-
Cell-Based Sensors for the Detection of EGF and EGF-Stimulated Ca2+ Signaling -
Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects -
Robust Detection of Cancer Markers Using All-Dielectric Metasurface Biosensors -
An Electrolyte-Gated Graphene Field-Effect Transistor for Detection of Gadolinium(III) in Aqueous Media
Journal Description
Biosensors
Biosensors
is an international, peer-reviewed, open access journal on the technology and science of biosensors published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Chemistry, Analytical) / CiteScore - Q1 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.7 days after submission; acceptance to publication is undertaken in 3.3 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.743 (2021);
5-Year Impact Factor:
5.972 (2021)
Latest Articles
Exonuclease III Can Efficiently Cleave Linear Single-Stranded DNA: Reshaping Its Experimental Applications in Biosensors
Biosensors 2023, 13(6), 581; https://doi.org/10.3390/bios13060581 (registering DOI) - 26 May 2023
Abstract
Exonuclease III (Exo III) has been generally used as a double-stranded DNA (dsDNA)-specific exonuclease that does not degrade single-stranded DNA (ssDNA). Here, we demonstrate that Exo III at concentrations above 0.1 unit/μL can efficiently digest linear ssDNA. Moreover, the dsDNA specificity of Exo
[...] Read more.
Exonuclease III (Exo III) has been generally used as a double-stranded DNA (dsDNA)-specific exonuclease that does not degrade single-stranded DNA (ssDNA). Here, we demonstrate that Exo III at concentrations above 0.1 unit/μL can efficiently digest linear ssDNA. Moreover, the dsDNA specificity of Exo III is the foundation of many DNA target recycling amplification (TRA) assays. We demonstrate that with 0.3 and 0.5 unit/μL Exo III, the degradation of an ssDNA probe, free or fixed on a solid surface, was not discernibly different, regardless of the presence or absence of target ssDNA, indicating that Exo III concentration is critical in TRA assays. The study has expanded the Exo III substrate scope from dsDNA to both dsDNA and ssDNA, which will reshape its experimental applications.
Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Open AccessArticle
Modeling of Paper-Based Bi-Material Cantilever Actuator for Microfluidic Biosensors
by
, , , and
Biosensors 2023, 13(6), 580; https://doi.org/10.3390/bios13060580 (registering DOI) - 26 May 2023
Abstract
This research explores the dynamics of a fluidically loaded Bi-Material cantilever (B-MaC), a critical component of μPADs (microfluidic paper-based analytical devices) used in point-of-care diagnostics. Constructed from Scotch Tape and Whatman Grade 41 filter paper strips, the B-MaC’s behavior under fluid imbibition is
[...] Read more.
This research explores the dynamics of a fluidically loaded Bi-Material cantilever (B-MaC), a critical component of μPADs (microfluidic paper-based analytical devices) used in point-of-care diagnostics. Constructed from Scotch Tape and Whatman Grade 41 filter paper strips, the B-MaC’s behavior under fluid imbibition is examined. A capillary fluid flow model is formulated for the B-MaC, adhering to the Lucas–Washburn (LW) equation, and supported by empirical data. This paper further investigates the stress–strain relationship to estimate the modulus of the B-MaC at various saturation levels and to predict the behavior of the fluidically loaded cantilever. The study shows that the Young’s modulus of Whatman Grade 41 filter paper drastically decreases to approximately 20 MPa (about 7% of its dry-state value) upon full saturation. This significant decrease in flexural rigidity, in conjunction with the hygroexpansive strain and coefficient of hygroexpansion (empirically deduced to be 0.008), is essential in determining the B-MaC’s deflection. The proposed moderate deflection formulation effectively predicts the B-MaC’s behavior under fluidic loading, emphasizing the measurement of maximum (tip) deflection using interfacial boundary conditions for the B-MaC’s wet and dry regions. This knowledge of tip deflection will prove instrumental in optimizing the design parameters of B-MaCs.
Full article
(This article belongs to the Special Issue Paper-Based Microfluidic Devices and Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Graphene-Based Sensors for the Detection of Microorganisms in Food: A Review
by
, , , , , and
Biosensors 2023, 13(6), 579; https://doi.org/10.3390/bios13060579 (registering DOI) - 26 May 2023
Abstract
There is a constant need to maintain the quality of consumed food. In retrospect to the recent pandemic and other food-related problems, scientists have focused on the numbers of microorganisms that are present in different food items. As a result of changes in
[...] Read more.
There is a constant need to maintain the quality of consumed food. In retrospect to the recent pandemic and other food-related problems, scientists have focused on the numbers of microorganisms that are present in different food items. As a result of changes in certain environmental factors such as temperature and humidity, there is a constant risk for the growth of harmful microorganisms, such as bacteria and fungi, in consumed food. This questions the edibility of the food items, and constant monitoring to avoid food poisoning-related diseases is required. Among the different nanomaterials used to develop sensors to detect microorganisms, graphene has been one of the primary materials due to its exceptional electromechanical properties. Graphene sensors are able to detect microorganisms in both a composite and non-composite manner, due to their excellent electrochemical characteristics such as their high aspect ratios, excellent charge transfer capacity and high electron mobility. The paper depicts the fabrication of some of these graphene-based sensors, and their utilization to detect bacteria, fungi and other microorganisms that are present in very small amounts in different food items. In addition to the classified manner of the graphene-based sensors, this paper also depicts some of the challenges that exist in current scenarios, and their possible remedies.
Full article
(This article belongs to the Special Issue Novel Materials in Biosensing Devices)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrochemical Sensing of Dopamine Using Polypyrrole/Molybdenum Oxide Bilayer-Modified ITO Electrode
Biosensors 2023, 13(6), 578; https://doi.org/10.3390/bios13060578 (registering DOI) - 26 May 2023
Abstract
The electrochemical sensing of biomarkers has attracted more and more attention due to the advantages of electrochemical biosensors, including their ease of use, excellent accuracy, and small analyte volumes. Thus, the electrochemical sensing of biomarkers has a potential application in early disease diagnosis
[...] Read more.
The electrochemical sensing of biomarkers has attracted more and more attention due to the advantages of electrochemical biosensors, including their ease of use, excellent accuracy, and small analyte volumes. Thus, the electrochemical sensing of biomarkers has a potential application in early disease diagnosis diagnosis. Dopamine neurotransmitters have a vital role in the transmission of nerve impulses. Here, the fabrication of a polypyrrole/molybdenum dioxide nanoparticle (MoO3 NP)-modified ITO electrode based on a hydrothermal technique followed by electrochemical polymerization is reported. Several techniques were used to investigate the developed electrode’s structure, morphology, and physical characteristics, including SEM, FTIR, EDX, N2 adsorption, and Raman spectroscopy. The results imply the formation of tiny MoO3 NPs with an average diameter of 29.01 nm. The developed electrode was used to determine low concentrations of dopamine neurotransmitters based on cyclic voltammetry and square wave voltammetry techniques. Furthermore, the developed electrode was used for monitoring dopamine in a human serum sample. The LOD for detecting dopamine by using MoO3 NPs/ITO electrodes based on the SWV technique was around 2.2 nmol L−1.
Full article
(This article belongs to the Special Issue Current Trends in Polymer-Based Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
A Chemiluminescence Enzyme Immunoassay Based on Biotinylated Nanobody and Streptavidin Amplification for Diazinon Sensitive Quantification
by
, , , , , , , and
Biosensors 2023, 13(6), 577; https://doi.org/10.3390/bios13060577 - 25 May 2023
Abstract
The advantages of genetic modification and preferable physicochemical qualities make nanobody (Nb) easy to develop a sensitive and stable immunosensor platform. Herein, an indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) based on biotinylated Nb was established for the quantification of diazinon (DAZ). The anti-DAZ
[...] Read more.
The advantages of genetic modification and preferable physicochemical qualities make nanobody (Nb) easy to develop a sensitive and stable immunosensor platform. Herein, an indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) based on biotinylated Nb was established for the quantification of diazinon (DAZ). The anti-DAZ Nb, named Nb-EQ1, with good sensitivity and specificity, was obtained from an immunized library via a phage display technique, where the molecular docking results indicated that the hydrogen bond and hydrophobic interactions between DAZ and complementarity-determining region 3 and framework region 2 in Nb-EQ1 played a critical role in the Nb-DAZ affinity processes. Subsequently, the Nb-EQ1 was further biotinylated to generate a bi-functional Nb-biotin, and then an ic-CLEIA was developed for DAZ determination via signal amplification of the biotin–streptavidin platform. The results showed that the proposed method based on Nb-biotin had a high specificity and sensitivity to DAZ, with a relative broader linear range of 0.12–25.96 ng/mL. After being 2-folds dilution of the vegetable samples matrix, the average recoveries were 85.7–113.9% with a coefficient of variation of 4.2–19.2%. Moreover, the results for the analysis of real samples by the developed ic-CLEIA correlated well with that obtained by reference method GC-MS (R2 ≥ 0.97). In summary, the ic-CLEIA based on biotinylated Nb-EQ1 and streptavidin recognition demonstrated itself to be a convenient tool for the quantification of DAZ in vegetables.
Full article
(This article belongs to the Section Intelligent Biosensors and Bio-Signal Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry
by
, , , , , , , , , and
Biosensors 2023, 13(6), 576; https://doi.org/10.3390/bios13060576 - 25 May 2023
Abstract
Neurotransmitter release is important to study in order to better understand neurological diseases and treatment approaches. Serotonin is a neurotransmitter known to play key roles in the etiology of neuropsychiatric disorders. Fast-scan cyclic voltammetry (FSCV) has enabled the detection of neurochemicals, including serotonin,
[...] Read more.
Neurotransmitter release is important to study in order to better understand neurological diseases and treatment approaches. Serotonin is a neurotransmitter known to play key roles in the etiology of neuropsychiatric disorders. Fast-scan cyclic voltammetry (FSCV) has enabled the detection of neurochemicals, including serotonin, on a sub-second timescale via the well-established carbon fiber microelectrode (CFME). However, poor chronic stability and biofouling, i.e., the adsorption of interferent proteins to the electrode surface upon implantation, pose challenges in the natural physiological environment. We have recently developed a uniquely designed, freestanding, all-diamond boron-doped diamond microelectrode (BDDME) for electrochemical measurements. Key potential advantages of the device include customizable electrode site layouts, a wider working potential window, improved stability, and resistance to biofouling. Here, we present a first report on the electrochemical behavior of the BDDME in comparison with CFME by investigating in vitro serotonin (5-HT) responses with varying FSCV waveform parameters and biofouling conditions. While the CFME delivered lower limits of detection, we also found that BDDMEs showed more sustained 5-HT responses to increasing or changing FSCV waveform-switching potential and frequency, as well as to higher analyte concentrations. Biofouling-induced current reductions were significantly less pronounced at the BDDME when using a “Jackson” waveform compared to CFMEs. These findings are important steps towards the development and optimization of the BDDME as a chronically implanted biosensor for in vivo neurotransmitter detection.
Full article
(This article belongs to the Special Issue Biosensors and Neuroscience)
►▼
Show Figures

Figure 1
Open AccessCommunication
Non-Destructive Screening of Sodium Metabisulfite Residue on Shrimp by SERS with Copy Paper Loaded with AgNP
Biosensors 2023, 13(6), 575; https://doi.org/10.3390/bios13060575 - 25 May 2023
Abstract
In order to prompt the appearance of the shrimp color, sodium metabisulfite is frequently added in shrimp processing, which is, however, prohibited in China and many other countries. This study aimed to establish a surface-enhanced Raman spectroscopy (SERS) method for screening sodium metabisulfite
[...] Read more.
In order to prompt the appearance of the shrimp color, sodium metabisulfite is frequently added in shrimp processing, which is, however, prohibited in China and many other countries. This study aimed to establish a surface-enhanced Raman spectroscopy (SERS) method for screening sodium metabisulfite residues on shrimp surfaces, in a non-destructive manner. The analysis was carried out using a portable Raman spectrometer jointly with copy paper loaded with silver nanoparticles as the substrate material. The SERS response of sodium metabisulfite gives two fingerprint peaks at 620 (strong) and 927 (medium) cm−1, respectively. This enabled unambiguous confirmation of the targeted chemical. The sensitivity of the SERS detection method was determined to be 0.1 mg/mL, which was equal to residual sodium metabisulfite on the shrimp surface at 0.31 mg/kg. The quantitative relationship between the 620 cm−1 peak intensities and the concentrations of sodium metabisulfite was established. The linear fitting equation was y = 2375x + 8714 with R2 = 0.985. Reaching an ideal balance in simplicity, sensitivity, and selectivity, this study demonstrates that the proposed method is ideally suitable for in-site and non-destructive screening of sodium metabisulfite residues in seafood.
Full article
(This article belongs to the Special Issue Smart and Multifunctional Nanomaterials and Applications for Food Safety)
►▼
Show Figures

Figure 1
Open AccessArticle
One Single Tube Reaction of Aptasensor-Based Magnetic Sensing System for Selective Fluorescent Detection of VEGF in Plasma
Biosensors 2023, 13(6), 574; https://doi.org/10.3390/bios13060574 - 24 May 2023
Abstract
In this study, a simple, easy and convenient fluorescent sensing system for the detection of the vascular endothelial growth factor (VEGF) based on VEGF aptamers, aptamer-complementary fluorescence-labeled probe and streptavidin magnetic beads was developed in one single tube. The VEGF is the most
[...] Read more.
In this study, a simple, easy and convenient fluorescent sensing system for the detection of the vascular endothelial growth factor (VEGF) based on VEGF aptamers, aptamer-complementary fluorescence-labeled probe and streptavidin magnetic beads was developed in one single tube. The VEGF is the most important biomarker in cancer, and it is investigated that the serum VEGF level varied according to the different types and courses of cancers. Hence, efficient quantification of VEGF is able to improve the accuracy of cancer diagnoses and the precision of disease surveillance. In this research, the VEGF aptamer was designed to be able to bind with the VEGF by forming G-quadruplex secondary structures; then, the magnetic beads would capture the non-binding aptamers due to non-steric interference; and finally, the fluorescence-labeled probes were hybridized with the aptamers captured by the magnetic beads. Therefore, the fluorescent intensity in the supernatant would specifically reflect the present VEGF. After an overall optimization, the optimal conditions for the detection of VEGF were as followed, KCl, 50 μM; pH 7.0; aptamer, 0.1 μM; and magnetic beads, 10 μL (4 μg/μL). The VEGF could be well quantified within a range of 0.2-2.0 ng/mL in plasma, and the calibration curve possessed a good linearity (y = 1.0391x + 0.5471, r = 0.998). The detection limit (LOD) was calculated to be 0.0445 ng/mL according to the formula (LOD = 3.3 × σ/S). The specificity of this method was also investigated under the appearance of many other serum proteins, and the data showed good specificity in this aptasensor-based magnetic sensing system. This strategy provided a simple, sensitive and selective biosensing platform for the detection of serum VEGF. Finally, it was expected that this detection technique can be used to promote more clinical applications.
Full article
(This article belongs to the Special Issue Aptasensor for Biomarker Detection: From Design to Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Metal-Multilayered Nanomechanical Cantilever Sensor for Detection of Molecular Adsorption
Biosensors 2023, 13(6), 573; https://doi.org/10.3390/bios13060573 - 23 May 2023
Abstract
A metal-multilayered nanomechanical cantilever sensor was proposed to reduce the temperature effect for highly sensitive gas molecular detection. The multilayer structure of the sensor reduces the bimetallic effect, allowing for the detection of differences in molecular adsorption properties on various metal surfaces with
[...] Read more.
A metal-multilayered nanomechanical cantilever sensor was proposed to reduce the temperature effect for highly sensitive gas molecular detection. The multilayer structure of the sensor reduces the bimetallic effect, allowing for the detection of differences in molecular adsorption properties on various metal surfaces with higher sensitivity. Our results indicate that the sensor exhibits higher sensitivity to molecules with greater polarity under mixed conditions with nitrogen gas. We demonstrate that stress changes caused by differences in molecular adsorption on different metal surfaces can be detected and that this approach could be used to develop a gas sensor with selectivity for specific gas species.
Full article
(This article belongs to the Special Issue Nanomechanical Sensors for Gas Detection)
►▼
Show Figures

Figure 1
Open AccessCommunication
Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature
Biosensors 2023, 13(6), 572; https://doi.org/10.3390/bios13060572 - 23 May 2023
Abstract
A passive flexible patch for human skin temperature measurement based on contact sensing and contactless interrogation is presented. The patch acts as an RLC resonant circuit embedding an inductive copper coil for magnetic coupling, a ceramic capacitor as the temperature-sensing element and an
[...] Read more.
A passive flexible patch for human skin temperature measurement based on contact sensing and contactless interrogation is presented. The patch acts as an RLC resonant circuit embedding an inductive copper coil for magnetic coupling, a ceramic capacitor as the temperature-sensing element and an additional series inductor. The temperature affects the capacitance of the sensor and consequently the resonant frequency of the RLC circuit. Thanks to the additional inductor, the dependency of the resonant frequency from the bending of the patch has been reduced. Considering a curvature radius of the patch of up to 73 mm, the maximum relative variation in the resonant frequency has been reduced from 812 ppm to 7.5 ppm. The sensor has been contactlessly interrogated by a time-gated technique through an external readout coil electromagnetically coupled to the patch coil. The proposed system has been experimentally tested within the range of 32–46 °C, giving a sensitivity of −619.8 Hz/°C and a resolution of 0.06 °C.
Full article
(This article belongs to the Special Issue Biosensors State-of-the-Art in Italy)
►▼
Show Figures

Figure 1
Open AccessCommunication
Insight into the Mode of Action of 8-Hydroxyquinoline-Based Blockers on the Histamine Receptor 2
Biosensors 2023, 13(6), 571; https://doi.org/10.3390/bios13060571 (registering DOI) - 23 May 2023
Abstract
Histamine receptor 2 (HRH2) blockers are used to treat peptic ulcers and gastric reflux. Chlorquinaldol and chloroxine, which contain an 8-hydroxyquinoline (8HQ) core, have recently been identified as blocking HRH2. To gain insight into the mode of action of
[...] Read more.
Histamine receptor 2 (HRH2) blockers are used to treat peptic ulcers and gastric reflux. Chlorquinaldol and chloroxine, which contain an 8-hydroxyquinoline (8HQ) core, have recently been identified as blocking HRH2. To gain insight into the mode of action of 8HQ-based blockers, here, we leverage an HRH2-based sensor in yeast to evaluate the role of key residues in the HRH2 active site on histamine and 8HQ-based blocker binding. We find that the HRH2 mutations D98A, F254A, Y182A, and Y250A render the receptor inactive in the presence of histamine, while HRH2:D186A and HRH2:T190A retain residual activity. Based on molecular docking studies, this outcome correlates with the ability of the pharmacologically relevant histamine tautomers to interact with D98 via the charged amine. Docking studies also suggest that, unlike established HRH2 blockers that interact with both ends of the HRH2 binding site, 8HQ-based blockers interact with only one end, either the end framed by D98/Y250 or T190/D186. Experimentally, we find that chlorquinaldol and chloroxine still inactivate HRH2:D186A by shifting their engagement from D98 to Y250 in the case of chlorquinaldol and D186 to Y182 in the case of chloroxine. Importantly, the tyrosine interactions are supported by the intramolecular hydrogen bonding of the 8HQ-based blockers. The insight gained in this work will aid in the development of improved HRH2 therapeutics. More generally, this work demonstrates that Gprotein-coupled receptor (GPCR)-based sensors in yeast can help elucidate the mode of action of novel ligands for GPCRs, a family of receptors that bind 30% of FDA therapeutics.
Full article
(This article belongs to the Special Issue Genetically Encoded, Small-Molecule Biosensors and Their Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
On-Field Test of Tuberculosis Diagnosis through Exhaled Breath Analysis with a Gas Sensor Array
by
, , , , , , , and
Biosensors 2023, 13(5), 570; https://doi.org/10.3390/bios13050570 - 22 May 2023
Abstract
Tuberculosis (TB) is among the more frequent causes of death in many countries. For pulmonary TB, early diagnosis greatly increases the efficiency of therapies. Although highly sensitive tests based on nucleic acid amplification tests (NAATs) and loop-mediated isothermal amplification (TB-LAMP) are available, smear
[...] Read more.
Tuberculosis (TB) is among the more frequent causes of death in many countries. For pulmonary TB, early diagnosis greatly increases the efficiency of therapies. Although highly sensitive tests based on nucleic acid amplification tests (NAATs) and loop-mediated isothermal amplification (TB-LAMP) are available, smear microscopy is still the most widespread diagnostics method in most low–middle-income countries, and the true positive rate of smear microscopy is lower than 65%. Thus, there is a need to increase the performance of low-cost diagnosis. For many years, the use of sensors to analyze the exhaled volatile organic compounds (VOCs) has been proposed as a promising alternative for the diagnosis of several diseases, including tuberculosis. In this paper, the diagnostic properties of an electronic nose (EN) based on sensor technology previously used to identify tuberculosis have been tested on-field in a Cameroon hospital. The EN analyzed the breath of a cohort of subjects including pulmonary TB patients (46), healthy controls (38), and TB suspects (16). Machine learning analysis of the sensor array data allows for the identification of the pulmonary TB group with respect to healthy controls with 88% accuracy, 90.8% sensitivity, 85.7% specificity, and 0.88 AUC. The model trained with TB and healthy controls maintains its performance when it is applied to symptomatic TB suspects with a negative TB-LAMP. These results encourage the investigation of electronic noses as an effective diagnostic method for future inclusion in clinical practice.
Full article
(This article belongs to the Special Issue E-nose, E-tongue and E-eye for Food Safety, Environmental Monitoring and Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods
by
, , , , and
Biosensors 2023, 13(5), 569; https://doi.org/10.3390/bios13050569 - 22 May 2023
Abstract
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited
[...] Read more.
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.
Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Healthcare Section)
►▼
Show Figures

Figure 1
Open AccessReview
A Review on Photonic Sensing Technologies: Status and Outlook
by
, , , , and
Biosensors 2023, 13(5), 568; https://doi.org/10.3390/bios13050568 - 22 May 2023
Abstract
In contemporary science and technology, photonic sensors are essential. They may be made to be extremely resistant to some physical parameters while also being extremely sensitive to other physical variables. Most photonic sensors may be incorporated on chips and operate with CMOS technology,
[...] Read more.
In contemporary science and technology, photonic sensors are essential. They may be made to be extremely resistant to some physical parameters while also being extremely sensitive to other physical variables. Most photonic sensors may be incorporated on chips and operate with CMOS technology, making them suitable for use as extremely sensitive, compact, and affordable sensors. Photonic sensors can detect electromagnetic (EM) wave changes and convert them into an electric signal due to the photoelectric effect. Depending on the requirements, scientists have found ways to develop photonic sensors based on several interesting platforms. In this work, we extensively review the most generally utilized photonic sensors for detecting vital environmental parameters and personal health care. These sensing systems include optical waveguides, optical fibers, plasmonics, metasurfaces, and photonic crystals. Various aspects of light are used to investigate the transmission or reflection spectra of photonic sensors. In general, resonant cavity or grating-based sensor configurations that work on wavelength interrogation methods are preferred, so these sensor types are mostly presented. We believe that this paper will provide insight into the novel types of available photonic sensors.
Full article
(This article belongs to the Section Optical and Photonic Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
Fe3O4@Au Core–Shell Magnetic Nanoparticles for the Rapid Analysis of E. coli O157:H7 in an Electrochemical Immunoassay
by
, , , , , , , and
Biosensors 2023, 13(5), 567; https://doi.org/10.3390/bios13050567 - 22 May 2023
Abstract
Escherichia coli (E. coli) O157:H7 is a pathogenic bacterium that causes serious toxic effects in the human gastrointestinal tract. In this paper, a method for its effective analytical control in a milk sample was developed. To perform rapid (1 h) and
[...] Read more.
Escherichia coli (E. coli) O157:H7 is a pathogenic bacterium that causes serious toxic effects in the human gastrointestinal tract. In this paper, a method for its effective analytical control in a milk sample was developed. To perform rapid (1 h) and accurate analysis, monodisperse Fe3O4@Au magnetic nanoparticles were synthesized and used in an electrochemical sandwich-type magnetic immunoassay. Screen-printed carbon electrodes (SPCE) were used as transducers, and electrochemical detection was performed by chronoamperometry using a secondary horseradish peroxidase-labeled antibody and 3,3′,5,5′-tetramethylbenzidine. This magnetic assay was used to determine the E. coli O157:H7 strain in the linear range from 20 to 2 × 106 CFU/mL, with a limit of detection of 20 CFU/mL. The selectivity of the assay was tested using Listeria monocytogenes p60 protein, and the applicability of the assay was assessed by analyzing a commercial milk sample, demonstrating the usefulness of the synthesized nanoparticles in the developed magnetic immunoassay.
Full article
(This article belongs to the Special Issue Printed Electrochemical Biosensors)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Direct Electron Transfer of Glucose Oxidase on Pre-Anodized Paper/Carbon Electrodes Modified through Zero-Length Cross-Linkers for Glucose Biosensors
Biosensors 2023, 13(5), 566; https://doi.org/10.3390/bios13050566 - 22 May 2023
Abstract
A disposable paper-based glucose biosensor with direct electron transfer (DET) of glucose oxidase (GOX) was developed through simple covalent immobilization of GOX on a carbon electrode surface using zero-length cross-linkers. This glucose biosensor exhibited a high electron transfer rate (ks, 3.363 s−1
[...] Read more.
A disposable paper-based glucose biosensor with direct electron transfer (DET) of glucose oxidase (GOX) was developed through simple covalent immobilization of GOX on a carbon electrode surface using zero-length cross-linkers. This glucose biosensor exhibited a high electron transfer rate (ks, 3.363 s−1) as well as good affinity (km, 0.03 mM) for GOX while keeping innate enzymatic activities. Furthermore, the DET-based glucose detection was accomplished by employing both square wave voltammetry and chronoamperometric techniques, and it achieved a glucose detection range from 5.4 mg/dL to 900 mg/dL, which is wider than most commercially available glucometers. This low-cost DET glucose biosensor showed remarkable selectivity, and the use of the negative operating potential avoided interference from other common electroactive compounds. It has great potential to monitor different stages of diabetes from hypoglycemic to hyperglycemic states, especially for self-monitoring of blood glucose.
Full article
(This article belongs to the Special Issue Biosensing and Diagnosis)
►▼
Show Figures

Figure 1
Open AccessCommunication
Highly Sensitive Detection of Urea Using Si Electrolyte-Gated Transistor with Low Power Consumption
Biosensors 2023, 13(5), 565; https://doi.org/10.3390/bios13050565 - 22 May 2023
Abstract
We experimentally demonstrate Si-based electrolyte-gated transistors (EGTs) for detecting urea. The top-down-fabricated device exhibited excellent intrinsic characteristics, including a low subthreshold swing (SS) (~80 mV/dec) and a high on/off current ratio (~107). The sensitivity, which varied depending on the
[...] Read more.
We experimentally demonstrate Si-based electrolyte-gated transistors (EGTs) for detecting urea. The top-down-fabricated device exhibited excellent intrinsic characteristics, including a low subthreshold swing (SS) (~80 mV/dec) and a high on/off current ratio (~107). The sensitivity, which varied depending on the operation regime, was analyzed with the urea concentrations ranging from 0.1 to 316 mM. The current-related response could be enhanced by reducing the SS of the devices, whereas the voltage-related response remained relatively constant. The urea sensitivity in the subthreshold regime was as high as 1.9 dec/pUrea, four times higher than the reported value. The extracted power consumption of 0.3 nW was extremely low compared to other FET-type sensors.
Full article
(This article belongs to the Special Issue Biosensors Based on Transistors)
►▼
Show Figures

Figure 1
Open AccessArticle
Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX
Biosensors 2023, 13(5), 564; https://doi.org/10.3390/bios13050564 - 22 May 2023
Abstract
A capture systematic evolution of ligands by exponential enrichment (Capture-SELEX) was described to discover novel aptamers specific for 5-hydroxymethylfurfural (5-HMF), and a biosensor based on molecular beacon was constructed to detect 5-HMF. The ssDNA library was immobilized to streptavidin (SA) resin to select
[...] Read more.
A capture systematic evolution of ligands by exponential enrichment (Capture-SELEX) was described to discover novel aptamers specific for 5-hydroxymethylfurfural (5-HMF), and a biosensor based on molecular beacon was constructed to detect 5-HMF. The ssDNA library was immobilized to streptavidin (SA) resin to select the specific aptamer. The selection progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing (HTS). Candidate and mutant aptamers were selected and identified by Isothermal Titration Calorimetry (ITC). The FAM-aptamer and BHQ1-cDNA were designed as the quenching biosensor to detect 5-HMF in milk matrix. After the 18th round selection, the Ct value decreased from 9.09 to 8.79, indicating that the library was enriched. The HTS results indicated that the total sequence numbers for 9th, 13th, 16th, and 18th were 417054, 407987, 307666, and 259867, but the number of sequences for the top 300 sequences was gradually increased from 9th to 18th, and the ClustalX2 analysis showed that there were four families with high homology rate. ITC results indicated that the Kd values of H1 and its mutants H1-8, H1-12, H1-14, and H1-21 were 2.5 μM, 1.8 μM, 1.2 μM, 6.5 μM, and 4.7 μM. The linear range of the quenching biosensor was from 0 μM to 75 μM, and it had a similar linear range in the 0.1% milk matrix. This is the first report to select a novel aptamer specific for 5-HMF and develop quenching biosensor for the rapid detection of 5-HMF in milk matrix.
Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrodeposited rGO/AuNP/MnO2 Nanocomposite-Modified Screen-Printed Carbon Electrode for Sensitive Electrochemical Sensing of Arsenic(III) in Water
Biosensors 2023, 13(5), 563; https://doi.org/10.3390/bios13050563 - 21 May 2023
Abstract
Herein, a simple and portable electrochemical sensor based on a reduced graphene oxide/gold nanoparticle/manganese dioxide (rGO/AuNP/MnO2) nanocomposite-modified screen-printed carbon electrode (SPCE) was constructed by the facile stepwise electrodeposition method and used for electrochemical detection of As(III). The resultant electrode was characterized
[...] Read more.
Herein, a simple and portable electrochemical sensor based on a reduced graphene oxide/gold nanoparticle/manganese dioxide (rGO/AuNP/MnO2) nanocomposite-modified screen-printed carbon electrode (SPCE) was constructed by the facile stepwise electrodeposition method and used for electrochemical detection of As(III). The resultant electrode was characterized for its morphological, structural, and electrochemical properties using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). From the morphologic structure, it can be clearly observed that the AuNPs and MnO2 alone or their hybrid were densely deposited or entrapped in thin rGO sheets on the porous carbon surface, which may favor the electro-adsorption of As(III) on the modified SPCE. It is interesting that the nanohybrid modification endows the electrode with a significant decrease in charge transfer resistance and an increase in electroactive specific surface area, which dramatically increases the electro-oxidation current of As(III). This improved sensing ability was ascribed to the synergistic effect of gold nanoparticles with excellent electrocatalytic property and reduced graphene oxide with good electrical conductivity, as well as the involvement of manganese dioxide with a strong adsorption property in the electrochemical reduction of As(III). Under optimized conditions, the sensor can detect As(III) via square wave anodic stripping voltammetry (SWASV) with a low limit of detection of 2.4 μg L−1 and a linear range of 25–200 μg L−1. The proposed portable sensor shows the advantages of a simple preparation procedure, low cost, good repeatability, and long-term stability. The feasibility of rGO/AuNPs/MnO2/SPCE for detecting As(III) in real water was further verified.
Full article
(This article belongs to the Special Issue Electrochemical and Optical Sensing Technologies for Healthcare and Environmental Analysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrochemical Biosensing of L-DOPA Using Tyrosinase Immobilized on Carboxymethyl Starch-Graft[email protected] Nanocomposite
Biosensors 2023, 13(5), 562; https://doi.org/10.3390/bios13050562 - 21 May 2023
Abstract
The electrochemical behavior of the immobilized tyrosinase (Tyrase) on a modified glassy carbon electrode with carboxymethyl starch-graft-polyaniline/multi-walled carbon nanotubes nanocomposite (CMS-g[email protected]) was investigated. The molecular properties of CMS-g[email protected] nanocomposite and its morphological characterization were examined by Fourier
[...] Read more.
The electrochemical behavior of the immobilized tyrosinase (Tyrase) on a modified glassy carbon electrode with carboxymethyl starch-graft-polyaniline/multi-walled carbon nanotubes nanocomposite (CMS-g[email protected]) was investigated. The molecular properties of CMS-g[email protected] nanocomposite and its morphological characterization were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). A simple drop-casting method was employed to immobilize Tyrase on the CMS-g[email protected] nanocomposite. In the cyclic voltammogram (CV), a pair of redox peaks were observed at the potentials of +0.25 to −0.1 V and E°’ was equal to 0.1 V and the apparent rate constant of electron transfer (Ks) was calculated at 0.4 s−1. Using differential pulse voltammetry (DPV), the sensitivity and selectivity of the biosensor were investigated. The biosensor exhibits linearity towards catechol and L-dopa in the concentration range of 5–100 and 10–300 μM with a sensitivity of 2.4 and 1.11 μA μΜ−1 cm−2 and limit of detection (LOD) 25 and 30 μM, respectively. The Michaelis-Menten constant (Km) was calculated at 42 μΜ for catechol and 86 μΜ for L-dopa. After 28 working days, the biosensor provided good repeatability and selectivity, and maintained 67% of its stability. The existence of -COO− and -OH groups in carboxymethyl starch, -NH2 groups in polyaniline, and high surface-to-volume ratio and electrical conductivity of multi-walled carbon nanotubes in the CMS-g[email protected] nanocomposite cause good Tyrase immobilization on the surface of the electrode.
Full article
(This article belongs to the Special Issue Advanced Functional Materials for Electrochemical Sensor and Biosensor Applications)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Biosensors Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Biosensors, Micromachines, Molecules, Sensors
Advances in Microfluidics and Lab on a Chip Technology
Topic Editors: Roman Grzegorz Szafran, Yi YangDeadline: 31 May 2023
Topic in
Biosensors, Future Pharmacology, Micromachines, Pharmaceuticals, Pharmaceutics
Microfluidics for Pharmaceutical Applications
Topic Editors: Trieu Nguyen, Dang Duong BangDeadline: 31 July 2023
Topic in
Applied Nano, Biosensors, Chemosensors, Materials, Sensors
Nanomaterial Based Gas Sensors for Environmental Air Pollutant Detection
Topic Editors: Tesfalem Welearegay, Radu IonescuDeadline: 30 September 2023
Topic in
Applied Sciences, Biosensors, J. Imaging, Sensors, Signals
Bio-Inspired Systems and Signal Processing
Topic Editors: Donald Y.C. Lie, Chung-Chih Hung, Jian XuDeadline: 30 November 2023
Conferences
Special Issues
Special Issue in
Biosensors
Biosensors for Bacterial and Viral Detection
Guest Editor: Jessica Kubicek-SutherlandDeadline: 31 May 2023
Special Issue in
Biosensors
Artificial Recognizers and Application Thereof for Sensing
Guest Editor: Mahmoud Amouzadeh TabriziDeadline: 15 June 2023
Special Issue in
Biosensors
Photonics-Based (Bio-)Sensors for a Healthy Planet
Guest Editor: Wendy MeulebroeckDeadline: 30 June 2023
Special Issue in
Biosensors
Recent Progress in Bioplasmonics Technologies
Guest Editors: Nan-Fu Chiu, Shih-Chung Wei, Guo-Chung DongDeadline: 15 July 2023
Topical Collections
Topical Collection in
Biosensors
Novel Sensing System for Biomedical Applications
Collection Editors: Chia-Ching Chang, Chiun-Jye Yuan, Chih-Chia Huang
Topical Collection in
Biosensors
Microsystems for Cell Cultures
Collection Editors: Iordania Constantinou, Thomas E. Winkler
Topical Collection in
Biosensors
Biosensors for Point-of-Care Diagnostics
Collection Editor: Guozhen Liu
Topical Collection in
Biosensors
Wearable Biosensors for Healthcare Applications
Collection Editors: Ming-Yih Lee, Wen-Yen Lin



