.; Lu, P.; Zhang, L.; Liu, D.; Zhang, J. Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil. IEEE Sens. J. 2014, 14, 2293–2298. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Wang, L.; Zhao, Z. Investigation on the response of fused taper couplers to ultrasonic wave. Appl. Opt. 2015, 54, 6986–6993. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Fu, W. Numerical analysis of dynamic response process of microfiber coupler sensor to ultrasonic wave. Sens. Actuators A Phys. 2020, 301, 111775. [Google Scholar] [CrossRef]
- Jasim, A.A.; Zulkifli, A.Z.; Muhammad, M.Z.; Harun, S.W.; Ahmad, H. A new compact micro-ball lens structure at the cleaved tip of microfiber coupler for displacement sensing. Sens. Actuators A Phys. 2013, 189, 177–181. [Google Scholar] [CrossRef]
- Rivero, J.; Goicoechea, J.; Arregui, F.J. Layer-by-Layer Nano-assembly: A Powerful Tool for Optical Fiber Sensing Applications. Sensors 2019, 19, 683. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, J.; Zamarreno, C.R.; Matias, I.R.; Arregui, F.J. Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sens. Actuators B Chem. 2008, b132, 305–311. [Google Scholar] [CrossRef]
- Elosua, C.; Arregui, F.J.; Zamarreño, C.R.; Bariain, C.; Luquin, A.; Laguna, M.; Matias, I.R. Volatile organic compounds optical fiber sensor based on lossy mode resonances. Sens. Actuators B Chem. 2012, 173, 523–529. [Google Scholar] [CrossRef]
- Zubiate, P.; Zamarreño, C.R.; Sánchez, P.; Matias, I.R.; Arregui, F.J. High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices. Biosens. Bioelectron. 2016, 93, 176–181. [Google Scholar] [CrossRef]
Year | Configuration | Detected Parameter | Optical Transducer | Sensitivity | Reference |
---|---|---|---|---|---|
2011 | MFC | RI (refractive index) | None | 1125 nm/RIU | [34] |
2014 | MFC loop | Micro-force | None | 3754 nm/N | [50] |
2014 | MFC loop | Twist | None | 0.9 nm/° | [27] |
2015 | MFC | Relative humidity(RH) | Polyethylene oxide | 2.23 nm/%RH | [61] |
2015 | MFC | Magnetic field | Magnetic fluid (MF) | 191.8 pm/Oe | [67] |
2016 | MFC | Flow rate | None | 2.183 nm/(μL/s) | [70] |
2017 | MFC | Ammonia | Silica gel | 2.23 nm/ppm | [62] |
2018 | MFC | Cardiac troponin I (cTnI) | Antibodies + polyelectrolyte layer | 2 fg/mL | [77] |
2018 | MFC | Temperature | RI matching liquid | 5.3 nm/°C | [58] |
2019 | MFC | Airborne molecular contaminants (AMCs) | Mesoporous silica | 0.541 nm/(mg/m3) | [74] |
Years | Configuration | Sensitive Materials | Sensitivity | Dynamic Range | Reference |
---|---|---|---|---|---|
2012 | MFC tip | None | 11.96 pm/°C | Up to 1283 °C | [23] |
2012 | MFC | None | 36.59 pm/°C | Up to 1000 °C | [55] |
2018 | MFC | None | 60 pm/°C | 84 to 661 °C | [46] |
2008 | MFC | Organic–inorganic sol–gel | 0.17 nm/°C | −50 to 100 °C | [59] |
2008 | MFC | Glycerol–water solution | −1.5 nm/°C | 22 to 60 °C | [54] |
2013 | MFC | Liquid crystal | 0.7 nm/°C | 14 to 70 °C | [56] |
2015 | MFC | Polyimide | 1.17 nm/°C | 0 to 35 °C | [37] |
2016 | MFC | Silica gel | 0.55 nm/°C | 20 to 40 °C | [57] |
2018 | MFC | Isopropanol | −5.89 nm/°C | 30 to 40 °C | [43] |
2018 | MFC | Glycerin–water solution | 5.3 nm/°C | 35 to 45 °C | [58] |
2018 | MFC | Polydimethylsiloxane(PDMS) | 16.78 nm/°C | 26 to 28.5 °C | [42] |
2019 | MFC loop | MoS2 | −123.5 pm/°C | 20 to 80 °C | [31] |
2020 | MFC | Ethanol | −2.03 nm/°C | 25 to 55 °C | [92] |
Year | Structure | Materials | Parameters | Sensitivity | Sensing Range | Literature |
---|---|---|---|---|---|---|
2015 | MFC | Al wire | Magnetic field | ~0.0496 mT−1 | 0–10 mT | [68] |
Electric current | ~1.0899 A−1 | 0–0.43 A | ||||
2015 | MFC | Polyimide | Temperature | 1.17 nm/°C | 0–35 °C | [37] |
Salinity | −1.03 nm/‰ | 5–35‰ | ||||
2016 | MFC | Silica gel | Humidity | 1.6 nm/% RH | 70–86%RH | [57] |
Temperature | 0.55 nm/°C | 20–40 °C | ||||
2019 | MFC loop | MoS2 | Humidity | 176.6 pm/%RH | 60.6–78.6%RH | [31] |
Temperature | −123.5 pm/°C | 20–80 °C | ||||
2019 | MFC + PMF loop | None | Temperature | 0.88 dB/°C | 35–41 °C | [32] |
RI | 12,020 nm/RIU | 1.3333–1.3341 | ||||
2020 | MFC loop | None | Temperature | −248.2 pm/°C | ∼45 °C | [60] |
Salinity | 501.4 pm/‰ | ∼29.5‰ | ||||
Depth (TSD) | 122.6 pm/MPa | ∼179 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M.; Chen, Z.; Zhao, Y.; Aruna Gandhi, M.S.; Li, Q.; Fu, H. State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications. Biosensors 2020, 10, 179. https://doi.org/10.3390/bios10110179
Dai M, Chen Z, Zhao Y, Aruna Gandhi MS, Li Q, Fu H. State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications. Biosensors. 2020; 10(11):179. https://doi.org/10.3390/bios10110179
Chicago/Turabian StyleDai, Maolin, Zhenmin Chen, Yuanfang Zhao, Manthangal Sivanesan Aruna Gandhi, Qian Li, and Hongyan Fu. 2020. "State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications" Biosensors 10, no. 11: 179. https://doi.org/10.3390/bios10110179
APA StyleDai, M., Chen, Z., Zhao, Y., Aruna Gandhi, M. S., Li, Q., & Fu, H. (2020). State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications. Biosensors, 10(11), 179. https://doi.org/10.3390/bios10110179