You are currently viewing a new version of our website. To view the old version click .

Biomimetics

Biomimetics is an international, peer-reviewed, open access journal on biomimicry and bionics, published monthly online by MDPI. 

Indexed in PubMed | Quartile Ranking JCR - Q1 (Engineering, Multidisciplinary)

All Articles (2,778)

Fine-grained image recognition is one of the key tasks in the field of computer vision. However, due to subtle inter-class differences and significant intra-class differences, it still faces severe challenges. Conventional approaches often struggle with background interference and feature degradation. To address these issues, we draw inspiration from the human visual system, which adeptly focuses on discriminative regions, to propose a bio-inspired gradient-aware attention mechanism. Our method explicitly models gradient information to guide the attention, mimicking biological edge sensitivity, thereby enhancing the discrimination between global structures and local details. Experiments on the CUB-200-2011, iNaturalist2018, nabbirds and Stanford Cars datasets demonstrated the superiority of our method, achieving Top-1 accuracy rates of 92.9%, 90.5%, 93.1% and 95.1%, respectively.

12 December 2025

Illustration of (a) coarse-grained classification, where inter-class differences are large and easy to separate, and (b) fine-grained classification, where categories differ only in subtle local attributes.

Background: This study examined the trends in restorative dental practice among 12-year-old children treated at a nationwide public health maintenance organization in Israel between 2016 and 2022, focusing on the use of amalgam versus composite resin restorations in permanent premolars and molars. Methods: Data were extracted from electronic health records of the second-largest public health organization in Israel, identifying children who underwent restorative treatments during the study period. Restoration rates were compared overall and stratified by gender, socioeconomic status, and number of surfaces restored. Statistical analysis was conducted using SPSS version 27, employing Levene’s test for equality of variances and Welch’s one-way ANOVA. Results: The results showed a statistically significant decline in amalgam use (p < 0.05) alongside a marked increase in composite resin restorations (p < 0.05), consistent across genders and socioeconomic groups. Notably, composite resins were increasingly selected for complex, multi-surface restorations (p < 0.05). Conclusions: These findings highlight a substantial shift in paediatric restorative practice in Israel, reflecting growing preference for composite resins likely influenced by patient demands and national dental reforms that eliminated financial barriers. The observed trend underscores the importance of continued monitoring of material selection to guide evidence-based practice in pediatric dentistry.

12 December 2025

Comparison between the amalgam treatment rate and the composite treatment rate for each year 2016–2022.

Electroencephalography (EEG)-based brain–computer interface (BCI) mimics the brain’s intrinsic information-processing mechanisms by translating neural oscillations into actionable commands. In motor imagery (MI) BCI, imagined movements evoke characteristic patterns over the sensorimotor cortex, forming a biomimetic channel through which internal motor intentions are decoded. However, this biomimetic interaction is highly vulnerable to signal degradation, particularly in mobile or low-resource environments where low sampling frequencies obscure these MI-related oscillations. To address this limitation, we propose a robust MI classification framework that integrates spatial, spectral, and temporal dynamics through a filter bank common spatial pattern with time segmentation (FBCSP-TS). This framework classifies motor imagery tasks into four classes (left hand, right hand, foot, and tongue), segments EEG signals into overlapping time domains, and extracts frequency-specific spatial features across multiple subbands. Segment-level predictions are combined via soft voting, reflecting the brain’s distributed integration of information and enhancing resilience to transient noise and localized artifacts. Experiments performed on BCI Competition IV datasets 2a (250 Hz) and 1 (100 Hz) demonstrate that FBCSP-TS outperforms CSP and FBCSP. A paired t-test confirms that accuracy at 110 Hz is not significantly different from that at 250 Hz (p < 0.05), supporting the robustness of the proposed framework. Optimal temporal parameters (window length = 3.5 s, moving length = 0.5 s) further stabilize transient-signal capture and improve SNR. External validation yielded a mean accuracy of 0.809 ± 0.092 and Cohen’s kappa of 0.619 ± 0.184, confirming strong generalizability. By preserving MI-relevant neural patterns under degraded conditions, this framework advances practical, biomimetic BCI suitable for wearable and real-world deployment.

12 December 2025

Motor imagery (MI) paradigm. (a) BCI Competition IV Dataset 2a, (b) BCI Competition IV Dataset 1.

Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (Zalophus californianus) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful propulsion. However, the specific kinematic mechanisms that govern instantaneous force generation from its powerful foreflippers remain poorly quantified. This study experimentally characterizes the time-varying thrust and lift produced by a bio-robotic sea lion foreflipper to determine how flipper twist, sweep, and phase overlap modulate propulsive forces. A three-degree-of-freedom bio-robotic flipper with a simplified, low-aspect-ratio planform and single compliant hinge was tested in a circulating flow tank, executing parameterized power and paddle strokes in both isolated and combined-phase trials. The time-resolved force data reveal that the propulsive stroke functions as a tunable hybrid system. The power phase acts as a force-vectoring mechanism, where the flipper’s twist angle reorients the resultant vector: thrust is maximized in a broad, robust range peaking near 45°, while lift increases monotonically to 90°. The paddle phase operates as a flow-insensitive, geometrically driven thruster, where twist angle (0° optimal) regulates thrust by altering the presented surface area. In the full stroke, a temporal-phase overlap governs thrust augmentation, while the power-phase twist provides robust steering control. Within the tested inertial flow regime (Re ≈ 104–105), this control map is highly consistent with propulsion dominated by geometric momentum redirection and impulse timing, rather than circulation-based lift. These findings establish a practical, experimentally derived control map linking kinematic inputs to propulsive force vectors, providing a foundation for the design and control of agile, bio-inspired underwater vehicles.

12 December 2025

California sea lion swimming and characteristic propulsive stroke. (A) Sea lion maneuvering underwater using its foreflippers, hind flippers, and body for agile control. (B) Sequential frames from underwater video showing the three phases of the characteristic foreflipper stroke: Recovery, during which the flippers extend laterally and anteriorly away from the body; Power, where the flippers move downward and medially to generate thrust; and Paddle, as the flippers are pulled posteriorly toward the body to complete the stroke cycle and reset for the next recovery phase.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Bio-Inspired Soft Robotics
Reprint

Bio-Inspired Soft Robotics

Design, Fabrication and Applications
Editors: Yong Zhong, Pei Jiang, Sun Yi

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Biomimetics - ISSN 2313-7673