- Article
In Silico Optimization of a Non-Invasive Optical Sensor for Hemoconcentration Monitoring in Dengue Fever Management
- Murad Althobaiti and
- Gameel Saleh
Severe Dengue fever can cause Dengue Hemorrhagic Fever (DHF), a life-threatening condition characterized by plasma leakage and hemoconcentration. A hematocrit (Hct) rise of ≥20% is a key indicator for medical intervention, but current monitoring is invasive and intermittent. This study aims to determine the optimal design parameters for a non-invasive optical sensor to continuously monitor hemoconcentration. We developed a high-fidelity Monte Carlo model of light transport in a multi-layered skin model, with the epidermis set to a 5% melanin volume fraction (Fitzpatrick type II/III). To ensure signal reliability, simulations were conducted with a high photon count ( photons), yielding a stochastic (Monte Carlo) signal-to-noise ratio of approximately 36 dB. We simulated diffuse reflectance at four characteristic wavelengths (577 nm, 660 nm, 800 nm—the isosbestic point—, and 940 nm) over source-detector separations of 0.5–8.0 mm. Sensor sensitivity was quantified as the reflectance change for a +25% relative Hct rise (e.g., 42% to 52.5%), mimicking severe hemoconcentration, and its dependence on baseline dermal blood volume fraction (BVF) was investigated. Sensor sensitivity showed a non-linear dependence on BVF, showing a direct correlation with perfusion level, reaching an optimal 6.41% for a robust 5% BVF at 8.0 mm. A dedicated sweep showed that even under low-perfusion shock conditions (1% BVF), the sensor maintains a highly significant sensitivity of 5.71% (also at 8.0 mm), indicating that sensitivity remains high across a physiologically relevant perfusion range. In the analysis, at a robust 5% BVF, the 800 nm wavelength demonstrated superior reliability, with peak sensitivity at 6.41% at 8.0 mm. Visible wavelengths (577 nm and 660 nm) exhibited high theoretical sensitivity, while 940 nm was compromised by water absorption. Based on these findings, a non-invasive optical sensor for hemoconcentration is most effective operating at 800 nm, within the evaluated spectral set, with a source-detector separation of ≥6.0 mm, targeting the deep dermis while minimizing superficial interference. This design provides an optimal balance of tissue penetration, robust sensitivity to Hct changes, and reduced sensitivity to oxygenation-related variability while maintaining signal stability. This work enables the design of a device for continuous monitoring, supporting continuous monitoring of hemoconcentration trends relevant to plasma leakage progression.
13 February 2026







