Robust On-Chip Polymer Coupler for All-Optical Ultrasound Detection
Abstract
1. Introduction
2. Methods
2.1. Simulation
2.2. Fabrication
2.3. Coupling and Testing
3. Results
3.1. Coupling Loss
3.2. Ultrasound Detection
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, X.; Yang, H.; Wu, Z.-L.; Li, B.-B. Ultrasound sensing with optical microcavities. Light Sci. Appl. 2024, 13, 159. [Google Scholar] [CrossRef]
- Shnaiderman, R.; Wissmeyer, G.; Ulgen, O.; Mustafa, Q.; Chmyrov, A.; Ntziachristos, V. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 2020, 585, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Hazan, Y.; Levi, A.; Nagli, M.; Rosenthal, A. Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nat. Commun 2022, 13, 1488. [Google Scholar] [CrossRef]
- Liang, Y.; Fu, W.; Li, Q.; Chen, X.; Sun, H.; Wang, L.; Jin, L.; Huang, W.; Guan, B.-O. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat. Commun. 2022, 13, 7604. [Google Scholar] [CrossRef] [PubMed]
- Nagli, M.; Koch, J.; Hazan, Y.; Volodarsky, O.; Ravi Kumar, R.; Levi, A.; Hahamovich, E.; Ternyak, O.; Overmeyer, L.; Rosenthal, A. Silicon-photonics focused ultrasound detector for minimally invasive optoacoustic imaging. Biomed. Opt. Express 2022, 13, 6229–6244. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Sun, J.; Li, C.; Shi, Y. Broadband Ultrasound Detection Using Silicon Micro-Ring Resonators. J. Light. Technol. 2023, 41, 1906–1910. [Google Scholar] [CrossRef]
- Nagli, M.; Moisseev, R.; Suleymanov, N.; Kaminski, E.; Hazan, Y.; Gelbert, G.; Goykhman, I.; Rosenthal, A. Silicon photonic acoustic detector (SPADE) using a silicon nitride microring resonator. Photoacoustics 2023, 32, 100527. [Google Scholar] [CrossRef]
- Pan, J.; Li, Q.; Feng, Y.; Zhong, R.; Fu, Z.; Yang, S.; Sun, W.; Zhang, B.; Sui, Q.; Chen, J.; et al. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Nat. Commun. 2023, 14, 3250. [Google Scholar] [CrossRef]
- Sun, J.; Tang, S.-J.; Meng, J.-W.; Li, C. Whispering-gallery optical microprobe for photoacoustic imaging. Photonics Res. 2023, 11, A65–A71. [Google Scholar] [CrossRef]
- Yang, L.; Xu, D.; Chen, G.; Wang, A.; Li, L.; Sun, Q. Miniaturized fiber optic ultrasound sensor with multiplexing for photoacoustic imaging. Photoacoustics 2022, 28, 100421. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Chen, H.; Sun, L.-P.; Li, J.; Guan, B.-O. Transparent microfiber Fabry-Perot ultrasound sensor with needle-shaped focus for multiscale photoacoustic imaging. Photoacoustics 2023, 30, 100482. [Google Scholar] [CrossRef]
- Wei, H.; Wu, Z.; Sun, K.; Zhang, H.; Wang, C.; Wang, K.; Yang, T.; Pang, F.; Zhang, X.; Wang, T.; et al. Two-photon 3D printed spring-based Fabry–Pérot cavity resonator for acoustic wave detection and imaging. Photonics Res. 2023, 11, 780–786. [Google Scholar] [CrossRef]
- Wei, H.; Wei, Y.; Zhuang, C.; He, G.; Yang, T.; Zhang, X.; Pang, F.; Wang, T.; Krishnaswamy, S.; Caucheteur, C.; et al. Sensitivity-Enhanced Fiber-Optic Fabry–Perot Ultrasonic Sensor Based on Direct Laser Writing of Dual-Resonant Cavity. IEEE Trans. Instrum. Meas. 2025, 74, 1–6. [Google Scholar] [CrossRef]
- He, A.; Guo, X.; Wang, T.; Su, Y. Ultracompact Fiber-to-Chip Metamaterial Edge Coupler. ACS Photonics 2021, 8, 3226–3233. [Google Scholar] [CrossRef]
- Ying, P.; Tan, H.; Zhang, J.; He, M.; Xu, M.; Liu, X.; Ge, R.; Zhu, Y.; Liu, C.; Cai, X. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt. Lett. 2021, 46, 1478–1481. [Google Scholar] [CrossRef]
- Chen, H.; Ma, F.; Chen, K.; Dong, J. An Ultrabroadband and Cost-Effective Edge Coupler for Efficient Thin Film Lithium Niobate Photonics. Photonics 2023, 10, 760. [Google Scholar] [CrossRef]
- Marchetti, R.; Lacava, C.; Khokhar, A.; Chen, X.; Cristiani, I.; Richardson, D.J.; Reed, G.T.; Petropoulos, P.; Minzioni, P. High-efficiency grating-couplers: Demonstration of a new design strategy. Sci. Rep. 2017, 7, 16670. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ruan, Z.; Fan, X.; Wang, Z.; Liu, J.; Li, C.; Chen, K.; Liu, L. Low-loss fiber grating coupler on thin film lithium niobate platform. APL Photonics 2022, 7, 076103. [Google Scholar] [CrossRef]
- Gehring, H.; Blaicher, M.; Hartmann, W.; Varytis, P.; Busch, K.; Wegener, M.; Pernice, W.H.P. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics 2019, 4, 010801. [Google Scholar] [CrossRef]
- Gehring, H.; Eich, A.; Schuck, C.; Pernice, W.H.P. Broadband out-of-plane coupling at visible wavelengths. Opt. Lett. 2019, 44, 5089–5092. [Google Scholar] [CrossRef]
- Hartmann, W.; Varytis, P.; Gehring, H.; Walter, N.; Beutel, F.; Busch, K.; Pernice, W. Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder. Adv. Opt. Mater. 2020, 8, 1901602. [Google Scholar] [CrossRef]
- Huang, S.-W.; Chen, S.-L.; Ling, T.; Maxwell, A.; O’Donnell, M.; Guo, L.J.; Ashkenazi, S. Low-noise wideband ultrasound detection using polymer microring resonators. Appl. Phys. Lett. 2008, 92, 193509. [Google Scholar] [CrossRef]
- Ling, T.; Chen, S.-L.; Guo, L.J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl. Phys. Lett. 2011, 98, 204103. [Google Scholar] [CrossRef]
- Dong, B.; Chen, S.; Zhang, Z.; Sun, C.; Zhang, H.F. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Opt Lett 2014, 39, 4372–4375. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.L.; Ling, T.; Guo, L.J. Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging. J. Light. Technol. 2015, 33, 4318–4328. [Google Scholar] [CrossRef]
- Witzgall, G.; Vrijen, R.; Yablonovitch, E.; Doan, V.; Schwartz, B.J. Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. Opt. Lett. 1998, 23, 1745–1747. [Google Scholar] [CrossRef] [PubMed]
- Bentley, S.J.; Boyd, R.W. Nonlinear optical lithography with ultra-high sub-Rayleigh resolution. Opt. Express 2004, 12, 5735–5740. [Google Scholar] [CrossRef]
- Faraji Rad, Z.; Prewett, P.D.; Davies, G.J. High-resolution two-photon polymerization: The most versatile technique for the fabrication of microneedle arrays. Microsyst. Nanoeng. 2021, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Qiu, Y.; Guan, L.; Wei, Z.; Yang, Z.; Zhan, L.; Zhu, D.; Ding, C.; Shen, X.; Xia, X.; et al. Dip-In Photoresist for Photoinhibited Two-Photon Lithography to Realize High-Precision Direct Laser Writing on Wafer. ACS Appl. Mater. Interfaces 2022, 14, 31332–31342. [Google Scholar] [CrossRef]
- Aderneuer, T.; Fernández, O.; Ferrini, R. Two-photon grayscale lithography for free-form micro-optical arrays. Opt. Express 2021, 29, 39511–39520. [Google Scholar] [CrossRef]
- McKee, S.; Lutey, A.; Sciancalepore, C.; Poli, F.; Selleri, S.; Cucinotta, A. Microfabrication of polymer microneedle arrays using two-photon polymerization. J. Photochem. Photobiol. B Biol. 2022, 229, 112424. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Ludescher, D.; Giessen, H. Optical properties of photoresists for femtosecond 3D printing: Refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express 2019, 9, 4564–4577. [Google Scholar] [CrossRef]
- Dottermusch, S.; Busko, D.; Langenhorst, M.; Paetzold, U.W.; Richards, B.S. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers. Opt. Lett. 2019, 44, 29–32. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Li, P.; Zhang, C. Robust On-Chip Polymer Coupler for All-Optical Ultrasound Detection. Photonics 2025, 12, 869. https://doi.org/10.3390/photonics12090869
Zhao C, Li P, Zhang C. Robust On-Chip Polymer Coupler for All-Optical Ultrasound Detection. Photonics. 2025; 12(9):869. https://doi.org/10.3390/photonics12090869
Chicago/Turabian StyleZhao, Chao, Peijian Li, and Chonglei Zhang. 2025. "Robust On-Chip Polymer Coupler for All-Optical Ultrasound Detection" Photonics 12, no. 9: 869. https://doi.org/10.3390/photonics12090869
APA StyleZhao, C., Li, P., & Zhang, C. (2025). Robust On-Chip Polymer Coupler for All-Optical Ultrasound Detection. Photonics, 12(9), 869. https://doi.org/10.3390/photonics12090869