Metasurface Deflector Enhanced Grating Coupler for Perfectly Vertical Coupling
Abstract
:1. Introduction
2. Design of Grating Coupler and Metasurface Deflector
2.1. Design of Grating Coupler
- (i).
- Improve the directionality by optimizing the etch depth and coupling angle.
- (ii).
- Improve by adjusting the output mode field of GC by Gaussian fitting.
- (iii).
- To search for the final structure using the genetic algorithm.
- (i).
- A random perturbation ΔDCi is introduced to the structural parameters of the Gaussian-fitting GC to generate a genetic material population.
- (ii).
- The fitness metric for the population was the CE, and it is used to evaluate the fitness of each population through FDTD simulation.
- (iii).
- Based on their fitness, populations are selected using the roulette-wheel selection method.
- (iv).
- The reproduction of the generation is accomplished through crossover and mutation. Each selected population has an 80% probability of intermixing with another population at a random crossover point, resulting in two child populations.
- (v).
- The obtained child populations has a 10% probability of mutation, which involve randomly modifying the selected structural parameters.
- (vi).
- This establishes an optimization loop that repeat steps (ii) to (v) until the convergence criteria are met.
2.2. Design of Metasurface Deflector
3. Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, T.; Dong, B.; Luo, X.; Liow, T.-Y.; Song, J.; Lee, C.; Lo, G.-Q. Silicon photonic platforms for mid-infrared applications. Photonics Res. 2017, 5, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, R.; Li, X.; Li, T. Development trends in silicon photonics for data centers. Opt. Fiber Technol. 2018, 44, 13–23. [Google Scholar] [CrossRef]
- Bogaerts, W.; Baets, R.; Dumon, P.; Wiaux, V.; Beckx, S.; Taillaert, D.; Luyssaert, B.; Van Campenhout, J.; Bienstman, P.; Van Thourhout, D. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Light. Technol. 2005, 23, 401. [Google Scholar]
- Tsuchizawa, T.; Yamada, K.; Fukuda, H.; Watanabe, T.; Takahashi, J.-I.; Takahashi, M.; Shoji, T.; Tamechika, E.; Itabashi, S.; Morita, H. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 232–240. [Google Scholar] [CrossRef]
- Petrovich, M.N.; Poletti, F.; Wooler, J.P.; Heidt, A.M.; Baddela, N.K.; Li, Z.; Gray, D.R.; Slavik, R.; Parmigiani, F.; Wheeler, N.V.; et al. Demonstration of amplified data transmission at 2 microm in a low-loss wide bandwidth hollow core photonic bandgap fiber. Opt. Express 2013, 21, 28559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440. [Google Scholar] [CrossRef] [Green Version]
- Estevez, M.C.; Alvarez, M.; Lechuga, L.M.J.L.; Reviews, P. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev. 2011, 6, 463–487. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Z.; Li, D.; Yao, Y.; Du, J.; He, Z.; Xu, K. Thermo-Optic Tunable Silicon Arrayed Waveguide Grating at 2-μm Wavelength Band. IEEE Photonics J. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Cao, W.; Hagan, D.; Thomson, D.J.; Nedeljkovic, M.; Littlejohns, C.G.; Knights, A.; Alam, S.-U.; Wang, J.; Gardes, F.; Zhang, W.; et al. High-speed silicon modulators for the 2 μm wavelength band. Optica 2018, 5, 1055–1062. [Google Scholar] [CrossRef]
- Yu, T.; Liu, Y.; Li, Z.; Xu, K.; Du, J. Integrated Thermo-optic Switch for 2-µm Spectral Band. In Optoelectronic Devices and Integration; Optica Publishing Group: Washington, DC, USA, 2019; p. OTu2B-4. [Google Scholar]
- Zheng, S.; Huang, M.; Cao, X.; Wang, L.; Ruan, Z.; Shen, L.; Wang, J.J.P.R. Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 μm waveband. Photonics Res. 2019, 7, 1030. [Google Scholar] [CrossRef]
- Cheng, L.; Mao, S.; Li, Z.; Han, Y.; Fu, H.J.M. Grating couplers on silicon photonics: Design principles, emerging trends and practical issues. Micromachines 2020, 11, 666. [Google Scholar] [CrossRef] [PubMed]
- Jahed, M.; Caut, A.; Goyvaerts, J.; Rensing, M.; Karlsson, M.; Larsson, A.; Roelkens, G.; Baets, R.; O’Brien, P. Angled Flip-Chip Integration of VCSELs on Silicon Photonic Integrated Circuits. J. Light. Technol. 2022, 40, 5190–5200. [Google Scholar] [CrossRef]
- Tong, Y.; Zhou, W.; Wu, X.; Tsang, H.K. Efficient Mode Multiplexer for Few-Mode Fibers Using Integrated Silicon-on-Insulator Waveguide Grating Coupler. IEEE J. Quantum Electron. 2019, 56, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Cheng, Q.; Khokhar, A.Z.; Yan, X.; Huang, B.; Chen, H.; Liu, H.; Li, H.; Thomson, D.J.; et al. High-efficiency apodized bidirectional grating coupler for perfectly vertical coupling. Opt. Lett. 2019, 44, 5081–5084. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Subramanian, A.; Cardile, P.; Verplancke, R.; Van Kerrebrouck, J.; Spiga, S.; Meyer, R.; Bauwelinck, J.; Baets, R.; Van Steenberge, G. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Opt. Express 2015, 23, 28264–28270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Hong, Y.; Zhu, Y.; Chen, J.; Gao, S.; Cai, X.; Shi, Y.; Liu, L. Compact high-efficiency perfectly-vertical grating coupler on silicon at O-band. Opt. Express 2017, 25, 22032–22037. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Z.; Jia, H.; Zhang, X.; Qin, S. High-performance and compact binary blazed grating coupler based on an asymmetric subgrating structure and vertical coupling. Opt. Lett. 2011, 36, 2614–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, M.; Ma, L.; Xu, Y.; Lu, M.; Liu, X.; Chen, Y. Highly efficient and perfectly vertical chip-to-fiber dual-layer grating coupler. Opt. Express 2015, 23, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Ma, W.; Wang, W.; Hu, X.; Chu, T.J.O.E. Compact vertical grating coupler with an achromatic in-plane metalens on a 220-nm silicon-on-insulator platform. Opt. Express 2022, 30, 36254. [Google Scholar] [CrossRef]
- Kadic, M.; Milton, G.W.; van Hecke, M.; Wegener, M.J.N.R.P. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198. [Google Scholar] [CrossRef]
- Kumar, A.; Solanki, A.; Manjappa, M.; Ramesh, S.; Srivastava, Y.K.; Agarwal, P.; Sum, T.C.; Singh, R. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci. Adv. 2020, 6, eaax8821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Mitra, A.; Aïssa, B.J.N. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Nadell, C.C.; Watts, C.M.; Montoya, J.A.; Krishna, S.; Padilla, W.J. Single Pixel Quadrature Imaging with Metamaterials. Adv. Opt. Mater. 2015, 4, 66–69. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi, A.; Arbabi, E.; Horie, Y.; Kamali, S.M.; Faraon, A. Planar metasurface retroreflector. Nat. Photonics 2017, 11, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.-H.; Shao, L.-Y. A Review on Metasurface: From Principle to Smart Metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Choudhury, S.; Wang, D.; Chaudhuri, K.; DeVault, C.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Material platforms for optical metasurfaces. Nanophotonics 2018, 7, 959–987. [Google Scholar] [CrossRef]
- Overvig, A.C.; Shrestha, S.; Malek, S.C.; Lu, M.; Stein, A.; Zheng, C.; Yu, N. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light. Sci. Appl. 2019, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kowerdziej, R.; Wróbel, J.; Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 2019, 9, 20367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Li, J.; Su, R.; Yao, B.; Fang, H.; Li, K.; Zhou, L.; Liu, J.; Stellinga, D.; Reardon, C.P.; et al. Efficient Silicon Metasurfaces for Visible Light. ACS Photonics 2017, 4, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Shu, F.; Yu, F.; Peng, R.; Zhu, Y.; Xiong, B.; Fan, R.; Wang, Z.; Liu, Y.; Wang, M. Dynamic Plasmonic Color Generation Based on Phase Transition of Vanadium Dioxide. Adv. Opt. Mater. 2018, 6, 1700939. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Tamir, T.; Peng, S.T. Analysis and design of grating couplers. Appl. Phys. A 1977, 14, 235–254. [Google Scholar] [CrossRef]
- Rytov, S. Electromagnetic properties of a finely stratified medium. Sov. Phys. JEPT 1956, 2, 466–475. [Google Scholar]
- Zhang, C.; Sun, J.-H.; Xiao, X.; Sun, W.-M.; Zhang, X.-J.; Chu, T.; Yu, J.-Z.; Yu, Y.-D. High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides. Chin. Phys. Lett. 2013, 30, 014207. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, S. Design Principles of Apodized Grating Couplers. J. Light. Technol. 2020, 38, 4435–4446. [Google Scholar] [CrossRef]
- Waldhäusl, R.; Schnabel, B.; Dannberg, P.; Kley, E.-B.; Bräuer, A.; Karthe, W. Efficient Coupling into Polymer Waveguides by Gratings. Appl. Opt. 1997, 36, 9383–9390. [Google Scholar] [CrossRef]
- Bozzola, A.; Carroll, L.; Gerace, D.; Cristiani, I.; Andreani, L.C. Optimising apodized grating couplers in a pure SOI platform to −0.5 dB coupling efficiency. Opt. Express 2015, 23, 16289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Qiu, Y.; Zheng, S.; Zhao, X.; Dong, Y.; Zhong, Q.; Jia, L.; Hu, T. Metasurface Deflector Enhanced Grating Coupler for Perfectly Vertical Coupling. Photonics 2023, 10, 436. https://doi.org/10.3390/photonics10040436
Wu X, Qiu Y, Zheng S, Zhao X, Dong Y, Zhong Q, Jia L, Hu T. Metasurface Deflector Enhanced Grating Coupler for Perfectly Vertical Coupling. Photonics. 2023; 10(4):436. https://doi.org/10.3390/photonics10040436
Chicago/Turabian StyleWu, Xingyu, Yang Qiu, Shaonan Zheng, Xingyan Zhao, Yuan Dong, Qize Zhong, Lianxi Jia, and Ting Hu. 2023. "Metasurface Deflector Enhanced Grating Coupler for Perfectly Vertical Coupling" Photonics 10, no. 4: 436. https://doi.org/10.3390/photonics10040436
APA StyleWu, X., Qiu, Y., Zheng, S., Zhao, X., Dong, Y., Zhong, Q., Jia, L., & Hu, T. (2023). Metasurface Deflector Enhanced Grating Coupler for Perfectly Vertical Coupling. Photonics, 10(4), 436. https://doi.org/10.3390/photonics10040436