Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics
Abstract
:1. Introduction
2. Design and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoo, S.J.B.; Guan, B.; Scott, R.P. Heterogeneous 2D/3D photonic integrated microsystems. Microsyst. Nanoeng. 2016, 2, 16030–16038. [Google Scholar] [CrossRef] [Green Version]
- MacFarlane, N.; Kossey, M.R.; Stroud, J.R.; Foster, M.A.; Foster, A.C. A multi-layer platform for low-loss nonlinear silicon photonics. APL Photonics 2019, 4, 8. [Google Scholar] [CrossRef]
- Guan, B.; Scott, R.P.; Qin, C.; Fontaine, N.K.; Su, T.; Ferrari, C.; Cappuzzo, M.; Klemens, F.; Keller, B.; Earnshaw, M.; et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express 2014, 22, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; van Uden, R.; Okonkwo, C.; Koonen, T. Compact spatial multiplexers for mode division multiplexing. Opt. Express 2014, 22, 31582–31594. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chamanzar, M.; Apuzzo, A.; Salas-Montiel, R.; Nguyen, K.N.; Blaize, S.; Adibi, A. On-chip hybrid photonic–plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform. Nano Lett. 2015, 15, 849–856. [Google Scholar] [CrossRef]
- Song, J.; Luo, X.; Tu, X.; Jia, L.; Fang, Q.; Liow, T.Y.; Yu, M.; Lo, G.Q. Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer. Opt. Express 2014, 22, 19546–19554. [Google Scholar] [CrossRef]
- Ullah, F.; Deng, N.; Qiu, F. Recent progress in electro-optic polymer for ultra-fast communication. PhotoniX 2021, 2, 13. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Y.; Zhang, S.; Chen, Y.; Yu, S. SiNx–Si interlayer coupler using a gradient index metamaterial. Opt. Lett. 2019, 44, 1230–1233. [Google Scholar] [CrossRef]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Barbosa, F.A.; Roberts, S.P.; Dutt, A.; Cardenas, J.; Okawachi, Y.; Bryant, A.; Gaeta, A.L.; Lipson, M. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 2017, 4, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Lacava, C.; Ettabib, M.A.; Petropoulos, P. Nonlinear silicon photonic signal processing devices for future optical networks. Appl. Sci. 2017, 7, 103. [Google Scholar] [CrossRef]
- Petra, R.; Oo, S.Z.; Tarazona, A.; Cernansky, R.; Reynolds, S.A.; Khokhar, A.Z.; Mittal, V.; Thomson, D.J.; Politi, A.; Mashanovich, G.Z.; et al. HWCVD a-Si:H interlayer slope waveguide coupler for multilayer silicon photonics platform. Opt. Express 2019, 27, 15735–15749. [Google Scholar] [CrossRef]
- Kwong, D.; Covey, J.; Hosseini, A.; Zhang, Y.; Xu, X.; Chen, R.T. Ultra low-loss polycrystalline silicon waveguides and high uniformity 1×12 MMI fanout for 3D photonic integration. Optics Express 2012, 20, 21722–21728. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photonics 2011, 5, 141–148. [Google Scholar] [CrossRef]
- Serna, S.; Lin, H.; Alonso-Ramos, C.; Yadav, A.; Le Roux, X.; Richardson, K.; Cassan, E.; Dubreuil, N.; Hu, J.; Vivien, L. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides. Photonics Res. 2018, 6, B37–B42. [Google Scholar] [CrossRef]
- Serna, S.; Lin, H.; Alonso-Ramos, C.; Lafforgue, C.; Le Roux, X.; Richardson, K.A.; Cassan, E.; Dubreuil, N.; Hu, J.; Vivien, L. Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform. Opt. Lett. 2019, 44, 5009–5012. [Google Scholar] [CrossRef]
- Pelusi, M.D.; Luan, F.; Madden, S.; Choi, D.Y.; Bulla, D.A.; Luther-Davies, B.; Eggleton, B.J. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip. IEEE Photonics Technol. Lett. 2010, 22, 3–5. [Google Scholar] [CrossRef]
- Delcourt, E.; Jebali, N.; Bodiou, L.; Baillieul, M.; Baudet, E.; Lemaitre, J.; Nazabal, V.; Dumeige, Y.; Charrier, J. Self-phase modulation and four-wave mixing in a chalcogenide ridge waveguide. Opt. Mater. Express 2020, 10, 1440–1450. [Google Scholar] [CrossRef]
- Suwanarat, S.; Chiangga, S.; Amiri, I.S.; Haider, S.Z.; Aziz, M.S.; Ali, J.; Singh, G.; Poznanski, R.; Yupapin, P.; Grattan, K.T.V. On-chip supercontinuum generation in nanostructured Ge11.5As24Se64.5 chalcogenide waveguides using Panda-ring resonator. Results Phys. 2018, 10, 138–144. [Google Scholar]
- Morrison, B.; Casas-Bedoya, A.; Ren, G.; Vu, K.; Liu, Y.; Zarifi, A.; Nguyen, T.G.; Choi, D.Y.; Marpaung, D.; Madden, S.J.; et al. Compact Brillouin devices through hybrid integration on silicon. Optica 2017, 4, 847–854. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dai, S. Mid-infrared supercontinuum generation in chalcogenide glass fibers: A brief review. PhotoniX 2021, 2, 9. [Google Scholar] [CrossRef]
- Shen, W.; Zeng, P.; Yang, Z.; Xia, D.; Du, J.; Zhang, B.; Xu, K.; He, Z.; Li, Z. Chalcogenide glass photonic integration for improved 2 µm optical interconnection. Photonics Res. 2020, 8, 1484–1490. [Google Scholar] [CrossRef]
- Hu, J.; Li, L.; Lin, H.; Zou, Y.; Gu, T.; Haney, M. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. In Proceedings of the 2013 IEEE Optical Interconnects Conference, Santa Fe, NM, USA, 5–8 May 2013; IEEE: New York, NY, USA, 2013; pp. 128–129. [Google Scholar]
- Lin, H.; Song, Y.; Huang, Y.; Kita, D.; Deckoff-Jones, S.; Wang, K.; Li, L.; Li, J.; Zheng, H.; Luo, Z.; et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics 2017, 11, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Lotz, M.R.; Petersen, C.R.; Markos, C.; Bang, O.; Jakobsen, M.H.; Taboryski, R. Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica 2018, 5, 557–563. [Google Scholar] [CrossRef]
- Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D.T.H. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 2016, 108, 41106. [Google Scholar] [CrossRef]
- Conteduca, D.; Dell’Olio, F.; Ciminelli, C.; Armenise, M.N. New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity. Appl. Opt. 2015, 54, 2208–2217. [Google Scholar] [CrossRef]
- Du, Q.; Luo, Z.; Zhong, H.; Zhang, Y.; Huang, Y.; Du, T.; Zhang, W.; Gu, T.; Hu, J. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Res. 2018, 6, 506–510. [Google Scholar] [CrossRef]
- Li, L.; Zou, Y.; Lin, H.; Hu, J.; Sun, X.; Feng, N.N.; Danto, S.; Richardson, K.; Gu, T.; Haney, M. A Fully-integrated flexible photonic platform for chip-to-chip optical interconnects. J. Lightwave Technol. 2013, 31, 4080–4086. [Google Scholar] [CrossRef]
- Li, L.; Lin, H.; Qiao, S.; Huang, Y.Z.; Li, J.Y.; Michon, J.; Gu, T. Monolithically integrated stretchable photonics. Light-Sci. Appl. 2018, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lin, H.; Huang, Y.; Shiue, R.J.; Yadav, A.; Li, J.; Michon, J.; Englund, D.; Richardson, K.; Gu, T.; et al. High-performance flexible waveguide-integrated photodetectors. Optica 2018, 5, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lin, H.; Qiao, S.; Zou, Y.; Danto, S.; Richardson, K.; Musgraves, J.D.; Lu, N.; Hu, J. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 2014, 8, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhao, H.; Ren, X.; Huang, Y. Monolithic integration of laser onto multilayer silicon nitride photonic integrated circuits with high efficiency at telecom wavelength. Opt. Express 2021, 29, 28912–28923. [Google Scholar] [CrossRef] [PubMed]
- Takei, R.; Maegami, Y.; Omoda, E.; Sakakibara, Y.; Mori, M.; Kamei, T. Low-loss and low wavelength-dependence vertical interlayer transition for 3D silicon photonics. Opt. Express 2015, 23, 18602–18610. [Google Scholar] [CrossRef] [PubMed]
- Shang, K.; Pathak, S.; Guan, B.; Liu, G.; Yoo, S.J.B. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits. Opt. Express 2015, 23, 21334–21342. [Google Scholar] [CrossRef]
- Itoh, K.; Kuno, Y.; Hayashi, Y.; Suzuki, J.; Hojo, N.; Amemiya, T.; Nishiyama, N.; Arai, S. Crystalline/Amorphous Si integrated optical couplers for 2D/3D interconnection. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6. [Google Scholar] [CrossRef] [Green Version]
- Sacher, W.D.; Mikkelsen, J.C.; Dumais, P.; Jiang, J.; Goodwill, D.; Luo, X.; Huang, Y.; Yang, Y.; Bois, A.; Lo, P.G.Q.; et al. Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions. Opt. Express 2017, 25, 30862–30875. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; Zhu, X.; Zhu, Y.; Hong, W.; Sun, X. Tri-layer gradient and polarization-selective vertical couplers for interlayer transition. Opt. Express 2020, 28, 23048–23059. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zheng, X.; Li, G.; Shubin, I.; Thacker, H.; Luo, Y.; Raj, K.; Cunningham, J.E.; Krishnamoorthy, A.V. Grating-coupler based low-loss optical interlayer coupling. In Proceedings of the in 8th IEEE International Conference on Group IV Photonics, London, UK, 14–16 September 2011. [Google Scholar]
- Sodagar, M.; Pourabolghasem, R.; Eftekhar, A.A.; Adibi, A. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities. Opt. Express 2014, 22, 16767–16777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Moreel, L.; Lin, H.; Zhou, J.; Li, L.; Danto, S.; Musgraves, J.D.; Koontz, E.; Richardson, K.; Dobson, K.D.; et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration. Adv. Opt. Mater. 2014, 2, 759–764. [Google Scholar] [CrossRef]
- Du, Q.; Huang, Y.; Li, J.; Kita, D.; Michon, J.; Lin, H.; Li, L.; Novak, S.; Richardson, K.; Zhang, W.; et al. Low-loss photonic device in Ge-Sb-S chalcogenide glass. Opt. Lett. 2016, 41, 3090–3093. [Google Scholar] [CrossRef]
- Bahadori, M.; Nikdast, M.; Cheng, Q.; Bergman, K. Universal design of waveguide bends in silicon-on-insulator photonics platform. J. Lightwave Technol. 2019, 37, 3044–3054. [Google Scholar] [CrossRef]
- Kal, S.; Haldar, S.; Lahiri, S.K. Slope etching of silicon dioxide. Microelectron. Reliab. 1990, 30, 719–722. [Google Scholar] [CrossRef]
- Ma, H.; Yang, H.; Tang, B.; Wei, M.; Li, J.; Wu, J.; Zhang, P.; Sun, C.; Li, L.; Lin, H. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform Invited. Chin. Opt. Lett. 2021, 19, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Jie, L.; Zhang, M.; Wang, Y.; Xie, Y.; Shi, Y.; Dai, D. Ultrahigh-Q silicon racetrack resonators. Photonics Res. 2020, 8, 684–689. [Google Scholar] [CrossRef]
- Barclay, P.E.; Srinivasan, K.; Painter, O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express 2005, 13, 801–820. [Google Scholar] [CrossRef] [Green Version]
- Stern, B.; Ji, X.; Dutt, A.; Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 2017, 42, 4541–4544. [Google Scholar] [CrossRef] [PubMed]
- Krückel, C.J.; Fülöp, A.; Ye, Z.; Andrekson, P.A. Optical bandgap engineering in nonlinear silicon nitride waveguides. Opt. Express 2017, 25, 15370–15380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, A.Z.; Neutens, P.; Dhakal, A.; Jansen, R.; Claes, T.; Rottenberg, X.; Peyskens, F.; Selvaraja, S.; Helin, P.; Du Bois, B.; et al. Low-loss single mode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photonics J. 2013, 5, 2202809. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xie, W.; Van Thourhout, D.; Zhang, Y.; Yu, H.; Wang, S. Nonlinear silicon nitride waveguides based on a PECVD deposition platform. Opt. Express 2018, 26, 9645–9654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Photoresist | Soft-Bake Temperature | Soft-Bake Time | Expourse Dose at 365 nm | Post-Bake Temperature | Post-Bake Time | Angle (°) | |
---|---|---|---|---|---|---|---|
Sample A | NR9 1500PY | 100 °C | 1 min | 120 mJ/cm2 | 100 °C | 1 min | 22.0 |
Sample B | 85 °C | 2 min | 200 mJ/cm2 | 85 °C | 2 min | 15.1 | |
Sample C | 75 °C | 3 min | 320 mJ/cm2 | 75 °C | 3 min | 10.6 | |
Sample D | 60 °C | 4 min | 400 mJ/cm2 | 60 °C | 4 min | 4.9 |
Structure | Material | Fabrication Process | Deposition Technique | Interlayer Gap | Insertion Loss | Footprint | 1 dB Bandwidth |
---|---|---|---|---|---|---|---|
Grating coupler [39] | c-Si | -- | -- | chip-to-chip | 2.8 dB | 40 × 25 μm2 | 48 nm |
Grating coupler [40] | SiN | LPCVD | 800 °C | 1.6 µm | 2 dB | 100 × 20 μm2 | 40 nm |
Tri-layer crossing [37] | Si3N4 | LPCVD | 800 °C [49] | 850 nm | 0.15 dB | 2 × 2 μm2 (Tri-layer) | 140 nm |
Tri-layer vertical coupler [38] | Si3N4 | PECVD | 400 °C [50] | 2.3 µm | 0.5 dB | 4 × 4 μm2 (Tri-layer) | 80 nm |
Waveguide evanescent couplers [2] | SiNx | LPCVD | 775 °C | 700 nm | 0.51 dB | 300 × 4 μm2 | -- |
Metamaterial-based interlayer coupler [8] | SiNx | PECVD | 400 °C [51] | 720 nm | 0.6 dB | 10 × 5 μm2 | 40 nm |
Metastructure-based interlayer directional coupler [33] | Si3N4 | PECVD | 400 °C [50] | 1.4 µm | 6 dB | 25 × 4 μm2 | 76 nm |
Interlayer slope waveguide coupler [12] | a-Si:H | HWCVD | 230 °C | 1.44 µm | 0.17 dB | 9 × 1 μm2 | similar to planar waveguides |
Interlayer slope waveguide coupler (this work) | GSS | Thermal Evaporation | ~30 °C | 1 µm | 0.2 dB | 6 × 1 μm2 | similar to planar waveguides |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Sun, C.; Ma, H.; Wei, M.; Jian, J.; Zhong, C.; Li, J.; Tang, R.; Chen, Z.; Richardson, K.A.; et al. Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics. Photonics 2022, 9, 94. https://doi.org/10.3390/photonics9020094
Luo Y, Sun C, Ma H, Wei M, Jian J, Zhong C, Li J, Tang R, Chen Z, Richardson KA, et al. Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics. Photonics. 2022; 9(2):94. https://doi.org/10.3390/photonics9020094
Chicago/Turabian StyleLuo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li, Renjie Tang, Zequn Chen, Kathleen A. Richardson, and et al. 2022. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics" Photonics 9, no. 2: 94. https://doi.org/10.3390/photonics9020094
APA StyleLuo, Y., Sun, C., Ma, H., Wei, M., Jian, J., Zhong, C., Li, J., Tang, R., Chen, Z., Richardson, K. A., Lin, H., & Li, L. (2022). Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics. Photonics, 9(2), 94. https://doi.org/10.3390/photonics9020094