Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Chimp Optimization Algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3452 KB  
Article
Improved Chimpanzee Optimization Algorithm Based on Multi-Strategy Fusion and Its Application in Multiphysics Parameter Optimization
by Bin Zhou, Chaoyun Shi, Ning Yan and Yangyang Chu
Symmetry 2026, 18(1), 108; https://doi.org/10.3390/sym18010108 - 7 Jan 2026
Viewed by 205
Abstract
To address the challenges of high computational costs, susceptibility to local optima, and heavy reliance on manual intervention in multi-physics parameter optimization for symmetric acoustic metamaterials, an enhanced Chimp Optimization Algorithm (DADCOA) is proposed in this paper. This algorithm integrates the double chaotic [...] Read more.
To address the challenges of high computational costs, susceptibility to local optima, and heavy reliance on manual intervention in multi-physics parameter optimization for symmetric acoustic metamaterials, an enhanced Chimp Optimization Algorithm (DADCOA) is proposed in this paper. This algorithm integrates the double chaotic initialization strategy (DCS), adaptive multimodal convergence mechanism (AMC), and dual-weight pinhole imaging update operator (DWPI). It employs a Logistic–Tent composite chaotic mapping strategy for population initialization, significantly enhancing distribution uniformity within high-dimensional parameter spaces. An AMC factor is then introduced to dynamically balance global exploration and local exploitation based on the real-time evolutionary state of the population. A dual-weight population update mechanism, incorporating distance and historical contributions, is integrated with a pinhole imaging opposition-based learning strategy to improve population diversity. Additionally, a composite single objective error feedback local differential mutation operation is introduced to improve optimization accuracy for coupled multi-physics objectives. Experimental validation based on the CEC 2022 test function suite and an acoustic metamaterial parameter optimization model demonstrates that compared to the standard COA algorithm and existing improved algorithms, the DADCOA algorithm reduces simulation time by 28.46% to 60.76% while maintaining high accuracy. This approach effectively addresses the challenges of high computational cost, stringent accuracy requirements, and composite single objective coupling in COMSOL physical parameter optimization, providing an effective solution for the design of acoustic metamaterials based on symmetric structures. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

37 pages, 2000 KB  
Article
An Optimized DRL-GAN Approach for Robust Anomaly Detection in Multi-Scale Energy Systems: Insights from PSML and LEAD1.0
by Anita Ershadi Oskouei, Maral Keramat Dashliboroun, Pardis Sadatian Moghaddam, Nuria Serrano, Francisco Hernando-Gallego, Diego Martín and José Vicente Álvarez-Bravo
Energies 2026, 19(1), 198; https://doi.org/10.3390/en19010198 - 30 Dec 2025
Viewed by 277
Abstract
The increasing complexity of multi-scale energy systems makes robust anomaly detection essential to ensure system resilience and operational continuity. Recent advances in DL enable effective modeling of high-dimensional, non-linear energy data by capturing latent spatio-temporal patterns. In this paper, we proposed an optimized [...] Read more.
The increasing complexity of multi-scale energy systems makes robust anomaly detection essential to ensure system resilience and operational continuity. Recent advances in DL enable effective modeling of high-dimensional, non-linear energy data by capturing latent spatio-temporal patterns. In this paper, we proposed an optimized deep reinforcement learning–generative adversarial network (ODRL-GAN) framework for reliable anomaly detection in multi-scale energy systems. The integration of DRL and GAN brings a key innovation: while DRL enables adaptive decision-making under dynamic operating conditions, GAN enhances detection by reconstructing normal patterns and exposing subtle deviations. To further strengthen the model, a novel multi-objective chimp optimization algorithm (NMOChOA) is employed for hyper-parameter tuning, improving accuracy, and convergence. This design allows the ODRL–GAN to effectively capture high-dimensional spatio-temporal dependencies while maintaining robustness against diverse anomaly patterns. The framework is validated on two benchmark datasets, PSML and LEAD1.0, and compared against state-of-the-art baselines including transformer, deep belief network (DBN), convolutional neural network (CNN), gated recurrent unit (GRU), and support vector machines (SVM). Experimental results demonstrate that the proposed method achieves a maximum detection accuracy of 99.58% and recall of 99.75%, significantly surpassing all baselines. Furthermore, the model exhibits superior runtime efficiency, faster convergence, and lower variance across trials, highlighting both robustness and scalability. The optimized DRL–GAN framework provides a powerful and generalizable solution for anomaly detection in complex energy systems, offering a pathway toward secure and resilient next-generation energy infrastructures. Full article
Show Figures

Figure 1

48 pages, 5409 KB  
Article
Enhanced Chimp Algorithm and Its Application in Optimizing Real-World Data and Engineering Design Problems
by Hussam N. Fakhouri, Riyad Alrousan, Hasan Rashaideh, Faten Hamad and Zaid Khrisat
Computation 2026, 14(1), 1; https://doi.org/10.3390/computation14010001 - 20 Dec 2025
Viewed by 419
Abstract
This work proposes an Enhanced Chimp Optimization Algorithm (EChOA) for solving continuous and constrained data science and engineering optimization problems. The EChOA integrates a self-adaptive DE/current-to-pbest/1 (with jDE-style parameter control) variation stage with the canonical four-leader ChOA guidance and augments the search with [...] Read more.
This work proposes an Enhanced Chimp Optimization Algorithm (EChOA) for solving continuous and constrained data science and engineering optimization problems. The EChOA integrates a self-adaptive DE/current-to-pbest/1 (with jDE-style parameter control) variation stage with the canonical four-leader ChOA guidance and augments the search with three lightweight modules: (i) L’evy flight refinement around the incumbent best, (ii) periodic elite opposition-based learning, and (iii) stagnation-aware partial restarts. The EChOA is compared with more than 35 optimizers on the CEC2022 single-objective suite (12 functions). The results shows that the EChOA attains state-of-the-art results at both D=10 and D=20. At D=10, it ranks first on all functions (average rank 1.00; 12/12 wins) with the lowest mean objective and the smallest dispersion relative to the strongest competitor (OMA). At D=20, the EChOA retains the best overall rank and achieves top scores on most functions, indicating stable scalability with problem dimension. Pairwise Wilcoxon signed-rank tests (α=0.05) against the full competitor set corroborate statistical superiority on the majority of functions at both dimensions, aligning with the aggregate rank outcomes. Population size studies indicate that larger populations primarily enhance reliability and time to improvement while yielding similar terminal accuracy under a fixed iteration budget. Four constrained engineering case studies (including welded beam, helical spring, pressure vessel, and cantilever stepped beam) further confirm practical effectiveness, with consistently low cost/weight/volume and tight dispersion. Full article
Show Figures

Figure 1

37 pages, 5564 KB  
Article
Improved Weighted Chimp Optimization Algorithm Based on Fitness–Distance Balance for Multilevel Thresholding Image Segmentation
by Asuman Günay Yılmaz and Samoua Alsamoua
Symmetry 2025, 17(7), 1066; https://doi.org/10.3390/sym17071066 - 4 Jul 2025
Cited by 2 | Viewed by 808
Abstract
Multilevel thresholding image segmentation plays a crucial role in various image processing applications. However, achieving optimal segmentation results often poses challenges due to the intricate nature of images. In this study, a novel metaheuristic search algorithm named Weighted Chimp Optimization Algorithm with Fitness–Distance [...] Read more.
Multilevel thresholding image segmentation plays a crucial role in various image processing applications. However, achieving optimal segmentation results often poses challenges due to the intricate nature of images. In this study, a novel metaheuristic search algorithm named Weighted Chimp Optimization Algorithm with Fitness–Distance Balance (WChOA-FDB) is developed. The algorithm integrates the concept of Fitness–Distance Balance (FDB) to ensure balanced exploration and exploitation of the solution space, thus enhancing convergence speed and solution quality. Moreover, WChOA-FDB incorporates weighted Chimp Optimization Algorithm techniques to further improve its performance in handling multilevel thresholding challenges. Experimental studies were conducted to test and verify the developed method. The algorithm’s performance was evaluated using 10 benchmark functions (IEEE_CEC_2020) of different types and complexity levels. The search performance of the algorithm was analyzed using the Friedman and Wilcoxon statistical test methods. According to the analysis results, the WChOA-FDB variants consistently outperform the base algorithm across all tested dimensions, with Friedman score improvements ranging from 17.3% (Case-6) to 25.2% (Case-4), indicating that the FDB methodology provides significant optimization enhancement regardless of problem complexity. Additionally, experimental evaluations conducted on color image segmentation tasks demonstrate the effectiveness of the proposed algorithm in achieving accurate and efficient segmentation results. The WChOA-FDB method demonstrates significant improvements in Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM) metrics with average enhancements of 0.121348 dB, 0.012688, and 0.003676, respectively, across different threshold levels (m = 2 to 12), objective functions, and termination criteria. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

34 pages, 2216 KB  
Article
An Optimized Transformer–GAN–AE for Intrusion Detection in Edge and IIoT Systems: Experimental Insights from WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT Datasets
by Ahmad Salehiyan, Pardis Sadatian Moghaddam and Masoud Kaveh
Future Internet 2025, 17(7), 279; https://doi.org/10.3390/fi17070279 - 24 Jun 2025
Cited by 5 | Viewed by 2476
Abstract
The rapid expansion of Edge and Industrial Internet of Things (IIoT) systems has intensified the risk and complexity of cyberattacks. Detecting advanced intrusions in these heterogeneous and high-dimensional environments remains challenging. As the IIoT becomes integral to critical infrastructure, ensuring security is crucial [...] Read more.
The rapid expansion of Edge and Industrial Internet of Things (IIoT) systems has intensified the risk and complexity of cyberattacks. Detecting advanced intrusions in these heterogeneous and high-dimensional environments remains challenging. As the IIoT becomes integral to critical infrastructure, ensuring security is crucial to prevent disruptions and data breaches. Traditional IDS approaches often fall short against evolving threats, highlighting the need for intelligent and adaptive solutions. While deep learning (DL) offers strong capabilities for pattern recognition, single-model architectures often lack robustness. Thus, hybrid and optimized DL models are increasingly necessary to improve detection performance and address data imbalance and noise. In this study, we propose an optimized hybrid DL framework that combines a transformer, generative adversarial network (GAN), and autoencoder (AE) components, referred to as Transformer–GAN–AE, for robust intrusion detection in Edge and IIoT environments. To enhance the training and convergence of the GAN component, we integrate an improved chimp optimization algorithm (IChOA) for hyperparameter tuning and feature refinement. The proposed method is evaluated using three recent and comprehensive benchmark datasets, WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT, widely recognized as standard testbeds for IIoT intrusion detection research. Extensive experiments are conducted to assess the model’s performance compared to several state-of-the-art techniques, including standard GAN, convolutional neural network (CNN), deep belief network (DBN), time-series transformer (TST), bidirectional encoder representations from transformers (BERT), and extreme gradient boosting (XGBoost). Evaluation metrics include accuracy, recall, AUC, and run time. Results demonstrate that the proposed Transformer–GAN–AE framework outperforms all baseline methods, achieving a best accuracy of 98.92%, along with superior recall and AUC values. The integration of IChOA enhances GAN stability and accelerates training by optimizing hyperparameters. Together with the transformer for temporal feature extraction and the AE for denoising, the hybrid architecture effectively addresses complex, imbalanced intrusion data. The proposed optimized Transformer–GAN–AE model demonstrates high accuracy and robustness, offering a scalable solution for real-world Edge and IIoT intrusion detection. Full article
Show Figures

Figure 1

28 pages, 6692 KB  
Article
Integration of the Chimp Optimization Algorithm and Rule-Based Energy Management Strategy for Enhanced Microgrid Performance Considering Energy Trading Pattern
by Mukhtar Fatihu Hamza, Babangida Modu and Sulaiman Z. Almutairi
Electronics 2025, 14(10), 2037; https://doi.org/10.3390/electronics14102037 - 16 May 2025
Cited by 3 | Viewed by 1050
Abstract
The increasing integration of renewable energy into modern power systems has prompted the need for efficient hybrid energy solutions to ensure reliability, sustainability, and economic viability. However, optimizing the design of hybrid renewable energy systems, particularly those incorporating both hydrogen and battery storage, [...] Read more.
The increasing integration of renewable energy into modern power systems has prompted the need for efficient hybrid energy solutions to ensure reliability, sustainability, and economic viability. However, optimizing the design of hybrid renewable energy systems, particularly those incorporating both hydrogen and battery storage, remains challenging due to system complexity and fluctuating energy trading conditions. This study addresses these gaps by proposing a novel framework that combines the Chimp Optimization Algorithm (ChOA) with a rule-based energy management strategy (REMS) to optimize component sizing and operational efficiency in a grid-connected microgrid. The proposed system integrates photovoltaic (PV) panels, wind turbines (WT), electrolyzers (ELZ), hydrogen storage, fuel cells (FC), and battery storage (BAT), while accounting for seasonal variations and dynamic energy trading. Each contribution in the Research Contributions section directly addresses critical limitations in previous studies, including the lack of advanced metaheuristic optimization, underutilization of hydrogen-battery synergy, and the absence of practical control strategies for energy management. Simulation results show that the proposed ChOA-based model achieves the most cost-effective and efficient configuration, with a PV capacity of 1360 kW, WT capacity of 462 kW, 164 kWh of BAT storage, 138 H2 tanks, a 571 kW ELZ, and a 381 kW FC. This configuration yields the lowest cost of energy (COE) at $0.272/kWh and an annualized system cost (ASC) of $544,422. Comparatively, the Genetic Algorithm (GA), Salp Swarm Algorithm (SSA), and Grey Wolf Optimizer (GWO) produce slightly higher COE values of $0.274, $0.275, and $0.276 per kWh, respectively. These findings highlight the superior performance of ChOA in optimizing hybrid energy systems and offer a scalable, adaptable framework to support future renewable energy deployment and smart grid development. Full article
Show Figures

Figure 1

15 pages, 5175 KB  
Article
Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology
by Fujie Zhang, Xiaoning Yu, Lixia Li, Wanxia Song, Defeng Dong, Xiaoxian Yue, Shenao Chen and Qingyu Zeng
Foods 2025, 14(3), 536; https://doi.org/10.3390/foods14030536 - 6 Feb 2025
Cited by 10 | Viewed by 2161
Abstract
This study explores the feasibility of using portable near-infrared spectroscopy for the rapid and non-destructive detection of coffee adulteration. Spectral data from adulterated coffee samples in the 900–1700 nm range were collected and processed using five preprocessing methods. For qualitative detection, the Support [...] Read more.
This study explores the feasibility of using portable near-infrared spectroscopy for the rapid and non-destructive detection of coffee adulteration. Spectral data from adulterated coffee samples in the 900–1700 nm range were collected and processed using five preprocessing methods. For qualitative detection, the Support Vector Machine (SVM) algorithm was applied. For quantitative detection, two optimization algorithms, Invasive Weed Optimization (IWO) and Binary Chimp Optimization Algorithm (BChOA), were used for the feature wavelength selection. The results showed that convolution smoothing combined with multiple scattering correction effectively improved the signal-to-noise ratio. SVM achieved 96.88% accuracy for qualitative detection. For the quantitative analysis, the IWO algorithm identified key wavelengths, reducing data dimensionality by 82.46% and improving accuracy by 10.96%, reaching 92.25% accuracy. In conclusion, portable near-infrared spectroscopy technology can be used for the rapid and non-destructive qualitative and quantitative detection of coffee adulteration and can serve as a foundation for the further development of rapid, non-destructive testing devices. At the same time, this method has broad application potential and can be extended to various food products such as dairy, juice, grains, and meat for quality control, traceability, and adulteration detection. Through the feature wavelength selection method, it can effectively identify and extract spectral features associated with these food components (such as fat, protein, or characteristic compounds), thereby improving the accuracy and efficiency of detection, further ensuring food safety and enhancing the level of food quality control. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

24 pages, 5558 KB  
Article
A Novel Six-Dimensional Chimp Optimization Algorithm—Deep Reinforcement Learning-Based Optimization Scheme for Reconfigurable Intelligent Surface-Assisted Energy Harvesting in Batteryless IoT Networks
by Mehrdad Shoeibi, Anita Ershadi Oskouei and Masoud Kaveh
Future Internet 2024, 16(12), 460; https://doi.org/10.3390/fi16120460 - 6 Dec 2024
Cited by 7 | Viewed by 1576
Abstract
The rapid advancement of Internet of Things (IoT) networks has revolutionized modern connectivity by integrating many low-power devices into various applications. As IoT networks expand, the demand for energy-efficient, batteryless devices becomes increasingly critical for sustainable future networks. These devices play a pivotal [...] Read more.
The rapid advancement of Internet of Things (IoT) networks has revolutionized modern connectivity by integrating many low-power devices into various applications. As IoT networks expand, the demand for energy-efficient, batteryless devices becomes increasingly critical for sustainable future networks. These devices play a pivotal role in next-generation IoT applications by reducing the dependence on conventional batteries and enabling continuous operation through energy harvesting capabilities. However, several challenges hinder the widespread adoption of batteryless IoT devices, including the limited transmission range, constrained energy resources, and low spectral efficiency in IoT receivers. To address these limitations, reconfigurable intelligent surfaces (RISs) offer a promising solution by dynamically manipulating the wireless propagation environment to enhance signal strength and improve energy harvesting capabilities. In this paper, we propose a novel deep reinforcement learning (DRL) algorithm that optimizes the phase shifts of RISs to maximize the network’s achievable rate while satisfying IoT devices’ energy harvesting constraints. Our DRL framework leverages a novel six-dimensional chimp optimization algorithm (6DChOA) to fine-tune the hyper-parameters, ensuring efficient and adaptive learning. The proposed 6DChOA-DRL algorithm optimizes RIS phase shifts to enhance the received power of IoT devices while mitigating interference from direct and RIS-cascaded links. The simulation results demonstrate that our optimized RIS design significantly improves energy harvesting and achievable data rates under various system configurations. Compared to benchmark algorithms, our approach achieves higher gains in harvested power, an improvement in the data rate at a transmit power of 20 dBm, and a significantly lower root mean square error (RMSE) of 0.13 compared to 3.34 for standard RL and 6.91 for the DNN, indicating more precise optimization of RIS phase shifts. Full article
(This article belongs to the Special Issue Internet of Things Technology and Service Computing)
Show Figures

Figure 1

23 pages, 922 KB  
Article
Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation
by Ahmed Ewis Shaban, Alaa A. K. Ismaeel, Ahmed Farhan, Mokhtar Said and Ali M. El-Rifaie
Processes 2024, 12(11), 2593; https://doi.org/10.3390/pr12112593 - 18 Nov 2024
Cited by 10 | Viewed by 2319
Abstract
The Growth Optimizer algorithm (GO) is a novel metaheuristic that draws inspiration from people’s learning and introspection processes as they progress through society. Economic Load Dispatch (ELD), one of the primary problems in the power system, is resolved by the GO. To assess [...] Read more.
The Growth Optimizer algorithm (GO) is a novel metaheuristic that draws inspiration from people’s learning and introspection processes as they progress through society. Economic Load Dispatch (ELD), one of the primary problems in the power system, is resolved by the GO. To assess GO’s dependability, its performance is contrasted with a number of methods. These techniques include the Rime-ice algorithm (RIME), Grey Wolf Optimizer (GWO), Elephant Herding Optimization (EHO), and Tunicate Swarm Algorithm (TSA). Also, the GO algorithm has the competition of other literature techniques such as Monarch butterfly optimization (MBO), the Sine Cosine algorithm (SCA), the chimp optimization algorithm (ChOA), the moth search algorithm (MSA), and the snow ablation algorithm (SAO). Six units for the ELD problem at a 1000 MW load, ten units for the ELD problem at a 2000 MW load, and twenty units for the ELD problem at a 3000 MW load are the cases employed in this work. The standard deviation, minimum fitness function, and maximum mean values are measured for 30 different runs in order to evaluate all methods. Using the GO approach, the ideal power mismatch values of 3.82627263206814 × 10−12, 0.0000622209480241054, and 5.5893360695336 × 10−7 were found for six, ten, and twenty generator units, respectively. The GO’s dominance over all other algorithms is demonstrated by the results produced for the ELD scenarios. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

45 pages, 3370 KB  
Article
Adaptive Cybersecurity Neural Networks: An Evolutionary Approach for Enhanced Attack Detection and Classification
by Ahmad K. Al Hwaitat and Hussam N. Fakhouri
Appl. Sci. 2024, 14(19), 9142; https://doi.org/10.3390/app14199142 - 9 Oct 2024
Cited by 8 | Viewed by 4884
Abstract
The increasing sophistication and frequency of cyber threats necessitate the development of advanced techniques for detecting and mitigating attacks. This paper introduces a novel cybersecurity-focused Multi-Layer Perceptron (MLP) trainer that utilizes evolutionary computation methods, specifically tailored to improve the training process of neural [...] Read more.
The increasing sophistication and frequency of cyber threats necessitate the development of advanced techniques for detecting and mitigating attacks. This paper introduces a novel cybersecurity-focused Multi-Layer Perceptron (MLP) trainer that utilizes evolutionary computation methods, specifically tailored to improve the training process of neural networks in the cybersecurity domain. The proposed trainer dynamically optimizes the MLP’s weights and biases, enhancing its accuracy and robustness in defending against various attack vectors. To evaluate its effectiveness, the trainer was tested on five widely recognized security-related datasets: NSL-KDD, CICIDS2017, UNSW-NB15, Bot-IoT, and CSE-CIC-IDS2018. Its performance was compared with several state-of-the-art optimization algorithms, including Cybersecurity Chimp, CPO, ROA, WOA, MFO, WSO, SHIO, ZOA, DOA, and HHO. The results demonstrated that the proposed trainer consistently outperformed the other algorithms, achieving the lowest Mean Square Error (MSE) and highest classification accuracy across all datasets. Notably, the trainer reached a classification rate of 99.5% on the Bot-IoT dataset and 98.8% on the CSE-CIC-IDS2018 dataset, underscoring its effectiveness in detecting and classifying diverse cyber threats. Full article
Show Figures

Figure 1

25 pages, 4624 KB  
Article
Vehicle Routing Problem with Drones Considering Time Windows and Dynamic Demand
by Jing Han, Yanqiu Liu and Yan Li
Appl. Sci. 2023, 13(24), 13086; https://doi.org/10.3390/app132413086 - 7 Dec 2023
Cited by 16 | Viewed by 6264
Abstract
As a new delivery mode, the collaborative delivery of packages using trucks and drones has been proven to reduce delivery costs and delivery time. To cope with the huge cost challenges brought by strict time constraints and ever-changing customer orders in the actual [...] Read more.
As a new delivery mode, the collaborative delivery of packages using trucks and drones has been proven to reduce delivery costs and delivery time. To cope with the huge cost challenges brought by strict time constraints and ever-changing customer orders in the actual delivery process, we established a two-stage optimization model based on different demand response strategies with the goal of minimizing delivery costs. To solve this problem, we designed a simulated annealing chimp optimization algorithm with a sine–cosine operator. The performance of this algorithm is improved by designing a variable-dimensional matrix encode to generate an initial solution, incorporating a sine–cosine operator and a simulated annealing mechanism to avoid falling into a local optimum. Numerical experiments verify the effectiveness of the proposed algorithm and strategy. Finally, we analyze the impact of dynamic degree on delivery cost. The proposed model and algorithm extend the theory of the vehicle routing problem with drones and also provide a feasible solution for route planning, taking into account dynamic demands and time windows. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

18 pages, 3967 KB  
Article
Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing
by Ruiqiang Pu, Shaobo Li, Peng Zhou and Guilin Yang
Appl. Sci. 2023, 13(22), 12106; https://doi.org/10.3390/app132212106 - 7 Nov 2023
Cited by 4 | Viewed by 1987
Abstract
Cloud manufacturing is a current trend in traditional manufacturing enterprises. In this environment, manufacturing resources and manufacturing capabilities are allocated to corresponding services through appropriate scheduling, while research on the production shop floor focuses on realizing a basic cloud manufacturing model. However, the [...] Read more.
Cloud manufacturing is a current trend in traditional manufacturing enterprises. In this environment, manufacturing resources and manufacturing capabilities are allocated to corresponding services through appropriate scheduling, while research on the production shop floor focuses on realizing a basic cloud manufacturing model. However, the complexity and diversity of tasks in the shop floor supply and demand matching environment can lead to difficulties in finding the optimal solution within a reasonable time period. To address this problem, a basic model for dynamic scheduling and allocation of workshop production resources in a cloud-oriented environment is established, and an improved Chimp optimization algorithm is proposed. To ensure the accuracy of the solution, two key improvements to the ChOA are proposed to solve the problem of efficient and accurate matching combinations of tasks and resources in the cloud manufacturing environment. The experimental results verify the effectiveness and feasibility of the improved ChOA (SDChOA) using a comparative study with various algorithms and show that it can solve the workshop supply and demand matching combination problem and obtain the optimal solution quickly. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

25 pages, 1719 KB  
Article
An Improved Dandelion Optimizer Algorithm for Spam Detection: Next-Generation Email Filtering System
by Mohammad Tubishat, Feras Al-Obeidat, Ali Safaa Sadiq and Seyedali Mirjalili
Computers 2023, 12(10), 196; https://doi.org/10.3390/computers12100196 - 28 Sep 2023
Cited by 8 | Viewed by 3602
Abstract
Spam emails have become a pervasive issue in recent years, as internet users receive increasing amounts of unwanted or fake emails. To combat this issue, automatic spam detection methods have been proposed, which aim to classify emails into spam and non-spam categories. Machine [...] Read more.
Spam emails have become a pervasive issue in recent years, as internet users receive increasing amounts of unwanted or fake emails. To combat this issue, automatic spam detection methods have been proposed, which aim to classify emails into spam and non-spam categories. Machine learning techniques have been utilized for this task with considerable success. In this paper, we introduce a novel approach to spam email detection by presenting significant advancements to the Dandelion Optimizer (DO) algorithm. The DO is a relatively new nature-inspired optimization algorithm inspired by the flight of dandelion seeds. While the DO shows promise, it faces challenges, especially in high-dimensional problems such as feature selection for spam detection. Our primary contributions focus on enhancing the DO algorithm. Firstly, we introduce a new local search algorithm based on flipping (LSAF), designed to improve the DO’s ability to find the best solutions. Secondly, we propose a reduction equation that streamlines the population size during algorithm execution, reducing computational complexity. To showcase the effectiveness of our modified DO algorithm, which we refer to as the Improved DO (IDO), we conduct a comprehensive evaluation using the Spam base dataset from the UCI repository. However, we emphasize that our primary objective is to advance the DO algorithm, with spam email detection serving as a case study application. Comparative analysis against several popular algorithms, including Particle Swarm Optimization (PSO), the Genetic Algorithm (GA), Generalized Normal Distribution Optimization (GNDO), the Chimp Optimization Algorithm (ChOA), the Grasshopper Optimization Algorithm (GOA), Ant Lion Optimizer (ALO), and the Dragonfly Algorithm (DA), demonstrates the superior performance of our proposed IDO algorithm. It excels in accuracy, fitness, and the number of selected features, among other metrics. Our results clearly indicate that the IDO overcomes the local optima problem commonly associated with the standard DO algorithm, owing to the incorporation of LSAF and the reduction in equation methods. In summary, our paper underscores the significant advancement made in the form of the IDO algorithm, which represents a promising approach for solving high-dimensional optimization problems, with a keen focus on practical applications in real-world systems. While we employ spam email detection as a case study, our primary contribution lies in the improved DO algorithm, which is efficient, accurate, and outperforms several state-of-the-art algorithms in various metrics. This work opens avenues for enhancing optimization techniques and their applications in machine learning. Full article
(This article belongs to the Topic Modeling and Practice for Trustworthy and Secure Systems)
Show Figures

Figure 1

19 pages, 6566 KB  
Article
Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem
by Alaa A. K. Ismaeel, Essam H. Houssein, Doaa Sami Khafaga, Eman Abdullah Aldakheel, Ahmed S. AbdElrazek and Mokhtar Said
Mathematics 2023, 11(19), 4107; https://doi.org/10.3390/math11194107 - 28 Sep 2023
Cited by 62 | Viewed by 3943
Abstract
The osprey optimization algorithm (OOA) is a new metaheuristic motivated by the strategy of hunting fish in seas. In this study, the OOA is applied to solve one of the main items in a power system called economic load dispatch (ELD). The ELD [...] Read more.
The osprey optimization algorithm (OOA) is a new metaheuristic motivated by the strategy of hunting fish in seas. In this study, the OOA is applied to solve one of the main items in a power system called economic load dispatch (ELD). The ELD has two types. The first type takes into consideration the minimization of the cost of fuel consumption, this type is called ELD. The second type takes into consideration the cost of fuel consumption and the cost of emission, this type is called combined emission and economic dispatch (CEED). The performance of the OOA is compared against several techniques to evaluate its reliability. These methods include elephant herding optimization (EHO), the rime-ice algorithm (RIME), the tunicate swarm algorithm (TSA), and the slime mould algorithm (SMA) for the same case study. Also, the OOA is compared with other techniques in the literature, such as an artificial bee colony (ABO), the sine cosine algorithm (SCA), the moth search algorithm (MSA), the chimp optimization algorithm (ChOA), and monarch butterfly optimization (MBO). Power mismatch is the main item used in the evaluation of the OOA with all of these methods. There are six cases used in this work: 6 units for the ELD problem at three different loads, and 6 units for the CEED problem at three different loads. Evaluation of the techniques was performed for 30 various runs based on measuring the standard deviation, minimum fitness function, and maximum mean values. The superiority of the OOA is achieved according to the obtained results for the ELD and CEED compared to all competitor algorithms. Full article
Show Figures

Figure 1

21 pages, 4868 KB  
Article
Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm
by Sahba Baniasadi, Reza Salehi, Sepehr Soltani, Diego Martín, Parmida Pourmand and Ehsan Ghafourian
Electronics 2023, 12(18), 3985; https://doi.org/10.3390/electronics12183985 - 21 Sep 2023
Cited by 9 | Viewed by 3037
Abstract
Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. [...] Read more.
Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the  R2 convergence curve, RMSE, and accuracy. Full article
(This article belongs to the Special Issue Advances in Embedded Deep Learning Systems)
Show Figures

Figure 1

Back to TopTop