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Abstract: A new catalytic system has been developed for hydrogen production from various monosac-
charides, mainly glucose, as a starting material under reflux conditions in water in the presence of a
water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the
reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-
bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesul-
fonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction,
it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glu-
cose proceeded.

Keywords: iridium catalyst; water-soluble catalyst; hydrogen production; glucose; monosaccharides

1. Introduction

Hydrogen is important as a raw material for the industrial production of ammonia
and methanol [1–5]. In addition, it is an essential industrial reagent in the refining and
desulfurization of petroleum [6–8]. Hydrogen is also used in large quantities in industrial
processes such as turning unsaturated fats into saturated oils and fats, metal alloying and
iron flashmaking, and electronics manufacturing (creating semiconductors, LEDs, displays,
and photovoltaic segments) [9]. Furthermore, in addition to these industrial applications,
hydrogen has been promoted as an energy carrier because it can easily be converted into
other energy forms, namely, electrical energy or mechanical energy, with only harmless
water as a by-product of the energy conversion [10,11]. Hydrogen has attracted attention as
a next-generation energy carrier to replace fossil fuel resources because it has the advantage
of exceedingly high energy density per weight.

Under this background, there is a need to develop new techniques to produce hydro-
gen using sustainable and available resources as feedstock [12,13]. In this context, biomass
is expected to be a starting material for producing hydrogen, with the biomass mainly
comprised of saccharides.

Research into developing a reaction to produce hydrogen using saccharides as starting
material has been carried out for a relatively long time [14]. There are a number of reported
reactions in which saccharides are dehydrogenated using heterogeneous catalysts [15–17]
or enzyme catalysts [18,19] to obtain hydrogen. However, most of the reported examples
using heterogeneous catalysts are reactions done under high temperature conditions above
300 ◦C using expensive noble metals. Furthermore, there are many catalytic systems that
produce hydrogen gas mixed with carbon monoxide, carbon dioxide, or methane, instead
of highly pure hydrogen, which is often difficult to produce. On the other hand, in the
case of a reaction using an enzyme catalyst, it is often possible to obtain hydrogen from
a saccharide under mild conditions. However, there are associated disadvantages such
as long reaction times, reaction conditions requiring precise control, and time-consuming
culturing of enzymes.
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In view of these circumstances, there have been great expectations to realize hydrogen
production from saccharides under mild conditions within a short reaction time using
artificial homogeneous transition metal catalysts. It would be particularly significant
if a water-soluble monosaccharide such as glucose was used as the starting material
and hydrogen could be efficiently produced by catalytic dehydrogenation in an aqueous
medium.

In 2018, Garcia and Mata et al. reported that gluconic acid was formed by the reaction
of glucose in aqueous solvents using iridium complex catalysis, accompanied by hydro-
gen evolution (Scheme 1a) [20–22]. This is particularly noteworthy because glucose is
sustainably available as a natural resource. However, to efficiently proceed with the dehy-
drogenation reaction, the usage of strong acids such as sulfuric acid and hydrochloric acid
was essential, and the amount of iridium catalyst used was relatively large at 2.0 mol %.

Our research group has developed water-soluble iridium catalysts that demonstrate
high catalytic activity for the dehydrogenation reaction of alcohols and has reported
the synthesis of aldehydes and ketones by the simple dehydrogenation of primary and
secondary alcohols [23,24]. In addition, catalytic lactone synthesis involving the evolution
of hydrogen using diol as a starting material has also been reported [25].

In this study, we developed a new catalytic system to produce hydrogen under reflux
conditions in water in the presence of a water-soluble dicationic iridium catalyst using
various monosaccharides, mainly glucose, as a starting material. As a result, we found
that hydrogen could be efficiently obtained from these monosaccharides without the need
for the addition of acids or bases and with less catalyst (from 0.2 to 1.0 mol %) than the
previously reported examples (Scheme 1b).
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Scheme 1. Iridium-catalyzed dehydrogenation of glucose in water: (a) under acidic conditions report
by Garcia and Mata et al. (b) under neutral conditions reported in this work.

2. Results and Discussion

The structures of the iridium catalysts used in this study are shown in Figure 1.
When D-glucose (5.0 mmol) was heated under reflux in water (15 mL) for 20 h in

the presence of catalyst 1 (0.2 mol %), which was used under highly acidic conditions
in the previous research by Garcia an Mata, only very low yield (7%) of hydrogen was
generated (Table 1, entry 1) [26]. In contrast, when water-soluble dicationic catalyst 2,
which was previously developed for the dehydrogenative oxidation of simple alcohols
in water, was employed for the dehydrogenation of glucose; hydrogen was obtained in
76% yield (entry 2). In this dehydrogenation reaction, it is important that the complex
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catalyst is dicationic and soluble in water, and that it has 6,6′-dihydroxy-2,2′-bipyridine as
a ligand. In other words, no hydrogen was produced when [Cp*IrCl2]2 (Cp*: pentamethyl-
cyclopentadienyl), which is not soluble in water (entry 3), or [Cp*Ir(H2O)3][OTf]2 having
no 6,6′-dihydroxy-2,2′-bipyridine ligand was used as the catalyst (entry 4). In addition, the
presence of a hydroxy group at the 6,6′-position of the ligand is very important for catalytic
performance. For example, hydrogen was not produced in the reaction using catalyst 3
with no hydroxy groups (entry 5) or catalyst 4 with a hydroxy group at the 4,4′-positions
(entry 6). Subsequently, the reaction using catalyst 5 with tetrafluoroborate anion was
carried out to investigate the influence of the counter anion (entry 7). In this case, although
the yield of hydrogen was slightly reduced, there was no large difference from that when
using catalyst 2. The yield was successfully improved to 95% by increasing the amount
of the catalyst 2 to 1.0 mol %, (entry 8). The time course of hydrogen generation in the
reaction of entry 8 was examined, and the results are shown in Figure 2.
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a Yield of hydrogen gas collected in a gas burette. The molar amount of hydrogen gas was calculated using the
ideal gas law.

In the dehydrogenation reaction of glucose catalyzed by iridium complex catalyst 2,
a simultaneous parallel experiment of alkene hydrogenation was performed to confirm
that the obtained gas was highly-pure hydrogen. Simultaneous parallel experiments were
carried out by connecting flask A, in which the dehydrogenation of glucose (5.0 mmol) in
the presence of catalyst 2 was proceeding, and flask B, in which 1-decene (5.0 mmol) was
heated to 50 ◦C in benzene solvent in the presence of RhCl (PPh3)3 (2.0 mol %), using a
rubber tube (Scheme 2). As shown in entry 2 of Table 1, 76% of hydrogen is expected to be
produced in flask A. By this simultaneous parallel experiment, decane was obtained in 74%
yield in the reaction in flask B. This result indicates that the gas produced using glucose
as a starting material in the presence of catalyst 2 is highly-pure hydrogen and does not
contain a component that inhibits the catalytic hydrogenation of an alkene. In addition, gas
chromatographic analysis of the gas obtained by dehydrogenation of glucose was carried
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out to confirm that it was highly-pure hydrogen (the results are given in Figure S2 in the
supporting information).
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Scheme 2. A simultaneous parallel experiment: Hydrogenation of 1-decene with hydrogen produced
by the dehydrogenation of glucose.

There are five alcoholic hydroxy groups in the D-glucose molecule. To ascertain the
site at which the dehydrogenation reaction by the iridium complex catalyst 2 proceeds,
experiments using glucose analogues with protected hydroxy groups were conducted
(Table 2). First, the reaction of normal D-glucose is re-listed as entry 1 (the yield of hydrogen
is 95%). Next, for the glucose analogue in which hydroxy groups other than the 6-position
were methoxy protected, a very low yield (8%) of hydrogen was obtained (entry 2). For the
glucose analogue in which only the hydroxy group at 1-position was methoxy protected,
the hydrogen yield was greatly reduced to 14% (entry 3). No hydrogen was produced
for the glucose analogue in which all hydroxy groups were methoxy protected (entry 4).
Finally, for the glucose analogue in which all hydroxy groups but that at the 1-position
were protected, the hydrogen yield was 92%, and it was found that the hydrogen yield
not significantly different from that obtained when using unprotected glucose (entry 5).
These results indicate that dehydrogenation from the hydroxy group at the 1-position
proceeds during the hydrogen production reaction from glucose by catalyst 2. Incidentally,
the organic product obtained in 97% yield in the experiment of entry 5 was found to be a
gluconolactone derivative with a lactone structure (Figure 3). Based on these results, it is
likely that gluconolactone is formed after the dehydrogenation of glucose.
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Table 2. Hydrogen production from various glucose analogues having protected hydroxy groups.
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We then investigated the dehydrogenation of various monosaccharides using iridium
catalyst 2 (Table 3). Hydrogen was produced in good yields in the case of the feedstocks,
D-galactose, D-mannose, and L-arabinose, that can form lactone structures by dehydrogena-
tion (entries 2–4). In the case of D-fructose, a starting material in which dehydrogenation
from a hydroxy group at the 1-position is difficult, the hydrogen yield was greatly reduced
(entry 5).
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Table 3. Hydrogen production from various monosaccharides using the iridium catalyst 2.
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3. Materials and Methods
3.1. General

All reactions and manipulations were performed under argon atmosphere using
standard Schlenk techniques. 1H and 13C{1H} NMR spectra were recorded on JEOL ECS-
400 or ECX-500 spectrometers. Gas chromatograph analyses of hydrogen were performed
on a GL-Sciences GC390 gas chromatograph with packed columns (Molecular Sieve 5A and
Gaskuropack 54). Gas chromatograph analysis of organic product was performed on a GL-
Sciences GC353B gas chromatograph with a capillary column (GL-Sciences TC-17 and TC-
WAX). Silica-gel column chromatography was performed using Wako-gel C-200 (Wako Pure
Chemical Corporation). The iridium catalysts, [Cp*IrCl2]2 [27], [Cp*Ir(H2O)3][OTf]2 [28],
and 1 to 5 [10,29–31] were prepared according to the literature methods. Various glucose
analogues having protected hydroxy groups used in Table 2 were prepared according to
the literature methods [32–34]. Organic solvent was distilled under an argon atmosphere
with an appropriate drying agent. Other reagents were commercially available and were
used as received.

3.2. General Procedures for the Hydrogen Production from D-Glucose Catalyzed by Various
Iridium Complexes

Under argon atmosphere, iridium catalyst (0.20 or 1.0 mol % Ir), D-glucose (5.0 mmol),
and distilled water (15 mL) were placed in a flask equipped with a reflux condenser and
a gas burette. The mixture was magnetically stirred under reflux for 20 h in an oil bath.
The volume of the evolved hydrogen gas was measured by using a gas burette, and the
yield of evolved hydrogen gas was calculated using the ideal gas law. The illustration of
reaction apparatus is shown in Figure S1 in the supporting information. The purity of the
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evolved hydrogen gas was confirmed by GC analysis. Details are shown in Figure S2 in
the supporting information.

3.3. Procedure for the Simultaneous Parallel Experiment (Hydrogenation of 1-Decene with
Hydrogen Produced by the Dehydrogenation of Glucose)

Under an atmosphere of argon, iridium catalyst 2 (0.20 mol %), D-glucose (5.0 mmol),
and distilled water (15 mL) were placed in a flask A. In another flask B, under an atmo-
sphere of argon, RhCl(PPh3)3 (2.0 mol %), 1-decene (5.0 mmol), and benzene (7.5 mL) were
placed. The two flasks A and B were connected through a rubber tube. The mixture in the
flask A was stirred under reflux for 20 h, while the mixture in the flask B was stirred at
50 ◦C. The yield of decane was determined by GC analysis using undecane as an internal
standard.

3.4. General Procedures for the Hydrogen Production from Various Substrates

Under argon atmosphere, iridium catalyst 2 (1.0 mol %), substrate (5.0 mmol), and
distilled water (15 mL) were placed in a flask equipped with a reflux condenser and a
gas burette. The mixture was magnetically stirred under reflux for 20 h in an oil bath.
The volume of the evolved hydrogen gas was measured by using a gas burette, and the
yield of evolved hydrogen gas was calculated using the ideal gas law. The illustration of
reaction apparatus is shown in Figure S1 in the supporting information. For the reaction
shown in entry 5 of Table 2, the organic product was isolated by silica-gel chromatography
(eluent: dichloromethane:methanol = 30:1) as illustrated in Figure 3. 1H NMR (500 MHz,
CDCl3) [35]: δ 4.40 (ddd, J = 9, 4, 3 Hz, 1H), 3.84 (d, J = 6 Hz, 1H), 3.70–3.52 (m, 2H), 3.65
(m, 2H), 3.57 (s, 3H), 3.54 (s, 3H), 3.51 (s, 3H), 3.41 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3):
δ 168.4, 82.1, 79.2, 77.4, 77.3, 70.6, 58.93, 58.86, 58.6, 58.3. These NMR spectra are shown in
the supporting information.

4. Conclusions

In conclusion, we succeeded in developing a new catalytic system for hydrogen
production from glucose and various monosaccharides using a dicationic water-soluble
dicationic iridium catalyst 2 under reflux conditions in water. The addition of a strong
acid or base is not required during the reaction. Hydrogen can be efficiently obtained
from various kinds of monosaccharides with a relatively small amount of catalyst (0.2 to
1.0 mol %). It was experimentally suggested that the dehydrogenation of the alcoholic
moiety at 1-position of monosaccharides proceeded. This method to obtain high-purity
hydrogen conveniently under mild conditions using saccharides sustainably available from
natural resources as raw materials can potentially form the basis for crucial technologies
aimed at the transition to a hydrogen society in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11080891/s1, Figure S1: the reaction setup for hydrogen production from glucose and
various monosaccharides, Figure S2: GC analysis of the evolved gas by the reaction of glucose under
optimal conditions catalyzed by catalyst 2.
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