Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Keywords = Iridium complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1624 KB  
Article
SABRE Ir-IMes Catalysis for the Masses
by Izabelle Smith, Noah Terkildsen, Zachary Bender, Abubakar Abdurraheem, Shiraz Nantogma, Anna Samoilenko, Joseph Gyesi, Larisa M. Kovtunova, Oleg G. Salnikov, Igor V. Koptyug, Raphael Kircher, Danila A. Barskiy, Eduard Y. Chekmenev and Roman V. Shchepin
Molecules 2025, 30(18), 3837; https://doi.org/10.3390/molecules30183837 - 22 Sep 2025
Cited by 2 | Viewed by 593
Abstract
The Signal Amplification By Reversible Exchange (SABRE) technique provides enhancement of Nuclear Magnetic Resonance (NMR) signals up to several orders of magnitude using chemical exchange of a substrate and parahydrogen on an iridium complex. Therefore, the availability of such a catalytic complex to [...] Read more.
The Signal Amplification By Reversible Exchange (SABRE) technique provides enhancement of Nuclear Magnetic Resonance (NMR) signals up to several orders of magnitude using chemical exchange of a substrate and parahydrogen on an iridium complex. Therefore, the availability of such a catalytic complex to a broader community is an absolutely vital step for dissemination of the groundbreaking SABRE methodology. The most common SABRE catalyst, which is activated in situ, is based on Ir-IMes system (IMes = 1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene). Earlier approaches for the synthesis of this catalyst often relied on specialized equipment and were limited to a comparatively small scale. This, in turn, increased the barrier of entry for new scientists to the area of SABRE hyperpolarization. Here, we present a robust, inexpensive, and easy to reproduce synthetic procedure for the preparation of this SABRE catalyst, which does not require specialized inert atmosphere equipment like a glove box or Schlenk line. The synthesis was validated on the scale of several grams vs. tens of milligrams scale in the reported approaches. The resulting SABRE catalyst, [Ir(IMes)(COD)Cl], was activated in situ and further evaluated in hyperpolarization experiments resulting in signal enhancements comparable to (or higher than) those for the catalyst prepared using Schlenk line equipment. Full article
(This article belongs to the Special Issue Emerging Horizons of Hyperpolarization in Chemistry and Biomedicine)
Show Figures

Graphical abstract

40 pages, 2388 KB  
Review
A Review on Sulfonamide Complexes with Metals: Their Pharmacological Potential as Anticancer Drugs
by Przemysław Rozbicki and Danuta Branowska
Pharmaceuticals 2025, 18(9), 1414; https://doi.org/10.3390/ph18091414 - 19 Sep 2025
Viewed by 675
Abstract
Sulfonamides represent a versatile class of biologically active compounds, best known for their antibacterial activity, but increasingly investigated for their potential in oncology. Free sulfonamides themselves display cytotoxic properties; however, coordination with metal ions often enhances both selectivity and potency, while also introducing [...] Read more.
Sulfonamides represent a versatile class of biologically active compounds, best known for their antibacterial activity, but increasingly investigated for their potential in oncology. Free sulfonamides themselves display cytotoxic properties; however, coordination with metal ions often enhances both selectivity and potency, while also introducing new mechanisms of action. Although numerous studies have reported sulfonamide–metal complexes with anticancer activity, a systematic overview linking biological properties to the central metal atom has been lacking. This review summarizes current research on sulfonamide complexes with transition metals and selected main-group elements, focusing on their pharmacological potential as anticancer agents. The compounds discussed include complexes of titanium, chromium, manganese, rhenium, ruthenium, osmium, iridium, palladium, platinum, copper, silver, gold, iron, cobalt, nickel, uranium, calcium, magnesium and bismuth. For each group, representative structures are presented along with cytotoxicity data against cancer cell lines, comparisons with reference drugs such as for example cisplatin, and where relevant, studies on carbonic anhydrase inhibition. The survey of available data demonstrates that many sulfonamide–metal complexes show cytotoxic activity comparable to or greater than existing chemotherapeutic agents, while in some cases exhibiting reduced toxicity toward non-cancerous cells. These findings highlight the promise of sulfonamide–metal complexes as a fertile area for anticancer drug development and provide a framework for future design strategies. This review covers the research on anti-cancer activity of sulfonamide complexes during the years 2007–2025. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

26 pages, 4157 KB  
Review
1H-Imidazo[4,5-f][1,10]phenanthroline Derivatives as Promising Ligands for Ir and Ru Complex Compounds for Applications in LECs: Mini-Review
by Agnieszka Krawiec, Agata Szłapa-Kula and Sławomir Kula
Materials 2025, 18(18), 4380; https://doi.org/10.3390/ma18184380 - 19 Sep 2025
Viewed by 434
Abstract
Light-emitting electrochemical cells (LECs) are attracting significant attention due to their simple design, low production costs, and ability to operate on flexible substrates. As a result, they are increasingly considered a highly attractive alternative to organic light-emitting diodes (OLEDs). The emissive layer is [...] Read more.
Light-emitting electrochemical cells (LECs) are attracting significant attention due to their simple design, low production costs, and ability to operate on flexible substrates. As a result, they are increasingly considered a highly attractive alternative to organic light-emitting diodes (OLEDs). The emissive layer is a key element determining the efficiency of LECs. Therefore, considerable attention is currently being paid to finding chemical compounds that could be used as efficient and stable light emitters. Ionic transition metal complexes (iTMCs) are a prime example of such materials. In recent years, iridium and ruthenium complexes containing ligands based on 1H-imidazo[4,5-f][1,10]phenanthroline derivatives have attracted particular interest in LECs. Therefore, this paper discusses in detail the physicochemical properties and application potential of iridium and ruthenium complexes containing these ligands in LECs. Full article
Show Figures

Graphical abstract

15 pages, 3748 KB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Cited by 1 | Viewed by 825
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

8 pages, 882 KB  
Short Note
bis(2-Phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]-iridium(III) Hexafluorophosphate
by Patrick Endres, Nishi Singh, Andreas Winter, Helmar Görls and Ulrich S. Schubert
Molbank 2025, 2025(2), M2024; https://doi.org/10.3390/M2024 - 18 Jun 2025
Viewed by 787
Abstract
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding [...] Read more.
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding (X-bonding). The synthesis of bis(2-phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]iridium(III) hexafluorophosphate, (2)(PF6), is straightforward and involves post-complexation iodination, thus expanding the already rich toolbox for performing “chemistry on the complex”. The formation of the iodoethynyl moieties was unequivocally proven by 1H-NMR spectroscopy, ESI-TOF mass spectrometry, and single-crystal XRD analysis. Full article
Show Figures

Figure 1

7 pages, 446 KB  
Article
Photophysical Properties of a Chiral Iridium-Based Photosensitizer as an Efficient Photodynamic Therapy Agent: A Theoretical Investigation
by Maciej Spiegel
Int. J. Mol. Sci. 2025, 26(11), 5062; https://doi.org/10.3390/ijms26115062 - 24 May 2025
Cited by 1 | Viewed by 802
Abstract
This study employs time-dependent density functional theory to explore the photophysical properties of a chiral iridium(III) complex designed as a photosensitizer for photodynamic therapy. Key properties analyzed include one-photon absorption energies, singlet–triplet energy gaps, spin–orbit coupling constants, and intersystem crossing rate constants. The [...] Read more.
This study employs time-dependent density functional theory to explore the photophysical properties of a chiral iridium(III) complex designed as a photosensitizer for photodynamic therapy. Key properties analyzed include one-photon absorption energies, singlet–triplet energy gaps, spin–orbit coupling constants, and intersystem crossing rate constants. The potential for operation in a Type I PDT mechanism was assessed through ionization potential and electron affinity calculations. The results demonstrate that the complex is a promising PDT candidate, primarily operating in a Type II mechanism, while offering conditional viability for Type I photoreactivity under specific electronic and environmental conditions. Full article
Show Figures

Figure 1

16 pages, 1919 KB  
Article
Multi-Parametric Electrochemical Sensing Platform: Applications in Animal Welfare
by C. Ferreira, E. Lynch, A. O’Herlihy, F. Barry, L. C. Nagle, S. R. Teixeira and P. Galvin
Biosensors 2025, 15(5), 304; https://doi.org/10.3390/bios15050304 - 10 May 2025
Viewed by 862
Abstract
The rapid growth of the dairy sector requires advanced monitoring tools to ensure sustainable practices that benefit the environment, economy, and human health. Current monitoring devices often lack multi-parametric capabilities, limiting their ability to provide comprehensive data on critical chemical and biochemical parameters. [...] Read more.
The rapid growth of the dairy sector requires advanced monitoring tools to ensure sustainable practices that benefit the environment, economy, and human health. Current monitoring devices often lack multi-parametric capabilities, limiting their ability to provide comprehensive data on critical chemical and biochemical parameters. To address this challenge, this work presented the integration of a real-time multi-parametric device with sensors for pH, temperature, nitrate, and nitrite, providing a comprehensive solution to dairy cattle health monitoring. This solution included an electrochemical platform, Portable Unit for Lab-on-Site Electrochemistry (PULSE), and an application for data processing and display. In-house fabricated flexible gold-printed electrodes demonstrated accurate detection of nitrite and nitrate when integrated with the PULSE, achieving sensitivities of 6.32 μA/ppm/cm2 in artificial interstitial fluid and 1.92 μA/ppm/cm2 in phosphate buffered saline, respectively. The PULSE achieved 65.83% and 58.3% lower limits of detection in phosphate buffered saline than a benchtop potentiostat, for nitrate and nitrite, respectively, along with a 24.5% increase in nitrite sensitivity, enhancing its ability to detect lower analyte concentrations. pH sensing was carried out with a commercial screen-printed electrode coated with a layer of iridium oxide. The pH was tested in ruminal complex fluid, obtaining a pH sensitivity of −59.63 mV/pH and an accuracy of 98.9%. These findings highlighted the potential of this technology as an effective tool for dairy cattle health monitoring and its deployment in real-world scenarios. Full article
Show Figures

Figure 1

35 pages, 4708 KB  
Review
Homo- and Hetero-Multinuclear Iridium(III) Complexes with Cytotoxic Activity
by Irena Kostova
Inorganics 2025, 13(5), 156; https://doi.org/10.3390/inorganics13050156 - 8 May 2025
Cited by 1 | Viewed by 1452
Abstract
Towards the efforts to expand the bioactivity and to reduce toxic and adverse properties of known metal-based drugs, various multinuclear complexes have recently been studied. They have shown enhancement of target specificity and selectivity. Different from small organic compounds and traditional metal-based complexes [...] Read more.
Towards the efforts to expand the bioactivity and to reduce toxic and adverse properties of known metal-based drugs, various multinuclear complexes have recently been studied. They have shown enhancement of target specificity and selectivity. Different from small organic compounds and traditional metal-based complexes with anticancer activity, iridium(III) multinuclear or heteronuclear metallodrugs have confirmed potential advantages due to their unique biological and chemical diversities, better activity and different anticancer mechanisms. Ir(III) coordination compounds, similar to most Pt group compounds, are of excessive interest because of their potential cytotoxic activity, effective cellular uptake and tolerance by healthy cells. Although mononuclear Ir(III) complex compounds have been extensively studied as promising candidates for antitumor application, the research on the antineoplastic potential of homo- or hetero-multinuclear iridium(III) complexes is not as abundant; nevertheless, intensive investigations have been conducted in the recent years towards developing complexes that are anticipated to have improved therapeutic potential and biotarget selectivity. Multimetallic iridium(III) frameworks have offered interesting possibilities for designing new antitumor agents by exploiting the action of different metal cations at the same time. This method was very successful in the design of homo- and hetero-multinuclear cyclometalated and half-sandwich organometallic Ir(III) compounds. In the described background, many homonuclear and heteronuclear Ir(III) complexes have been estimated and have exposed promising advantages in cancer therapy. This review intends to summarize newly reported innovative and promising multinuclear Ir(III)-based complexes and to afford a wide-ranging overview of current development and perspectives for the practical impact of these complexes in the tumor therapy field. It is anticipated that this analysis will provide significant direction for the further progress of active homonuclear and heteronuclear iridium-based anticancer agents. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Figure 1

18 pages, 5022 KB  
Review
Searching for New Gold(I)-Based Complexes as Anticancer and/or Antiviral Agents
by Paola Checconi, Annaluisa Mariconda, Alessia Catalano, Jessica Ceramella, Michele Pellegrino, Stefano Aquaro, Maria Stefania Sinicropi and Pasquale Longo
Molecules 2025, 30(8), 1726; https://doi.org/10.3390/molecules30081726 - 11 Apr 2025
Cited by 4 | Viewed by 1370
Abstract
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as [...] Read more.
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as silver, gold, palladium, rhodium, ruthenium, iridium, and osmium, have led to remarkable anticancer activities. Among the numerous chemical moieties studied, N-heterocyclic carbenes (NHCs) have revealed very attractive activities due to their favorable chemical properties. Specifically, gold–NHC complexes emerged as some of the most active complexes acting as antitumor agents. On the other hand, some recent studies have highlighted the involvement of these complexes in antiviral research as well. The well-known gold-based, orally available complex auranofin approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis has been suggested as a repositioned drug for both cancer and viral infections. In the era of the COVID-19 pandemic, the most interesting goal could be the discovery of gold–NHC complexes as dual antiviral and anticancer agents. In this review, the most recent studies regarding the anticancer and antiviral activities of gold(I)–NHC complexes will be analyzed and discussed, offering an interesting insight into the research in this field. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 3799 KB  
Article
Sol-Gel Heterogeneization of an Ir(III) Complex for Sustainable Visible-Light Redox Photocatalysis
by Janira Herce, Mónica Martínez-Aguirre, Javier Gómez-Benito, Miguel A. Rodríguez and Jesús R. Berenguer
Molecules 2025, 30(8), 1680; https://doi.org/10.3390/molecules30081680 - 9 Apr 2025
Viewed by 691
Abstract
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains [...] Read more.
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains the photophysical properties of its precursor in solution in the same solvent, together with a significant absorption in the visible between 400 and 500 nm. As a heterogeneous photocatalyst, the material showed high efficiency in the reductive dehalogenation of 2-bromoacetophenone under blue light irradiation, achieving high yields of conversion of about 90%, and excellent recyclability in seven catalytic cycles, retaining more than 70% of the catalytic efficiency. All these properties of the self-condensed material highlight its potential as an efficient and sustainable heterogeneous photocatalyst for applications in organic synthesis and solar-driven redox processes. Full article
Show Figures

Graphical abstract

15 pages, 3388 KB  
Article
Synthesis, Photo-Physical Properties, and Electroluminescence Characteristics of Iridium Phosphorescent Materials Based on Different β-Diketonate Ancillary Ligands
by Qiaowen Chang, Ke Zhang, Caixian Yan, Liming Xie, Yuanqiuqiang Yi, Wenming Su and Weiping Liu
Molecules 2025, 30(4), 861; https://doi.org/10.3390/molecules30040861 - 13 Feb 2025
Cited by 1 | Viewed by 981
Abstract
Organic light-emitting diodes (OLEDs) based on phosphorescent materials are among the most promising technologies for displays and lightings. For red-emitting heteroleptic iridium complexes (HICs), vast and major research has been focused on the design and synthesis of cyclometalated ligands, while relatively little attention [...] Read more.
Organic light-emitting diodes (OLEDs) based on phosphorescent materials are among the most promising technologies for displays and lightings. For red-emitting heteroleptic iridium complexes (HICs), vast and major research has been focused on the design and synthesis of cyclometalated ligands, while relatively little attention has been given to ancillary ligands which also play important roles in manipulating the optoelectronic and electroluminescent properties of HICs. Seven deep red-emitting HICs were designed and synthesized by systematically modifying the alkyl groups in β-diketone-type ancillary ligands. These HICs exhibited similar physical and optoelectronic properties, with OLED devices based on these materials achieving consistent emission peaks at 624 nm and CIE coordinates of (0.68, 0.32). Among the synthesized HICs, Ir(dmippiq)₂(dmeacac), featuring 3,7-dimethyl-4,6-nonanedione as the ancillary ligand, demonstrated the best OLED performance, achieving a champion external quantum efficiency (EQE) of 18.26%. This result highlights that engineering the alkyl groups in β-diketone ancillary ligands can significantly enhance device performance. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

45 pages, 7420 KB  
Review
Cytotoxic Organometallic Iridium(III) Complexes
by Irena Kostova
Molecules 2025, 30(4), 801; https://doi.org/10.3390/molecules30040801 - 9 Feb 2025
Cited by 5 | Viewed by 1855
Abstract
Iridium complexes attract a lot of attention as highly promising antitumor agents due to their various structures, which offer the modification of their physicochemical and biological effects. Compared to conventional platinum-based drugs, iridium complexes are commonly thought to be more active in tumors, [...] Read more.
Iridium complexes attract a lot of attention as highly promising antitumor agents due to their various structures, which offer the modification of their physicochemical and biological effects. Compared to conventional platinum-based drugs, iridium complexes are commonly thought to be more active in tumors, resistant to platinum agents and more stable in air and moisture conditions. Chloridoiridium complexes offer a range of advantages facilitating their rational design, reactivity and photochemical activity, leading to different cytotoxic profiles, diverse mechanisms of action and specific intracellular organelles as targets. They are also known as good light-mediated chemotherapeutics, serving as bioimaging and biosensing agents. The potential biological and photophysical properties of chloridoiridium(III) complexes can be readily controlled by suitable ligand modifications and substitution patterns, providing a wide range of versatile structures. Over the years, numerous different structural types of chloridoiridium complexes have been developed and studied for their antineoplastic activity. In this review, the recent advances in the cytotoxicity studies of chloridoiridium(III) compounds have been summarized. The studied complexes have been categorized in this review according to the number of coordinated ligands, the type of donor atoms, nuclearity of the complexes, etc., allowing for a thorough discussion of the structure–activity relationship. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 3504 KB  
Article
The Effect of the Position of a Phenyl Group on the Luminescent and TNP-Sensing Properties of Cationic Iridium(III) Complexes
by Xiaoran Yang, Jiahao Du, Rui Cai and Chun Liu
Sensors 2025, 25(3), 839; https://doi.org/10.3390/s25030839 - 30 Jan 2025
Cited by 1 | Viewed by 996
Abstract
Three cationic Ir(III) complexes, 1, 2, and 3, were successfully synthesized and characterized by tuning the position of a phenyl group at the pyridyl moiety in 2-phenylpyridine. All three complexes exhibited typical aggregation-induced phosphorescence emission (AIPE) properties in CH3 [...] Read more.
Three cationic Ir(III) complexes, 1, 2, and 3, were successfully synthesized and characterized by tuning the position of a phenyl group at the pyridyl moiety in 2-phenylpyridine. All three complexes exhibited typical aggregation-induced phosphorescence emission (AIPE) properties in CH3CN/H2O. The AIPE property was further utilized to achieve the highly sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous media with low limit of detection (LOD) values of 164, 176, and 331 nM, respectively. This suggests that the different positions of the phenyl group influence the effectiveness of 1, 2, and 3 in the detection of TNP. In addition, 1, 2, and 3 showed superior selectivity and anti-interference properties for the detection of TNP and were observed to have the potential to be used to detect TNP in practical applications. The changes in the luminescence lifetime and UV-Vis absorption spectra of 1, 2, and 3 before and after the addition of TNP indicate that the corresponding quenching process is a combination of static and dynamic quenching. Additionally, the proton nuclear magnetic resonance spectra and results of spectral studies show that the detection mechanism is photo-induced electron transfer (PET). Full article
(This article belongs to the Special Issue Recent Advances in Photo(electro)chemical Sensing and Sensors)
Show Figures

Figure 1

17 pages, 6065 KB  
Article
AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media
by Qinglong Zhang, Jiangchao Xu, Qiang Xu and Chun Liu
Chemosensors 2025, 13(1), 10; https://doi.org/10.3390/chemosensors13010010 - 8 Jan 2025
Viewed by 1100
Abstract
Three neutral iridium complexes Ir1Ir3 were synthesized using diphenylphosphoryl-substituted 2-phenylpyridine derivatives as the cyclometalating ligand and picolinic acid as the auxiliary ligand. They exhibited significant aggregation-induced phosphorescent emission (AIPE) properties in H2O/THF and were successfully used as bi-responsive luminescent [...] Read more.
Three neutral iridium complexes Ir1Ir3 were synthesized using diphenylphosphoryl-substituted 2-phenylpyridine derivatives as the cyclometalating ligand and picolinic acid as the auxiliary ligand. They exhibited significant aggregation-induced phosphorescent emission (AIPE) properties in H2O/THF and were successfully used as bi-responsive luminescent sensors for the detection of picric acid (PA) and Fe3+ in aqueous media. Ir1Ir3 possesses high efficiency and high selectivity for detecting PA and Fe3+, with the lowest limit of detection at 59 nM for PA and 390 nM for Fe3+. Additionally, the complexes can achieve naked-eye detection of Fe3+ in aqueous media. Ir1Ir3 exhibit excellent potential for practical applications in complicated environments. The detection mechanism for PA is attributed to photo-induced electron transfer (PET) and Förster resonance energy transfer (FRET), and the detection mechanism for Fe3+ may be explained by PET and the strong interactions between Fe3+ and the complexes. Full article
Show Figures

Graphical abstract

14 pages, 3489 KB  
Article
Luminescent Iridium–Terpyridine Complexes with Various Bis-Cyclometalated Ligands
by Ko Ikeda, Natsumi Yano, Makoto Handa and Yusuke Kataoka
Molecules 2025, 30(1), 193; https://doi.org/10.3390/molecules30010193 - 6 Jan 2025
Cited by 1 | Viewed by 1583
Abstract
A series of luminescent bis-cyclometalated iridium complexes with 2,2′:6′,2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized [...] Read more.
A series of luminescent bis-cyclometalated iridium complexes with 2,2′:6′,2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of 14 are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of 14 form intramolecular π-π stacking interactions with a phenyl moiety of C^N ligands. In addition, the pendant pyridine ring in the tpy ligand of 1 forms an intramolecular hydrogen bonding interaction, unlike in 24. Of interest, the photophysical properties of 14 are strongly influenced by the C^N ligands; 1 shows a luminescence band at 572 nm, with a short lifetime (τ) value of 80 nsec and a lower absolute luminescence quantum yield (Φ) of 3.72%, whereas 3 exhibits an intense luminescence band at 588 nm with a long τ value of 1965 nsec and a moderate Φ value of 9.57%. The density functional theory calculations revealed that the luminescence originates from the triplet metal–ligand to ligand charge transfer (3MLL′CT) excited state. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

Back to TopTop