-
Biosensors: Electrochemical Devices—General Concepts and Performance
-
Rapid Bacteria Detection from Patients’ Blood Bypassing Classical Bacterial Culturing
-
Functionalized Porous Carbon Nitrides Boost Cardiac Troponin Biosensor Performance
-
Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection
-
Biomolecule-Based Optical Metamaterials: Design and Applications
Journal Description
Biosensors
Biosensors
is an international, peer-reviewed, open access journal on the technology and science of biosensors published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Chemistry, Analytical) / CiteScore - Q1 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.7 days after submission; acceptance to publication is undertaken in 3.3 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.743 (2021);
5-Year Impact Factor:
5.972 (2021)
Latest Articles
A SERS-Based Dual-Parameter Monitoring Nanoprobe of ROS and PI3K/Akt during Ginsenoside Rg3-Induced Cell Apoptosis
Biosensors 2023, 13(2), 212; https://doi.org/10.3390/bios13020212 (registering DOI) - 31 Jan 2023
Abstract
Both the reactive oxygen species (ROS) level and Phosphatidylinositol 3 Kinase (PI3K) protein content are two crucial parameters for characterizing states of cell apoptosis. Current methods measure these parameters with two different techniques, respectively, which usually lead to evaluation contingency. Ginsenoside Rg3 exhibits
[...] Read more.
Both the reactive oxygen species (ROS) level and Phosphatidylinositol 3 Kinase (PI3K) protein content are two crucial parameters for characterizing states of cell apoptosis. Current methods measure these parameters with two different techniques, respectively, which usually lead to evaluation contingency. Ginsenoside Rg3 exhibits an excellent anticancer effect, which is enacted by the Phosphatidylinositol 3 Kinase/Protein Kinase B (PI3K/Akt) pathway involving ROS; however, the precise mechanism that induces cell apoptosis remains unknown. This is due to the lack of information on quantitative intracellular ROS and PI3K. Here, we used a surface-enhanced Raman scattering (SERS)-based boric acid nanoprobe to monitor the intracellular ROS level and phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) content, which reflects the regulatory effect of the PI3K/Akt pathway. After treatment with ginsenoside Rg3, the PI3K/Akt content first increased and then decreased as the ROS level increased. Moreover, when the ROS level significantly increased, the mitochondrial membrane potential reduced, thus indicating the dynamic regulation effect of intracellular ROS level on the PI3K/Akt pathway. Importantly, in addition to avoiding evaluation contingency, which is caused by measuring the aforementioned parameters with two different techniques, this SERS-based dual-parameter monitoring nanoprobe provides an effective solution for simultaneous ROS level and PI3K content measurements during cell apoptosis. Furthermore, the intracellular ROS level was also able to have a dynamic regulatory effect on the PI3K/Akt pathway, which is essential for studying ROS/PI3K/Akt-pathway-related cell apoptosis and its activation mechanism.
Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Open AccessReview
Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends
by
and
Biosensors 2023, 13(2), 211; https://doi.org/10.3390/bios13020211 (registering DOI) - 31 Jan 2023
Abstract
Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain’s highest levels of mental function and play key roles in neurological disorders. Accordingly, the
[...] Read more.
Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain’s highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors’ performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.
Full article
(This article belongs to the Special Issue Advanced Materials for Electrochemical Sensors and Biosensors Development)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Magnetic SERS Strip Based on 4-mercaptophenylboronic Acid-Modified Fe3O4@Au for Active Capture and Simultaneous Detection of Respiratory Bacteria
Biosensors 2023, 13(2), 210; https://doi.org/10.3390/bios13020210 - 31 Jan 2023
Abstract
The rapid diagnosis and detection of respiratory bacteria at the early stage can effectively control the epidemic spread and bacterial infection. Here, we designed a rapid, ultrasensitive, and quantitative lateral flow immunoassay (LFA) strip for simultaneous detection of respiratory bacteria S. aureus and
[...] Read more.
The rapid diagnosis and detection of respiratory bacteria at the early stage can effectively control the epidemic spread and bacterial infection. Here, we designed a rapid, ultrasensitive, and quantitative lateral flow immunoassay (LFA) strip for simultaneous detection of respiratory bacteria S. aureus and S. pneumoniae. In this assay, the surface enhanced Raman scattering (SERS) tags were designed through combining magnetite Raman enhancement nanoparticle Fe3O4@Au/DTNB and recognition element 4-mercaptophenylboronic acid (4-MPBA). Further, 4-MPBA could capture multiple bacteria in a complex environmental solution. Based on the strategies, Fe3O4@Au/DTNB-mediated magnetic enrichment and 4-MPBA-mediated universal capture capabilities improved the detection sensitivity, the limits of detection for S. aureus and S. pneumoniae were as low as 8 and 13 CFU mL−1, respectively, which were more sensitive than those of colloidal gold method. The Fe3O4@Au/DTNB/Au/4-MPBA-LFA also exhibited good reproducibility, excellent specificity, and high recovery rates in sputum samples, indicating its potential application in the detection of respiratory bacteria samples.
Full article
(This article belongs to the Special Issue Advances in Integrated Biosensing Technologies for Rapid Diagnosis of Infectious Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
One-Step Fabrication of Paper-Based Inkjet-Printed Graphene for Breath Monitor Sensors
Biosensors 2023, 13(2), 209; https://doi.org/10.3390/bios13020209 - 30 Jan 2023
Abstract
Irregularities in breathing patterns can be detected using breath monitor sensors, and this help clinicians to predict health disorders ranging from sleep disorders to heart failures. Variations in humidity during the inhalation and exhalation of breath have been utilized as a marker to
[...] Read more.
Irregularities in breathing patterns can be detected using breath monitor sensors, and this help clinicians to predict health disorders ranging from sleep disorders to heart failures. Variations in humidity during the inhalation and exhalation of breath have been utilized as a marker to detect breath patterns, and graphene-based devices are the favored sensing media for relative humidity (RH). In general, most graphene-based RH sensors have been used to explore resistance change as a measurement parameter to calibrate against the RH value, and they are prone to noise interference. Here, we fabricated RH sensors using graphene ink as a sensing medium and printed them in the shape of interdigital electrodes on glossy paper using an office inkjet printer. Further, we investigated the capacitance change in the sensor for the RH changes in the range of 10–70%. It exhibited excellent sensitivity with 0.03 pF/% RH, good stability, and high intraday and interday repeatability, with relative standard deviations of 1.2% and 2.2%, respectively. Finally, the sensor was embedded into a face mask and interfaced with a microcontroller, and capacitance change was measured under three different breathing situations: normal breathing, deep breathing, and coughing. The result show that the dominant frequency for normal breath is 0.22 Hz, for deep breath, it is 0.11 Hz, and there was no significant dominant cough frequency due to persistent coughing and inconsistent patterns. Moreover, the sensor exhibited a short response and recovery time (<5 s) during inhalation and exhalation. Thus, the proposed paper-based RH sensor is promising wearable and disposable healthcare technology for clinical and home care health applications.
Full article
(This article belongs to the Special Issue Biophysical Sensors for Biomedical/Health Monitoring Applications)
►▼
Show Figures

Graphical abstract
Open AccessReview
Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview
by
and
Biosensors 2023, 13(2), 208; https://doi.org/10.3390/bios13020208 - 30 Jan 2023
Abstract
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis
[...] Read more.
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.
Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for DNA and RNA Detection)
Open AccessArticle
Salivary Glucose Detection with Laser Induced Graphene/AgNPs Non-Enzymatic Sensor
Biosensors 2023, 13(2), 207; https://doi.org/10.3390/bios13020207 - 30 Jan 2023
Abstract
The tailoring of novel nanomaterials for sensitive glucose detection through a non-enzymatic mechanism is currently under intensive research. Here, we present a laser-induced graphene (LIG) electrode decorated with silver nanoparticles (AgNPs) as a catalytic element for the direct electrooxidation of glucose. The AgNPs
[...] Read more.
The tailoring of novel nanomaterials for sensitive glucose detection through a non-enzymatic mechanism is currently under intensive research. Here, we present a laser-induced graphene (LIG) electrode decorated with silver nanoparticles (AgNPs) as a catalytic element for the direct electrooxidation of glucose. The AgNPs were synthesized through cyclic voltammetry using LIG as a template, resulting in a porous tridimensional assembly with anchored nanostructures. The characterization corroborated the formation of LIG/AgNPs composite with distinctive peaks attributed to Ag2O and AgO interaction with glucose. The proposed non-enzymatic sensors were successfully applied for non-enzymatic amperometric detection, exhibiting a linear range from 1 to 10 mM in the first peak (+0.7 V) and a narrow range from 1 to 2 mM with higher sensitivity of 52.2 mA/mM and improved LOD of 45 μM in the second peak (+0.55 V). The applicability of the LIG/AgNPs sensor was evaluated with spiked artificial saliva in a PoC format using a smartphone potentiostat, showing an average recovery rate of 91%. The analysis was performed in a portable, mobile, and low-cost fashion using a simulated non-invasive sample, with promising results in clinical ranges.
Full article
(This article belongs to the Special Issue New Biosensors and Nanosensors)
►▼
Show Figures

Graphical abstract
Open AccessReview
Salivary Diagnostics in Pediatrics and the Status of Saliva-Based Biosensors
by
, , , , , and
Biosensors 2023, 13(2), 206; https://doi.org/10.3390/bios13020206 - 30 Jan 2023
Abstract
Salivary biomarkers are increasingly being used as an alternative to diagnose and monitor the progression of various diseases due to their ease of use, on site application, non-invasiveness, and most likely improved patient compliance. Here, we highlight the role of salivary biosensors in
[...] Read more.
Salivary biomarkers are increasingly being used as an alternative to diagnose and monitor the progression of various diseases due to their ease of use, on site application, non-invasiveness, and most likely improved patient compliance. Here, we highlight the role of salivary biosensors in the general population, followed by the application of saliva as a diagnostic tool in the pediatric population. We searched the literature for pediatric applications of salivary biomarkers, more specifically, in children from 0 to 18 years old. The use of those biomarkers spans autoimmune, developmental disorders, oncology, neuropsychiatry, respiratory illnesses, gastrointestinal disorders, and oral diseases. Four major applications of salivary proteins as biomarkers are: (1) dental health (caries, stress from orthodontic appliances, and gingivitis); (2) gastrointestinal conditions (eosinophilic esophagitis, acid reflux, appendicitis); (3) metabolic conditions (obesity, diabetes); and (4) respiratory conditions (asthma, allergic rhinitis, small airway inflammation, pneumonia). Genomics, metabolomics, microbiomics, proteomics, and transcriptomics, are various other classifications for biosensing based on the type of biomarkers used and reviewed here. Lastly, we describe the recent advances in pediatric biosensing applications using saliva. This work guides scientists in fabricating saliva-based biosensors by comprehensively overviewing the potential markers and techniques that can be employed.
Full article
(This article belongs to the Special Issue Non-invasive Medical Devices for Detection and Monitoring within Healthcare)
►▼
Show Figures

Figure 1
Open AccessReview
Smart Mask as Wearable for Post-Pandemic Personal Healthcare
Biosensors 2023, 13(2), 205; https://doi.org/10.3390/bios13020205 - 30 Jan 2023
Abstract
A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and
[...] Read more.
A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and dust particles but also to sense, reflect or even respond to environmental conditions. This smartness is of particular interest among academia and industries due to its potential in disease detection, health monitoring and caring aspects. In this review, we provide an overlook of the current air filtration strategies used in masks, from structural designs to integrated functional modules that empower the mask’s ability to sense and transfer physiological or environmental information to become smart. Specifically, we discussed recent developments in masks designed to detect macroscopic physiological signals from the wearer and mask-based disease diagnoses, such as COVID-19. Further, we propose the concept of next-generation smart masks and the requirements from material selection and function design perspectives that enable masks to interact and play crucial roles in health-caring wearables.
Full article
(This article belongs to the Special Issue Advanced Bioensors for Emerging Wearables, Smart Textiles, and Medical Devices)
►▼
Show Figures

Figure 1
Open AccessReview
Impedimetric Sensing: An Emerging Tool for Combating the COVID-19 Pandemic
by
, , , , , , , and
Biosensors 2023, 13(2), 204; https://doi.org/10.3390/bios13020204 - 30 Jan 2023
Abstract
The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and
[...] Read more.
The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology’s current limitations to move forward in this current pandemic and prepare for future outbreaks.
Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Bioelectronic Devices Section)
►▼
Show Figures

Figure 1
Open AccessArticle
Online Inspection of Browning in Yali Pears Using Visible-Near Infrared Spectroscopy and Interpretable Spectrogram-Based CNN Modeling
Biosensors 2023, 13(2), 203; https://doi.org/10.3390/bios13020203 - 29 Jan 2023
Abstract
Browning is the most common physiological disease of Yali pears during storage. At the initial stage, browning only occurs in the tissues near the fruit core and cannot be detected from the appearance. The disease, if not identified and removed in time, will
[...] Read more.
Browning is the most common physiological disease of Yali pears during storage. At the initial stage, browning only occurs in the tissues near the fruit core and cannot be detected from the appearance. The disease, if not identified and removed in time, will seriously undermine the quality and sale of the whole batch of fruit. Therefore, there is an urgent need to explore a method for early diagnosis of the browning in Yali pears. In order to realize the dynamic and online real-time detection of the browning in Yali pears, this paper conducted online discriminant analysis on healthy Yali pears and those with different degrees of browning using visible-near infrared (Vis-NIR) spectroscopy. The experimental results show that the prediction accuracy of the original spectrum combined with a 1D-CNN deep learning model reached 100% for the test sets of browned pears and healthy pears. Features extracted by the 1D-CNN method were converted into images by Gramian angular field (GAF) for PCA visual analysis, showing that deep learning had good performance in extracting features. In conclusion, Vis-NIR spectroscopy combined with the 1D-CNN discriminant model can realize online detection of browning in Yali pears.
Full article
(This article belongs to the Special Issue Rapid Nondestructive Testing Technology-Based Biosensors for Food Analysis)
►▼
Show Figures

Figure 1
Open AccessReview
Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application
by
, , , , , , , and
Sadanand Pandey
Biosensors 2023, 13(2), 202; https://doi.org/10.3390/bios13020202 - 29 Jan 2023
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for
[...] Read more.
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Bioelectronic Devices Section)
Open AccessArticle
Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA
by
, , , , , and
Biosensors 2023, 13(2), 201; https://doi.org/10.3390/bios13020201 - 29 Jan 2023
Abstract
There are ten million people in the world who have Parkinson’s disease. The most potent medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA leads to the appearance of side effects, as a result of which the control and monitoring
[...] Read more.
There are ten million people in the world who have Parkinson’s disease. The most potent medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic properties and then used to develop an analytical method for detecting and quantifying L-DOPA. The proposed sensor offers a wide linear range (1–100 µM), high sensitivity (1.38 µA µM−1 cm−2) and a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection.
Full article
(This article belongs to the Special Issue Advances in Nanomedicines for Disease Diagnosis and Therapeutics)
►▼
Show Figures

Graphical abstract
Open AccessReview
Recent Progress in Plasmonic Based Electrochemiluminescence Biosensors: A Review
Biosensors 2023, 13(2), 200; https://doi.org/10.3390/bios13020200 - 29 Jan 2023
Abstract
Electrochemiluminescence (ECL) analysis has become a powerful tool in recent biomarker detection and clinic diagnosis due to its high sensitivity and broad linear range. To improve the analytical performance of ECL biosensors, various advanced nanomaterials have been introduced to regulate the ECL signal
[...] Read more.
Electrochemiluminescence (ECL) analysis has become a powerful tool in recent biomarker detection and clinic diagnosis due to its high sensitivity and broad linear range. To improve the analytical performance of ECL biosensors, various advanced nanomaterials have been introduced to regulate the ECL signal such as graphene, gold nanomaterials, and quantum dots. Among these nanomaterials, some plasmonic nanostructures play important roles in the fabrication of ECL biosensors. The plasmon effect for the ECL signal includes ECL quenching by resonant energy transfer, ECL enhancement by surface plasmon resonance enhancement, and a change in the polarized angle of ECL emission. The influence can be regulated by the distance between ECL emitters and plasmonic materials, and the characteristics of polarization angle-dependent surface plasmon coupling. This paper outlines the recent advances of plasmonic based ECL biosensors involving various plasmonic materials including noble metals and semiconductor nanomaterials. The detection targets in these biosensors range from small molecules, proteins, nucleic acids, and cells thanks to the plasmonic effect. In addition to ECL biosensors, ECL microscopy analysis with plasmonic materials is also highlighted because of the enhanced ECL image quality by the plasmonic effect. Finally, the future opportunities and challenges are discussed if more plasmonic effects are introduced into the ECL realm.
Full article
(This article belongs to the Special Issue Plasmonic Based Biosensors)
►▼
Show Figures

Graphical abstract
Open AccessArticle
A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus
by
, , , , , , , , and
Biosensors 2023, 13(2), 199; https://doi.org/10.3390/bios13020199 - 29 Jan 2023
Abstract
Two specific monoclonal antibodies (mAbs) were screened, and an immunochromatographic strip (ICS) test for rapid and specific detection of cucumber green mottle mosaic virus (CGMMV) was developed. The coat protein of CGMMV was heterologously expressed as an immunogen, and specific capture mAb 2C9
[...] Read more.
Two specific monoclonal antibodies (mAbs) were screened, and an immunochromatographic strip (ICS) test for rapid and specific detection of cucumber green mottle mosaic virus (CGMMV) was developed. The coat protein of CGMMV was heterologously expressed as an immunogen, and specific capture mAb 2C9 and the detection mAb 4D4 were screened by an uncompetitive immunoassay. The test and control lines on the nitrocellulose membrane were coated with the purified 2C9 and a goat anti-mouse IgG, respectively, and a nanogold probe combined with 4D4 was applied to the conjugate pad. Using these mAbs, a rapid and sensitive ICS was developed. Within the sandwich mode of 2C9–CGMMV–4D4, the test line showed a corresponding positive relationship with CGMMV in infected samples. The ICS test had a detection limit of 1:5000 (w/v) for CGMMV in samples and was specific for CGMMV, with no observed cross-reaction with TMV or CMV.
Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Quartz Crystal Microbalance Technology Coupled with Impedance for the Dynamic Monitoring of the Cardiomyocyte Beating Function and Drug Screening
Biosensors 2023, 13(2), 198; https://doi.org/10.3390/bios13020198 - 28 Jan 2023
Abstract
The main sensing techniques used to study myocardial pulsation are electrical impedance sensing (EIS) and by quartz crystal microbalance (QCM). While electrical impedance technology is the gold standard for the study of myocardial pulsation, the clinical application of drugs is being followed up
[...] Read more.
The main sensing techniques used to study myocardial pulsation are electrical impedance sensing (EIS) and by quartz crystal microbalance (QCM). While electrical impedance technology is the gold standard for the study of myocardial pulsation, the clinical application of drugs is being followed up in real time additionally, thus, QCM technology needs to be further developed as a very important class of quality sensor technology. Moreover, the application of EIS, in combination with the QCM, for monitoring myocardial pulsation, has been rarely reported. In this paper, a series of cell growth and adhesion conditions were optimized using rat primary cardiomyocytes, and QCM was used in combination with EIS to monitor the adhesion and the myocardial pulsation ability of the cells in real time. Furthermore, cardiomyocytes that adhered to the QCM and EIS were treated with isoprenaline (ISO), a positive inotropic drug, and verapamil (VRP), a negative inotropic drug. Next, the cell index (CI)-time (T) plots, beating amplitude (BA) and beating rate (BR) of the cardiomyocytes were calculated and changes in these parameters, before and after, dosing were evaluated. The results showed that the QCM technique results were not only consistent with the results obtained with EIS, but also that the QCM technique had a certain degree of sensitivity for the calculation of cardiomyocyte beating. Thus, our findings validate the reliability and validity of the QCM technique for measuring cardiomyocyte beating and drug testing. We hope that further studies would evaluate the application of the QCM technology for clinical use.
Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of SAW Sensors for Nanoplastics and Grapevine Virus Detection
by
, , , , , , and
Biosensors 2023, 13(2), 197; https://doi.org/10.3390/bios13020197 - 28 Jan 2023
Abstract
In this work, we report the parametric optimization of surface acoustic wave (SAW) delay lines on Lithium niobate for environmental monitoring applications. First, we show that the device performance can be improved by acting opportunely on geometrical design parameters of the interdigital transducers
[...] Read more.
In this work, we report the parametric optimization of surface acoustic wave (SAW) delay lines on Lithium niobate for environmental monitoring applications. First, we show that the device performance can be improved by acting opportunely on geometrical design parameters of the interdigital transducers such as the number of finger pairs, the finger overlap length and the distance between the emitter and the receiver. Then, the best-performing configuration is employed to realize SAW sensors. As aerosol particulate matter (PM) is a major threat, we first demonstrate a capability for the detection of polystyrene particles simulating nanoparticulates/nanoplastics, and achieve a limit of detection (LOD) of 0.3 ng, beyond the present state-of-the-art. Next, the SAW sensors were used for the first time to implement diagnostic tools able to detect Grapevine leafroll-associated virus 3 (GLRaV-3), one of the most widespread viruses in wine-growing areas, outperforming electrochemical impedance sensors thanks to a five-times better LOD. These two proofs of concept demonstrate the ability of miniaturized SAW sensors for carrying out on-field monitoring campaigns and their potential to replace the presently used heavy and expensive laboratory instrumentation.
Full article
(This article belongs to the Special Issue Biosensors for Agriculture, Environment and Food)
►▼
Show Figures

Figure 1
Open AccessArticle
From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics
by
, , , , , , and
Biosensors 2023, 13(2), 196; https://doi.org/10.3390/bios13020196 - 28 Jan 2023
Abstract
The gold standard for diagnostics of SARS-CoV-2 (COVID-19) virus is based on real-time polymerase chain reaction (RT-PCR) using centralized PCR facilities and commercial viral RNA extraction kits. One of the key components of these kits are magnetic beads composed of silica coated magnetic
[...] Read more.
The gold standard for diagnostics of SARS-CoV-2 (COVID-19) virus is based on real-time polymerase chain reaction (RT-PCR) using centralized PCR facilities and commercial viral RNA extraction kits. One of the key components of these kits are magnetic beads composed of silica coated magnetic iron oxide (Fe2O3 or Fe3O4) nanoparticles, needed for the selective extraction of RNA. At the beginning of the pandemic in 2019, due to a high demand across the world there were severe shortages of many reagents and consumables, including these magnetic beads required for testing for SARS-CoV-2. Laboratories needed to source these products elsewhere, preferably at a comparable or lower cost. Here, we describe the development of a simple, low-cost and scalable preparation of magnetic nanoparticles (MNPs) from biowaste and demonstrate their successful application in viral RNA extraction and the detection of COVID-19. These MNPs have a unique nanoplatelet shape with a high surface area, which are beneficial features, expected to provide improved RNA adsorption, better dispersion and processing ability compared with commercial spherical magnetic beads. Their performance in COVID-19 RNA extraction was evaluated in comparison with commercial magnetic beads and the results presented here showed comparable results for high throughput PCR analysis. The presented magnetic nanoplatelets generated from biomass waste are safe, low-cost, simple to produce in large scale and could provide a significantly reduced cost of nucleic acid extraction for SARS-CoV-2 and other DNA and RNA viruses.
Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Sensing and Biosensing)
►▼
Show Figures

Figure 1
Open AccessCommunication
Complementary DNA Significantly Enhancing Signal Response and Sensitivity of a Molecular Beacon Probe to Aflatoxin B1
Biosensors 2023, 13(2), 195; https://doi.org/10.3390/bios13020195 - 28 Jan 2023
Abstract
This paper reported an improved molecular beacon method for the rapid detection of aflatoxin B1 (AFB1), a natural mycotoxin with severe carcinogenicity. With the assistance of a complementary DNA (cDNA) chain, the molecular beacon which consists of a DNA aptamer flanked by FAM
[...] Read more.
This paper reported an improved molecular beacon method for the rapid detection of aflatoxin B1 (AFB1), a natural mycotoxin with severe carcinogenicity. With the assistance of a complementary DNA (cDNA) chain, the molecular beacon which consists of a DNA aptamer flanked by FAM and BHQ1 displayed a larger fluorescent response to AFB1, contributing to the sensitive detection of AFB1. Upon optimization of some key experimental factors, rapid detection of AFB1 ranging from 1 nM to 3 μM, within 20 min, was realized by using this method. A limit of detection (LoD) of 1 nM was obtained, which was lower than the LoD (8 nM) obtained without cDNA assistance. This aptamer-based molecular beacon detection method showed advantages in easy operation, rapid analysis and larger signal response. Good specificity and anti-interference ability were demonstrated. This method showed potential in real-sample analysis.
Full article
(This article belongs to the Special Issue Biosensing and Diagnosis)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhanced Coloration Time of Electrochromic Device Using Integrated WO3@PEO Electrodes for Wearable Devices
Biosensors 2023, 13(2), 194; https://doi.org/10.3390/bios13020194 - 28 Jan 2023
Abstract
Electrochromic technologies that exhibit low power consumption have been spotlighted recently. In particular, with the recent increase in demand for paper-like panel displays, faster coloration time has been focused on in researching electrochromic devices. Tungsten trioxide (WO3) has been widely used
[...] Read more.
Electrochromic technologies that exhibit low power consumption have been spotlighted recently. In particular, with the recent increase in demand for paper-like panel displays, faster coloration time has been focused on in researching electrochromic devices. Tungsten trioxide (WO3) has been widely used as an electrochromic material that exhibits excellent electrochromic performance with high thermal and mechanical stability. However, in a solid film-type WO3 layer, the coloration time was long due to its limited surface area and long diffusion paths of lithium ions (Li-ions). In this study, we attempted to fabricate a fibrous structure of WO3@poly(ethylene oxide) (PEO) composites through electrospinning. The fibrous and porous layer showed a faster coloration time due to a short Li-ion diffusion path. Additionally, PEO in fibers supports Li-ions being quickly transported into the WO3 particles through their high ionic conductivity. The optimized WO3@PEO fibrous structure showed 61.3 cm2/C of high coloration efficiency, 1.6s fast coloration time, and good cycle stability. Lastly, the electrochromic device was successfully fabricated on fabric using gel electrolytes and a conductive knitted fabric as a substrate and showed a comparable color change through a voltage change from −2.5 V to 1.5 V.
Full article
(This article belongs to the Special Issue Current Trends in Polymer-Based Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
Highly Stable InSe-FET Biosensor for Ultra-Sensitive Detection of Breast Cancer Biomarker CA125
Biosensors 2023, 13(2), 193; https://doi.org/10.3390/bios13020193 - 28 Jan 2023
Abstract
Two-dimensional materials-based field-effect transistors (FETs) are promising biosensors because of their outstanding electrical properties, tunable band gap, high specific surface area, label-free detection, and potential miniaturization for portable diagnostic products. However, it is crucial for FET biosensors to have a high electrical performance
[...] Read more.
Two-dimensional materials-based field-effect transistors (FETs) are promising biosensors because of their outstanding electrical properties, tunable band gap, high specific surface area, label-free detection, and potential miniaturization for portable diagnostic products. However, it is crucial for FET biosensors to have a high electrical performance and stability degradation in liquid environments for their practical application. Here, a high-performance InSe-FET biosensor is developed and demonstrated for the detection of the CA125 biomarker in clinical samples. The InSe-FET is integrated with a homemade microfluidic channel, exhibiting good electrical stability during the liquid channel process because of the passivation effect on the InSe channel. The InSe-FET biosensor is capable of the quantitative detection of the CA125 biomarker in breast cancer in the range of 0.01–1000 U/mL, with a detection time of 20 min. This work provides a universal detection tool for protein biomarker sensing. The detection results of the clinical samples demonstrate its promising application in early screenings of major diseases.
Full article
(This article belongs to the Special Issue Biosensing and Diagnosis)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Biosensors Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Bioengineering, Biomechanics, Biosensors, Robotics, Sensors
Technologies and Sensors for Visually Impaired People
Topic Editors: Daniele Croce, Laura Giarré, Domenico GarlisiDeadline: 31 March 2023
Topic in
Applied Sciences, Biosensors, Materials, Nanomaterials, Sensors
Advanced Nanomaterials for Sensing Applications
Topic Editors: Ki-Hyun Kim, Deepak KukkarDeadline: 30 April 2023
Topic in
Applied Sciences, Biosensors, Micromachines, Molecules, Sensors
Advances in Microfluidics and Lab on a Chip Technology
Topic Editors: Roman Grzegorz Szafran, Yi YangDeadline: 31 May 2023
Topic in
Biosensors, Future Pharmacology, Micromachines, Pharmaceuticals, Pharmaceutics
Microfluidics for Pharmaceutical Applications
Topic Editors: Trieu Nguyen, Dang Duong BangDeadline: 31 July 2023

Conferences
Special Issues
Special Issue in
Biosensors
Electrochemical Detection Based on Microfluidic Chip
Guest Editor: Chun-Ping JenDeadline: 15 February 2023
Special Issue in
Biosensors
Field and Remote Sensors for Environmental Health and Food Safety Diagnostics
Guest Editors: Roberto Dragone, Gerardo Grasso, Daniela ZaneDeadline: 28 February 2023
Special Issue in
Biosensors
Biosensors State-of-the-Art in Italy
Guest Editors: Ivo Rendina, Luca De Stefano, Emanuela Esposito, Antonino S. Fiorillo, Salvatore PullanoDeadline: 25 March 2023
Special Issue in
Biosensors
Biosensing of Food Toxicants, Agricultural and Environmental Safety Hazards
Guest Editors: Shruti Shukla, Yun Suk Huh, Vivek K. BajpaiDeadline: 31 March 2023
Topical Collections
Topical Collection in
Biosensors
Novel Sensing System for Biomedical Applications
Collection Editors: Chia-Ching Chang, Chiun-Jye Yuan, Chih-Chia Huang
Topical Collection in
Biosensors
Microsystems for Cell Cultures
Collection Editors: Iordania Constantinou, Thomas E. Winkler
Topical Collection in
Biosensors
Biosensors for Point-of-Care Diagnostics
Collection Editor: Guozhen Liu
Topical Collection in
Biosensors
Wearable Biosensors for Healthcare Applications
Collection Editors: Ming-Yih Lee, Wen-Yen Lin