You are currently viewing a new version of our website. To view the old version click .

Biomimetics

Biomimetics is an international, peer-reviewed, open access journal on biomimicry and bionics, published monthly online by MDPI. 

Indexed in PubMed | Quartile Ranking JCR - Q1 (Engineering, Multidisciplinary)

All Articles (2,803)

Quantifying Nature’s Bistability: Simulation of Earwig Fan Folding

  • Nele Binder,
  • Leone Costi and
  • Dario Izzo
  • + 1 author

In this work, a numerical tool is presented to simulate the dynamics of insect wing folding by example of the fan folding of the dermapteran hindwing. The scalability of the system is demonstrated by generalising the mechanical behaviour from the small geometry of the wing to a suitable scale for engineering applications, such as deployable structures for space applications. The tool is written in Python and based on the MuJoCo physics engine. Sections of the anal fan are modelled as a bar-and-hinge model with elastic tendons, allowing a high number of design parameters and fast computation. In light of these advantages, the wing folding and unfolding behaviour is investigated with respect to the tendon’s elastic properties and the actuation of the deformation. Bistability is characterised using a single tendon and the entire fan section. Given the upscaled geometry of the analysed section, the required tendon characteristics to transition between the stable states are identified within a reasonable range for technological transfer towards biomimetic structures modelled after the dermapteran hindwing.

24 December 2025

Schematic drawing of the dermapteran hindwing, modified after [1,2]. The marginal area is highlighted in blue, and the anal fan in orange. Dashed lines indicate fold lines, whereas + marks a mountain fold and − marks a valley fold.

Composites Based on Collagen, Chondroitin Sulfate, and Sage Oil with Potential Use in Dentistry

  • Bogdan Valeriu Sorca,
  • Ana-Maria Rosca and
  • Durmuş Alpaslan Kaya
  • + 7 authors

Osseointegration in dental implants involves the use of materials that mimic the bone tissue, with special properties such as biocompatibility and biodegradability. In this study, we describe the preparation and characterization of composites based on collagen, chondroitin sulfate, and sage oil obtained by freeze-drying method. Their morphological structures were determined by water uptake and scanning electron microscopy, the physical–chemical interactions between components by FT-IR, the stability by in vitro collagenase degradation, and the results indicate that the samples’ properties are highly influenced by the hydrophobic and hydrophilic character of sage essential oil and chondroitin sulfate, respectively, concluding that we can design a formulation with certain properties. The composite spongious forms were evaluated for cytocompatibility using the MG63 osteoblast cell line and subjected to histological observation. The results showed that the samples with sage essential oil were most resistant to enzymatic degradation, and the ones with chondroitin sulfate promoted the deposition of an abundant extracellular matrix. Taken together, the results suggest that incorporating chondroitin sulfate and sage oil in a controlled manner into collagen scaffolds represents a promising approach for enhancing bone tissue regeneration.

24 December 2025

GC–MS chromatogram of Salvia officinalis L.

This paper proposes a Gudermannian function-based proportional–integral–derivative (G-PID) controller to enhance the transient performance of automatic voltage regulator (AVR) systems operating under highly dynamic conditions. By embedding the smooth and bounded nonlinear mapping of the Gudermannian function into the classical PID structure, the proposed controller improves adaptability to large signal variations while effectively suppressing overshoot. The controller parameters are optimally tuned using the starfish optimization algorithm (SFOA), which provides a robust balance between exploration and exploitation in nonlinear search spaces. Simulation results demonstrate that the SFOA-optimized G-PID controller achieves superior transient performance, with a rise time of 0.0551 s, zero overshoot, and a settling time of 0.0830 s. Comparative evaluations confirm that the proposed approach outperforms widely used optimization algorithms (particle swarm optimization, grey wolf optimizer, success history-based adaptive differential evolution with linear population size, and Kirchhoff’s law algorithm) and advanced AVR control schemes, including fractional-order and higher-order PID-based designs. These results indicate that the proposed SFOA optimized G-PID controller offers a computationally efficient and structurally simple solution for high-performance voltage regulation in modern power systems.

23 December 2025

Physical arrangement of the AVR within the overall power generation setup.

Global air transport has become the dominant mode of long-distance travel, carrying more than four billion passengers in 2019 and projected to exceed 8 billion by 2040. Nevertheless, limited demand and economic inefficiencies often make direct connections unfeasible, forcing many passengers to rely on transfers. In such cases, synchronizing arrivals and departures at hub airports is crucial to minimizing transfer times and maximizing passenger retention. This study investigates the synchronization problem at Istanbul Airport, one of the world’s largest hubs, using metaheuristic optimization. Three algorithms—Genetic Algorithms (GA), Modified Discrete Particle Swarm Optimization (MDPSO), and Evolutionary Strategies (ES)—were applied in parallel to optimize arrival and departure schedules for a major airline. The proposed chromosome-based framework was tested through parameter tuning and validated with statistical analyses, including ANOVA and Games–Howell pairwise comparisons. The results show that MDPSO achieved strong improvements, while ES consistently outperformed both GA and MDPSO, increasing successful passenger transfers by more than 200% compared to the original schedule. These findings demonstrate the effectiveness of evolutionary metaheuristics for large-scale airline scheduling and highlight their potential for improving hub connectivity. This framework is generalizable to other hub airports and airlines, and future research could extend it by integrating hybrid metaheuristics or applying enhanced forecasting methods and more dynamic scheduling approaches.

23 December 2025

Location of Istanbul Airport.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Bio-Inspired Soft Robotics
Reprint

Bio-Inspired Soft Robotics

Design, Fabrication and Applications
Editors: Yong Zhong, Pei Jiang, Sun Yi

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Biomimetics - ISSN 2313-7673