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Abstract: Four iridium(III) dyes functionalized with aldehyde functional group in the cyclometalating
(CˆN) ligands, bearing either diethyl [2,2′-bipyridine]-4,4′-dicarboxylate or tetraethyl [2,2′-bipyridine]-
4,4′-diylbis(phosphonate) anchoring groups, coded as Ir1–Ir4, are synthesized and explored as
photosensitizers. The synthetic route is described and all of the complexes are characterized with
respect to their electrochemical and photophysical properties. Density functional theory (DFT)
calculation was used to gain insight into the factors responsible for the photocatalytic properties of
Ir1–Ir4 as effective photosensitizers for photocatalytic hydrogen generation. Relative to common
iridium(III) dyes, such as [Ir(ppy)2(dcbpy)]+ (ppy = 2-phenylpyridine), the absorption spectra of our
dyes are broader, which is attributed to the extended π-conjugation in their CˆN ligands. All of the
new iridium(III) dyes were used as photosensitizers for visible-light driven hydrogen production
by attaching to platinized TiO2 nanoparticles (Pt–TiO2) in the presence of sacrificial electron donor
(SED) of ascorbic acid (AA) in a purely aqueous solution. A H2 turnover number (TON) up to
5809 was demonstrated for 280 h irradiation. Complexes with tetraethyl [2,2′-bipyridine]-4,4′-
diylbis(phosphonate) anchoring groups were found to outperform those with classical diethyl [2,2′-
bipyridine]-4,4′-dicarboxylate, which may be one of the important steps in developing high-efficiency
iridium(III) photosensitizers in water splitting hydrogen generation.

Keywords: aldehyde; photosensitizers; isoquinoline; hydrogen generation; iridium(III) complexes

1. Introduction

As there are growing concerns about the increasing global need for energy and the
limited availability of fossil fuels, the investigation of the use of alternate energy sources
has increased [1]. Being a renewable and carbon-free energy source, solar power has
great potential for resolving the world’s current energy problem [2]. Through the use of
photocatalytic devices, it is possible to capture and convert solar power into many other
kinds of usable energy [3–8]. Photocatalytic water-splitting using solar energy offers a
sustainable approach to produce hydrogen fuel [9,10]. In 1972, Fujishima and Honda
announced the development of the first light-driven water splitting hydrogen generation
device based on TiO2 [11]. As a result of this ground-breaking study, various water-splitting
hydrogen generation systems were developed [12,13].
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Iridium(III) cyclometalated complexes are attractive candidates as photosensitizers
at TiO2 to extend its absorption coverage, with outstanding photocatalytic hydrogen pro-
duction performance. Bernhard et al. have investigated the iridium(III) metal complexes
with the basic formula [Ir(CˆN)2(NˆN)]+ (CˆN = cyclometalating ligand, NˆN = anchor-
ing auxiliary ligand) for their uses in photochemical water-splitting hydrogen generation
systems [2,14–16]. A TON of 800 was achieved with 50 µM of [Ir(ppy)2(bpy)]+ as photo-
sensitizers in a water:acetonitrile (1:1, v/v) solvent mixture [14,17–20]. Given that, curiosity
has been piqued by iridium(III) complexes owing to their potential applicability as photo-
sensitizers for hydrogen generation [21]. Iridium(III) complexes, with their 5d valence shell,
display superior ligand-field stabilization energy, making them more stable during pho-
tocatalytic studies compared to other metalated dyes incorporating first- and second-row
transition metals [2,22]. Instead of being a dissociative triplet metal centered (3MC) state,
the lowest energy triplet state for iridium(III) dyes is a triplet ligand centered (3LC) state
or a triplet metal-to-ligand charge transfer (3MLCT) state, which usually encourages all of
the achievable thermal deactivation pathways of the excited states, and therefore a longer
lifetime of excited states in iridium(III) dyes can be achieved [2,22–26]. Moreover, physic-
ochemical properties, such as tuning the energy bandgap by changing ligand molecular
configurations, are viable strategies [27,28]. These favorable properties make iridium(III)
complex an attractive candidate for hydrogen production via water-splitting. However,
one disadvantage of iridium(III) complexes is their poor visible light absorbance [8,28–30],
which can be improved by modifying their structures [31].

Structure-based modifications of cyclometalating and auxiliary ligands have been at
the forefront of recent advances in iridium(III) photosensitizers, allowing for the tailor-
ing of their electrochemical and photophysical properties [3,32]. Their light-harvesting
capacity, electron injection efficiency, and stability can be enhanced by wisely selecting chro-
mophores and meticulously constructing their molecular structure. Isoquinoline functional
groups have been extensively applied in metalated dyes for water-splitting owing to their
remarkable charge transfer ability [33–35]. While aldehyde moiety is usually employed to
red-shift the absorption spectrum of metal complexes, which has also been exploited in
iridium(III) compounds for targeting bio-related applications [36–40]. These approaches
provide an attractive opportunity for developing highly efficient iridium(III) dyes for
water-splitting systems.

Previous literature shows that anchoring groups will have a significant impact on
the photocatalytic water splitting hydrogen generation performance [41,42]. Different an-
choring groups, including carboxylate or phosphonate can be introduced in the bipyridine
ligand of [Ir(CˆN)2(NˆN)]+-type dyes [42] to immobilize their linkages with the semicon-
ductor [43]. However, it has been found that hydrolysis of the carboxylate anchoring sites
reduces the efficacy of electron transport from photosensitizers to TiO2 [44]. Compared to
the carboxylate functional group, using the phosphonate functional group to anchor the dye
to the TiO2 surface improves the photocatalytic stability [44]. Hereunder, four iridium(III)
complexes (Ir1–Ir4) bearing either diethyl [2,2′-bipyridine]-4,4′-dicarboxylate or tetraethyl
[2,2′-bipyridine]-4,4′-diylbis(phosphonate) anchoring unit were synthesized as photosen-
sitizers to facilitate light-driven water splitting hydrogen generation (Figure 1). Either
thiophene-2-carbaldehyde-isoquinoline or thiophene-2-carbaldehyde-pyridine molecular
was utilized as the primary structural unit to provide better molar absorptivity (ε) in the
visible light region [38,45–50]. [Ir(ppy)2(dcbpy)]+ was also synthesized as standard for
comparing the light harvesting ability and water spitting hydrogen generation performance
of our dyes. All of the iridium(III) dyes were measured electrochemically and photo phys-
ically. Their photocatalytic performances for hydrogen generation were then examined
carefully through water-splitting. The structure-property relationship with various anchor-
ing groups and the hydrogen production activity of the dyes are also discussed herein.
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Figure 1. The chemical structures of iridium(III) dyes Ir1–Ir4 and Ir(ppy)2(dcbpy).

2. Materials and Methods
2.1. Materials and Reagents

The regular Schlenk method was used for all of the reactions, which were conducted
in a nitrogen environment. Prior to usage, glassware was dried in an oven overnight.
Solvents were distilled using a suitable drying agent in a nitrogen environment. All of
the chemicals were purchased from Sigma-Aldrich or Dieckmann and were employed
without additional purification from their original form unless otherwise noted. With
silica gel-coated aluminum plates purchased from Merck, the thin-layer chromatography
was employed to monitor the progress of reactions. Dieckmann-purchased silica gel
(230−400 mesh) was used in a column chromatograph to purify the products.

2.2. Instrumentation
1H and 13C NMR spectroscopy were conducted using deuterated chloroform (CDCl3)

as the solvent on a Bruker Ultra-shield 400 MHz FT-NMR spectrometer (Figures S1–S10).
Tetramethylsilane (TMS) was used as the chemical shift calibration reference. Mass spec-
trometry (MS) analyses were performed using an Agilent 6540 mass spectrometer (Agilent,
Santa Clara, CA, USA) in a liquid chromatograph–electrospray ionization–quadrupole time-
of-flight (LC-ESI-Q-TOF) setup (Figures S11–S16). The Agilent Technologies Cary 8454 UV-
Vis spectrometer was employed to obtain UV/Vis absorption spectra in dichloromethane
(CH2Cl2) solvent at 293 K. At 293 K, photoluminescence (PL) spectra were obtained using
an Agilent Technologies Cary Eclipse Fluorescence spectrometer with dichloromethane
(CH2Cl2) as the solvent. X-ray diffraction analysis (XRD) was conducted using Rigaku
Ultima IV at room temperature.
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2.3. Cyclic Voltammetry Measurements

Cyclic voltammetry (CV) experiments were conducted with a CHI 680D electrochemi-
cal analyzer using glassy carbon as the working electrode, Pt wire as the counter electrode
and Ag/Ag+ as the reference electrode using dichloromethane comprising 0.1 M tetra-
butylammonium hexafluorophosphate as the solvent at a scan rate of 100 mV s−1. Under
these conditions, the reversible oxidation potential (E1/2) of ferrocene was 0.40 V versus
Ag/Ag+ [51].

2.4. Computational Details

A GAUSSIAN 16 program was used to conduct all of the calculations [52]. Density
functional theory computations using the PBE0 hybrid exchange-correlation functional com-
pletely optimized the geometries of the ground and excited states of Ir(III) complexes, with
no symmetries being violated in the process [53]. The iridium atom was calculated using
the effective core potentials of Hay and Wadt with a double f-valence basis set (LANL2DZ),
whereas the rest of the atoms were calculated using the 6-311G(d,p) basis set [54]. Optimal
geometries were used to determine vibrational frequencies, which were then used to con-
firm that the geometries represented potential energy minima. Furthermore, on the basis of
the optimized ground-state geometries, the absorption characteristics in dichloromethane
media were computed using TD-DFT at the CAM-B3LYP hybrid functional level and the
PCM method [55]. It was determined that the stationary point was at minimum by com-
pleting frequency calculations at the same theoretical level (zero imaginary frequency). In
every compound, the ligands were octahedrally coupled to the iridium metal.

2.5. Electrochemical Impedance Spectroscopy and Photocurrent Measurements

Electrochemical impedance spectroscopy (EIS) and photocurrent measurement were
performed on CHI660E electrochemical workstation (Shanghai Chenhua, China), with
Ag/AgCl as the reference electrode and Pt wire as the counter electrode, with a 0.5 M
sodium sulphate (Na2SO4) solution as electrolyte. For the preparation of the working
electrode, 10 mg of the iridium(III) dyes was dispersed in a 1 mL ethanol and 20 µL Nafion
aqueous solution (5 wt%) and then ultrasonically scattered for 2 h. Subsequently, 0.1 mL
of the slurry was added dropwise onto an FTO glass substrate (1 cm2). The iridium(III)
dye remained coated on the FTO glass surface after the ethanol had evaporated. The EIS
was conducted at room temperature with a –700 mV bias potential and a 5 mV amplitude
for the alternating current. The tested frequency range varied from 0.1 Hz to 100 kHz.
Photocurrent measurements were produced throughout a frequency range of 0.1 Hz to
100 kHz. The illumination was provided by a 300 W Xe lamp. Everything was carried out
at ambient temperature.

2.6. Preparation of Platinized TiO2

Forty mL MeOH was added to a round bottom flask (r.b.f.) with 1.6 g of titanium
oxide powder and 0.1 mL of aqueous hexachloroplatinic acid (H2PtCl6) solution (8 wt%).
The reaction mixture was illuminated with a 300 W Hg lamp for 24 h. The mixture was
then centrifuged at 4000 rpm for 5 min, and the solid formed was rinsed three times with
methanol followed by drying under vacuum at room temperature in the dark overnight.
Investigation of Pt-TiO2 has been performed through a complete X-ray diffraction analysis.
It is clear that the Pt-TiO2 nanoparticles were properly manufactured, as shown by the XRD
data (Figure S17) [56].

2.7. Adsorption of Iridium(III) Photosensitizer onto Platinized TiO2

Twenty mg of platinized TiO2 was placed into a centrifuge tube along with 2.5 mL of
a 50 µM photosensitizer in CH2Cl2 solution, and the tube was then subjected to 30 min of
sonication. The grey solid eventually transformed into dark pink as the solution became
decolored and became transparent. Following centrifugation at 4000 rpm for 15 min, the
liquid layer was removed and the resulting solid was dried overnight. Absorption peaks
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in the low energy region of the spectra of the supernatant and the initial photosensitizer
solution were compared to determine the dye-loading percentage.

2.8. Light-Driven Photocatalytic H2 Production Studies

Five mL of 0.5 M AA (pH = 4) was added to a one-necked pear-shaped round bottom
flask with Ir(III) dyes@Pt-TiO2. Following 15 min of purging with an argon/methane
(80:20 mol%) combination, the flask was sealed with a rubber septum. Methane in the
gaseous mixture was used as an internal standard for the gas chromatograph (Agilent
6890 Series GC System with a 5 Å molecular-sieve column and thermal conductivity
detector) analysis. A green (ca. 520 nm) or blue (ca. 470 nm) LED was placed in a properly
sized container that blocked stray light from the surroundings, and the flask was churned
constantly while emitting light from the bottom. The intensity of the illumination was
evaluated with the aid of a thermal sensor and a power meter (Model: BIM-7203-0100F
& BIM-7001; Hangzhou Brolight Technology Co., Ltd., Hangzhou, China), which was
guesstimated as 50 mW. A gas chromatograph was used to quantify hydrogen generation
from the reaction mixture’s headspace at various time points, and a calibration plot showing
the integrated values of hydrogen in comparison to the methane present was then used
to determine the total amount of hydrogen generated (Figure S18). Based on the expected
monochromaticity of the LED lights at their emission intensity maxima, approximations of
the AQY% values were calculated.

AQY% =
rate o f H2 production× 2
rate o f incident photons

× 100%

2.9. Synthetic Procedure

L1: To a r.b.f. with 2-bromopyridine (0.8 mL, 8.549 mmol) in tetrahydrofuran (250 mL),
(5-formylthiophen-2-yl)boronic acid (2.000 g, 12.824 mmol) was added. Tetrakis(triphenylph
osphine)palladium(0) (0.988 g, 0.855 mmol) and 2M of K2CO3 (25.6 mL, 51.295 mmol) were
added to the reaction mixture, which was then heated to 85 ◦C for 48 h. Upon cooling to
room temperature, the mixture was subjected to extraction with ethyl acetate followed
by a wash with brine. It was filtered and dried over sodium sulphate before being con-
centrated by reduced pressure. As a result of silica gel column chromatography using
dichloromethane/n-hexane (1:1, v/v) as the eluent, the product was obtained as yellow
solid (yield: 1.405 g, 88%). 1H NMR (400 MHz, CDCl3) δ 9.95 (s, 1H), 8.66 (d, J = 4.8 Hz,
1H), 7.84−7.65 (m, 4H), 7.31 (d, J = 1.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 183.2, 153.9,
151.1, 149.9, 144.1, 136.9, 125.1, 123.6, 119.7. Found: [M+H]+ 190.0325; ‘molecular formula
C10H7NOS’ requires [M+H]+ 190.0321.

L2: To a flask comprising 1-chloroisoquinoline (1.400 g, 8.549 mmol) in tetrahydro-
furan (250 mL), (5-formylthiophen-2-yl)boronic acid (2.000 g, 12.824 mmol) was added.
Tetrakis(triphenylphosphine)palladium(0) (0.988 g, 0.855 mmol) and 2M of K2CO3 (25.6 mL,
51.295 mmol) were added to the reaction mixture, which was then heated to 115 ◦C for 48 h.
The mixture was brought down to room temperature, then ethyl acetate and brine were
used to extract the desired substances. An organic layer was concentrated after filtration
and dried over sodium sulphate. The crude product was then concentrated by reduced
pressure. A light-yellow solid was obtained when the crude product was refined through
silica gel column chromatography with dichloromethane/n-hexane (1:1, v/v) as the eluent
(yield: 1.737 g, 85%). 1H NMR (400 MHz, CDCl3) δ 9.92 (d, J = 16.3 Hz, 1H), 8.32 (d, J = 8.3
Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.77−7.63 (m, 5H), 7.59 (s, 1H). 13C NMR (101 MHz,
CDCl3) δ 183.0, 182.6, 141.4, 131.2, 128.5, 128.3, 126.9, 126.3, 120.8. Found: [M]+ 239.0219;
‘molecular formula C14H9NOS’ requires [M]+ 239.0399.

Diethyl [2,2′-bipyridine]-4,4′-dicarboxylate: [57] To a round bottom flask containing
[2,2′-bipyridine]-4,4′-dicarboxylic acid (0.950 g, 3.893 mmol), concentrated H2SO4 (10.5 mL)
and ethanol (22.5 mL) were added. The mixture was then heated to 80 ◦C overnight. Upon
reaching ambient temperature, the mixture was poured on ice and neutralized to pH 8
with 2a 5% NaOH solution. Dichloromethane and brine were used to extract the mixture.
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Sodium sulfate was used to dry the organic layer, which was then filtered and concentrated
with reduced pressure. Toluene was utilized to recrystallize the crude product so as to
make the final product a white solid (yield: 1.018 g, 87%). 1H NMR (400 MHz, CDCl3)
δ 8.96 (s, 2H), 8.89 (s, 2H), 7.92 (s, 2H), 4.47 (t, J = 10.6 Hz, 4H), 1.55−1.37 (m, 6H). 13C
NMR (101 MHz, CDCl3) δ 165.1, 156.5, 150.1, 138.9, 123.2, 120.5, 61.9, 14.2. Found: [M+Na]+

323.1045; ‘molecular formula C16H16N2O4’ requires [M+Na]+ 323.1002.
Ir1: To a round bottom flask containing L1 (0.500 g, 2.645 mmol), iridium(III) chloride

hydrate (0.311 g, 0.881 mmol) were introduced with 2-ethoxyethanol: deionized water
(3:1, v/v, total 8 mL). The reaction mixture was then heated up to 90 ◦C for 20 h. Through
filtration, the mixture was refined to provide the yellow solid iridium dimer Ir2L14Cl. This
chemical was employed without additional purification in the following process.

To a round bottom flask containing iridium dimer Ir2L14Cl2 (0.100 g, 0.083 mmol) in
dichloromethane:methanol (1:1, v/v, total 6 mL), diethyl [2,2′-bipyridine]-4,4′-dicarboxylate
(0.062 g, 0.208 mmol) was incorporated. The reaction mixture was then heated to 65 ◦C
for 6 h. Upon cooling to room temperature, the pH was adjusted to 5 by introducing an
appropriate amount of 1M HCl. The precipitate was filtered. Upon going through silica
gel column chromatography with dichloromethane/methanol (1:1, v/v) as the eluent, the
crude product was refined into a yellow solid (yield: 0.053 g, 37%). 1H NMR (400 MHz,
CDCl3) δ 9.20 (d, J = 5.4 Hz, 2H), 7.99−7.86 (m, 7H), 7.79 (dd, J = 11.4, 6.8 Hz, 6H), 7.60
(d, J = 7.9 Hz, 3H), 2.64 (s, 4H), 2.16 (s, 6H). Found: [M]+ 869.1070; ‘molecular formula
C36H28IrN4O6S2’ requires [M]+ 869.1073.

Ir2: To a round bottom flask containing iridium dimer Ir2L14Cl2 (0.100 g, 0.083 mmol)
in dichloromethane:methanol (1:1, v/v, total 6 mL), tetraethyl [2,2′-bipyridine]-4,4′-
diylbis(phosphonate) (0.089 g, 0.208 mmol) was incorporated. A temperature of 65
◦C was applied to the reaction mixture, and it was kept there for 6 h. Upon reaching am-
bient temperature, the pH was adjusted to 5 by introducing an appropriate amount of 1M
HCl. The precipitate was filtered. A yellow solid was obtained when the crude product
was refined using silica gel column chromatography with dichloromethane/methanol
(1:1, v/v) as the eluent. (yield: 0.065 g, 39%). 1H NMR (400 MHz, CDCl3) δ 9.94−9.47
(m, 3H), 9.20 (s, 2H), 7.84 (dd, J = 57.8, 50.0 Hz, 4H), 7.67−7.37 (m, 5H), 6.82−6.33 (m,
4H), 4.53−3.39 (m, 8H), 1.58−0.87 (m, 12H). Found: [M]+ 997.1233; ‘molecular formula
C38H38IrN4O8P2S2’ requires [M]+ 997.1229.

Ir3: This product was synthesized using a similar approach as Ir1, in which L1 was
substituted with L2 to obtain Ir3 as a red solid. (yield: 0.066 g, 41%). 1H NMR (400 MHz,
CDCl3) δ 9.38 (d, J = 6.1 Hz, 2H), 7.71−7.50 (m, 10H), 7.04 (dd, J = 24.0, 5.8 Hz, 3H),
6.96−6.77 (m, 5H), 6.69 (dd, J = 19.7, 14.9 Hz, 2H), 2.94 (d, J = 29.5 Hz, 4H), 1.26 (d,
J = 9.6 Hz, 6H). Found: [M]+ 969.0983; ‘molecular formula C44H32IrN4O6S2’ requires [M]+

969.1387.
Ir4: This product was prepared using a similar method as Ir2, except that L1 was

substituted with L2. Ir4 was then obtained as a red solid. (yield: 0. 071 g, 39%). 1H NMR
(400 MHz, CDCl3) δ 9.17 (d, J = 6.2 Hz, 2H), 8.61 (s, 3H), 7.84 (dd, J = 12.0, 6.4 Hz, 6H),
7.61 (d, J = 6.6 Hz, 2H), 7.21 (d, J = 3.0 Hz, 6H), 7.02 (s, 3H), 3.76−3.58 (m, 8H), 2.37 (t,
J = 7.5 Hz, 12H). Found: [M]+ 1097.1545; ‘molecular formula C46H42IrN4O8P2S2’ requires
[M]+ 1097.1543.

3. Results and Discussion
3.1. Synthesis of the Materials

Schemes 1 and 2 demonstrate, respectively, the synthesis pathways for the CˆN lig-
ands and the iridium(III) photosensitizers. The iridium(III) photosensitizers are composed
of an iridium(III) metal center with two CˆN cyclometalating ligands (L1 or L2) and ei-
ther a [2,2′-bipyridine]-4,4′-dicarboxylate (Ir1 and Ir3) or tetraethyl [2,2′-bipyridine]-4,4′-
diylbis(phosphonate) (Ir2 and Ir4) NˆN auxiliary ligand. L1 and L2 were synthesized
from a classic Suzuki reaction. Preparation of target iridium(III) dyes Ir1–Ir4 involved two
steps [58,59]. µ-chloride-bridged dimers were firstly synthesized by reacting the iridium(III)
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chloride hydrate with the corresponding L1 or L2 CˆN cyclometalating ligand, which was
then reacted with the NˆN auxiliary ligand to obtain the iridium(III) complexes (Ir1–Ir4).
All of the iridium(III) complexes are stable as solids in air.
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All of the organic precursors and ligands were measured by 1H and 13C NMR spec-
troscopy. A combination of LC-ESI-Q-TOF MS and 1H NMR spectroscopy was used to
analyze all of the iridium(III) complexes. A single peak at around ~9.95 ppm owes its
existence to the proton of the aldehyde group [60]. The results provide a glimpse of the
expected structures of the complexes. However, good quality acquisitions of their 13C NMR
spectra of were difficult due to their partial solubilities in common organic solvents.

3.2. Photophysical Properties

The photophysical properties of the iridium(III) complexes are explored in dichloromethane
at room temperature. Their distinctive UV/Vis absorption spectra are recorded in Table 1,
and a depiction of their spectra is provided in Figure 2. All of the dyes displayed strong
absorption in the UV region at 290–320 nm, originating from intra-ligand charge transfer
transition [61]. Spin-allowed π to π* ligand-centered electronic transitions on both the CˆN
and NˆN ligands provide the intense band at roughly 380 nm [31]. Metal-to-ligand charge
transfer (MLCT) and ligand-to-ligand charge transfer (LLCT) were both thought to be
responsible for the wide absorption bands above 400 nm [41]. These compounds showed
higher absorption intensities in the visible region than the classical [Ir(ppy)2(dcbpy)]+ com-
plex [27,28], which indicates that Ir1–Ir4 had a better light-harvesting capability than that
of [Ir(ppy)2(dcbpy)]+ [27,28,62]. In the range of 350–600 nm, the extended π-conjugation
caused by the isoquinoline moiety in Ir3 and Ir4, resulted in broader absorption peaks
with higher ε values than those of Ir1 and Ir2 [29,63]. Compared with [Ir(ppy)2(dcbpy)]+,
the lowest energy MLCT band in all of the Ir(III) dyes was red-shifted [64], which can be
explained by the extended π-conjugation in their CˆN ligands [58,65]. Having a high ε
value in both the UV and visible light areas is widely considered to be a necessary char-
acteristic of a photosensitizer for photocatalytic water-splitting hydrogen generation [58],
and incorporating isoquinoline moiety in our dyes should enhance the photocatalytic
hydrogen generation performance, as compared to classical iridium(III) dyes [66,67]. It is
worth noting that the nature of the anchoring group only marginally affects the absorption
properties of the iridium(III) dyes [44,68–73].

Table 1. UV/Vis absorption data of Ir1−Ir4 in CH2Cl2 at 293 K.

Photosensitizers λmax/nm (ε/105 M−1 cm−1) λonset/nm

Ir1 325(2.38), 418(0.69) 550
Ir2 321(2.36), 414(0.67) 539

Ir3 312(2.06), 360(1.78), 452(1.00),
492(0.71), 564(0.32) 585

Ir4 308(2.03), 355(1.77), 447(0.98),
483(0.69), 553(0.31) 576

[Ir(ppy)2(dcbpy)]+ 256(0.72), 308(0.32), 379(0.10) 466

Photoluminescence spectra of Ir1−Ir4 in a dichloromethane solution were measured
at room temperature (Figure 3). Under photoexcitation at 450 nm, all of the Ir(III) dyes
exhibited structured spectral emission ranging from 623 to 734 nm, resulting from the
mixture of 3MLCT and LC 3π to π* [74–76]. Significantly red-shifted emissions were
observed in complexes Ir3 and Ir4, as compared to Ir1 and Ir2. This may be attributed to
the extended π-conjugated in the cyclometalating ligands in Ir3 and Ir4 [31]. As shown by
the PL data, changing the ligands efficiently tunes the photophysical characteristics.

3.3. Electrochemical Properties

In addition to the light-harvesting ability, it is crucial to have appropriate energy
levels between the iridium(III) dyes, the semiconductor, and the SED for efficient hydrogen
production. Efficient electron injection and charge separation occur when the LUMO of
the iridium(III) dye has a higher energy level than the conduction band of the semicon-
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ductor, and its HOMO has a lower energy level than the SED [77]. Table 2 illustrates the
electrochemical characteristics of the dyes.
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Figure 2. UV/Vis absorption spectra of Ir1−Ir4 in CH2Cl2 solution at 293 K.
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Figure 3. PL spectra of Ir1−Ir4 in dichloromethane solution at room temperature.

Table 2. Electrochemical data and energy levels of Ir1−Ir4.

Dye EMax
Ox /V

EHOMO
[a]/eV Eg

[b]/eV Eox*
[c]/V

ELUMO
[d]/eV

Ir1 0.76 −5.56 2.25 −1.49 −3.31
Ir2 0.77 −5.57 2.30 −1.53 −3.27
Ir3 0.73 −5.53 2.12 −1.38 −3.41
Ir4 0.74 −5.54 2.15 −1.41 −3.39

[a] Calculated from −(EMax
Ox + 4.8). [b] Energy bandgap (Eg) was determined from the onset of the absorption

spectrum. [c] Eox* = EMax
Ox −Eg. [d] ELUMO = EHOMO + Eg.

The CV findings showed that semiconductor TiO2’s conduction band (−4.4 eV) [78,79]
was more negative than the ELUMO values of all four iridium(III) dyes (varying from −3.41
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to −3.27 eV), allowing for effective electron injection in the photocatalytic water-splitting
hydrogen production [80]. Meanwhile, the EHOMO values of Ir1–Ir4 (–5.53 to –5.57 eV)
are more negative than the redox potential level of the SED used in the water-splitting
experiments (ascorbic acid; –4.65 eV at pH ~4), which ensured effective dye regeneration by
the SED [80]. In Ir2 and Ir4, the phosphonate groups provide strong chemical anchoring to
the TiO2 surface [42,44,69,81], which is attributed to the tuning of the LUMO energy level.
These observations were corroborated via a density functional theory analysis.

3.4. Density Functional Theory Calculation

The density functional theory and time-dependent density functional theory (TD-
DFT) calculations were carried out to elucidate the charge-transfer character and electronic
properties of our complexes. The data are summarized in Table 3 and Figure 4. The TD-DFT
calculations show that the HOMO→LUMO excitation is responsible for the majority of
the electron’s passage from the ground state (S0) to the first singlet excited state (S1). It
is noteworthy that complexes sharing the same anchoring group have analogous LUMO
energy levels, lending credence to the idea that LUMO energy levels are delocalized over
the anchoring groups. As a consequence of photoexcitation-induced shifts in electron
distribution, effective charge separation may be achieved. All of their electrochemical
evidence agrees with these computer conclusions.

Table 3. Computational results of HOMO, LUMO, and energy gap (∆E) of the Ir(III) dyes. The results
are expressed in eV.

Compounds HOMO LUMO

Ir1 −5.90 −3.42
Ir2 −5.90 −3.33
Ir3 −5.97 −3.48
Ir4 −5.98 −3.38
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3.5. Electrochemical Impedance Spectroscopy Measurements for Iridium(III) Dyes

Further exploration of the charge recombination characteristics of the iridium(III)
complexes was performed using electrochemical impedance spectroscopy [82,83]. The
evaluations were carried out using an electrochemical workstation [82,83]. Figure 5 displays
the EIS Nyquist plot of our dyes. As is known to all, the smaller the arc radius in the
EIS Nyquist plot, the lower the electric charge transfer resistance and the better the H2
production performance [82–85]. Overall, the arc radii of Ir4 was the smallest of all, which
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suggests the best charge carrier transfer ability [86]. The results are in good agreement with
the H2 production performances of the dyes via water-splitting.

3.6. Photocurrent Measurements for Iridium(III) Dyes

Photocurrent measurement was used to test the stability and the relative effectiveness
of charge separation of our metal complexes [87]. A uniform and fast photocurrent re-
sponse during light-on/light-off testing indicates stable photocatalytic activity [88], while
high photocurrent density indicates good charge separation efficiency [89]. Photocurrent
measurements were conducted according to the previously reported procedure [90]. Figure 6
illustrates the photocurrent responses of Ir1–Ir4 under visible light irradiation for six on-off
cycles, which provides clear evidence of the electron transfer efficiency [90], thereby indicat-
ing their stable photocatalytic activities [88]. Ir4 exhibited a significantly higher photocurrent
intensity during light-on and decreased with a noticeable delay during light-off, thereby
indicating its superior charge separation efficiency and better H2 generation performance
than the other three dyes [88,90–92].
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3.7. Light-Driven Hydrogen Generation Studies

In this photocatalytic experiment, iridium(III) dyes were used as photosensitizers in
the photocatalytic hydrogen generation process through water-splitting. The experimental
part includes instructions for making platinized TiO2, attaching iridium(III) dyes to Pt-TiO2,
and its light-driven hydrogen reactions. Sonication was used to load each iridium(III) dye
onto the Pt-TiO2. Prior to performing the hydrogen generation experiment, the reaction
mixture was centrifuged and allowed to dry. With reference to the different absorbance
values prior to and following the dye-loading process, the dye-loading percentage (~100%)
was ascertained for each sample (Figure S20).

The light-driven hydrogen production was carried out in 5 mL of an AA (0.5 M)
solution at pH 4.0, with SED functioning as the reducing agent. Hydrogen was measured
using GC with methane as an internal reference while the whole apparatus was constantly
irradiated with green or blue LED. The hydrogen generation data for each water splitting
system are presented in Figures 7 and 8, and the corresponding data are tabulated in Tables 4
and 5. In this configuration, light irradiation causes photoexcitation of the photosensitizer,
subsequently leading to the infusion of electrons into the conduction band of TiO2. To do
this, they transfer their electrons to Pt nanoparticles doped into the TiO2 surface, which in
turn reduces protons to liberate hydrogen [31,58].
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Figure 7. Ir1–Ir4@Pt-TiO2 photocatalytic H2 production curves under illumination with blue LEDs
(50 mW).

Table 4. Photocatalytic H2 generation data with different iridium(III) dyes under blue light irradiation.

Dye@Pt-
TiO2

Time
/h H2/mL TON [a] TOF

[b]/h−1
TOFi

[c]/h−1

Activityi
[d] /µmol
g−1 h−1

AQY% Dye
Loading %

Ir1 280 6.8 4462 15.9 76.9 48,052 0.91 100%
Ir2 280 7.4 4834 17.3 141.1 88,163 0.98 100%
Ir3 280 8.4 5509 19.7 159.5 99,673 1.13 100%
Ir4 280 8.9 5809 20.7 174.0 108,735 1.19 100%

[a] The TON value of H2 was determined by multiplying the number of moles of H2 produced by two and dividing
it over the number of moles of Ir(III) dyes attached to Pt-TiO2. [b] The TOF value was calculated per hour. [c] TOFi
presents the initial TOF, which is calculated for the first 5 h. [d] Activityi is defined as the number of micromoles
of H2 evolved per gram of platinum loaded per hour.
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Figure 8. Ir1–Ir4@Pt-TiO2 photocatalytic H2 production curves under illumination with green LEDs
(50 mW).

Table 5. Photocatalytic H2 generation data with different iridium(III) dyes under green light irradiation.

Dye@Pt-
TiO2

Time
/h H2/mL TON [a] TOF

[b]/h−1
TOFi

[c]/h−1

Activityi
[d] /µmol
g−1 h−1

AQY% Dye
Loading %

Ir1 280 2.3 1492 5.3 39.2 24,490 0.30 100%
Ir2 280 4.2 2727 9.7 44.4 27,755 0.55 100%
Ir3 280 4.2 2730 9.7 47.0 29,388 0.56 100%
Ir4 280 4.6 3029 10.8 48.5 30,327 0.61 100%

[a] The TON value of H2 was determined by multiplying the number of moles of H2 produced by two and dividing
it over the number of moles of Ir(III) dyes attached to Pt-TiO2. [b] The TOF value was calculated per hour. [c] TOFi
presents the initial TOF, which is calculated for the first 5 h. [d] Activityi is defined as the number of micromoles
of H2 evolved per gram of platinum loaded per hour.

All four iridium(III) dye-based photocatalytic systems promoted hydrogen production
via photocatalytic water splitting under irradiation with green or blue LEDs. In general,
due to their superior light-harvesting capabilities in the blue light region, as compared
to the green, the quantity of hydrogen generated under much higher levels of blue light
radiation were emitted compared to green (495–570 nm) (Figure 2). Furthermore, all
four dye-based systems generated hydrogen at a higher rate than the classical iridium-
based dye [Ir(ppy)2(dcbpy)]+ under the same conditions (Figure S20 and Table S1). Their
superior performance is possibly because of the improved light-harvesting ability over
a wider range of wavelengths with an increased level of molar absorptivity (ε). The
Ir4 system exhibits the highest rates of hydrogen production in the presence of blue
and green light, with 5809 and 3029 TON values, respectively. The system based on
Ir3 also exhibits satisfactory results, with TON values of 5509 and 2730 for blue and
green light irradiation, respectively. The TON values of Ir(III) dyes show a descending
order of Ir4 > Ir3 > Ir2 > Ir1 when exposed to green and blue light. The results indicate
that the polarizable π-system isoquinoline functional group effectively aids hydrogen
production due to a better charge transfer ability [93,94]. In addition, iridium(III) dyes
with phosphonate anchoring groups outperform those with carboxylate anchors (i.e., Ir1
vs. Ir2 and Ir3 vs. Ir4), this probably due to the phosphonate anchoring groups that bind
more strongly to the TiO2 semiconductor [44,69]. The findings were consistent with those
reported in the previous literature [42,81].

The Ir4@Pt-TiO2 composite material continued to have its original color after radia-
tion for 280 h (Figure S22), however, the AA aqueous solution’s color transitioned from
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colorless to a very light yellow owing to the existence of dehydroascorbic acid from the
dye-regeneration process [58,95]. This demonstrates that the photocatalyst is not signifi-
cantly affected by either dye desorption or photobleaching [96]. Taking into account the
hydrogen production curve, it is fair to assume that the Ir4-based photocatalytic system
would continue to function under much prolonged illumination.

4. Conclusions

Four new aldehyde-based iridium(III) complexes with either phosphonate or carboxy-
late anchoring groups are reported. All four iridium(III) photosensitizers are adequately
characterized and their hydrogen productions via water-splitting were assessed. The initia-
tion of the isoquinoline functional group in Ir3 and Ir4 effectively intensified and extended
light absorption in the visible region, which are capable of exceptional light gathering and
H2 generation. A TON value of 5809 was achieved in the Ir4-based system under blue
LED irradiation. In particular, iridium(III) dyes containing a phosphonate anchoring group
were able to produce greater TON values than carboxylate-anchored dyes. Consequently,
using phosphonate groups instead of carboxylate groups to bind iridium(III) dyes to a
TiO2 semiconductor provides a higher stability with more effective photocatalytic activity
for photocatalytic H2 generation from water. Future work related to those iridium(III)
complexes may focus on employing these materials in biological applications, such as
luminescent probes because of their attractive photophysical properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11030110/s1, Figure S1: 1H NMR spectrum of L1
in CDCl3; Figure S2: 13C NMR spectrum of L1 in CDCl3; Figure S3: 1H NMR spectrum of L2 in
CDCl3; Figure S4: 13C NMR spectrum of L2 in CDCl3; Figure S5: 1H NMR spectrum of diethyl [2,2′-
bipyridine]-4,4′-dicarboxylate in CDCl3; Figure S6: 13C NMR spectrum of diethyl [2,2′-bipyridine]-
4,4′-dicarboxylate in CDCl3; Figure S7: 1H NMR spectrum of Ir1 in CDCl3; Figure S8: 1H NMR
spectrum of Ir2 in CDCl3; Figure S9: 1H NMR spectrum of Ir3 in CDCl3; Figure S10: 1H NMR
spectrum of Ir4 in CDCl3; Figure S11: MS result of L1; Figure S12: MS result of L2; Figure S13: MS
result of diethyl [2,2′-bipyridine]-4,4′-dicarboxylate; Figure S14: MS result of Ir1; Figure S15: MS
result of Ir2; Figure S16: MS result of Ir3; Figure S17: MS result of Ir4; Figure S18: XRD patterns of
Pt-TiO2; Figure S19: Calibration plot of the signal ratio (H2/CH4) vs. amount of H2 obtained from
GC analysis; Figure S20: Cyclic voltammograms of Ir1–Ir4.; Figure S21: UV/Vis absorption spectra
of Ir1 to Ir4 before and after dye loading in CH2Cl2 solution at 293 K; Figure S22: Photocatalytic H2
generation curves of [Ir(ppy)2(dcbpy)]+ under blue LED irradiation (50 mW).; Table S1: Photocatalytic
H2 generation data with [Ir(ppy)2(dcbpy)]+ under blue light irradiation.
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