Journal Description
Biomimetics
Biomimetics
is an international, peer-reviewed, open access journal on biomimicry and bionics, published monthly online by MDPI. The International Society of Bionic Engineering (ISBE) is affiliated with Biomimetics.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Engineering, Multidisciplinary) / CiteScore - Q2 (Biomedical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.3 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.4 (2023);
5-Year Impact Factor:
3.8 (2023)
Latest Articles
3D Printing Materials Mimicking Human Tissues after Uptake of Iodinated Contrast Agents for Anthropomorphic Radiology Phantoms
Biomimetics 2024, 9(10), 606; https://doi.org/10.3390/biomimetics9100606 (registering DOI) - 8 Oct 2024
Abstract
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine
[...] Read more.
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis.
Full article
(This article belongs to the Special Issue Bio-Inspired Additive Manufacturing Materials and Structures)
►
Show Figures
Open AccessArticle
Bionic Design of High-Performance Joints: Differences in Failure Mechanisms Caused by the Different Structures of Beetle Femur–Tibial Joints
by
Jiandong Cui, Yubo Wang, Sen Lin, Zhiwei Tuo, Zhaohua Lin, Yunhong Liang and Luquan Ren
Biomimetics 2024, 9(10), 605; https://doi.org/10.3390/biomimetics9100605 (registering DOI) - 8 Oct 2024
Abstract
Beetle femur–tibial joints can bear large loads, and the joint structure plays a crucial role. Differences in living habits will lead to differences in femur–tibial joint structure, resulting in different mechanical properties. Here, we determined the structural characteristics of the femur–tibial joints of
[...] Read more.
Beetle femur–tibial joints can bear large loads, and the joint structure plays a crucial role. Differences in living habits will lead to differences in femur–tibial joint structure, resulting in different mechanical properties. Here, we determined the structural characteristics of the femur–tibial joints of three species of beetles with different living habits. The tibia of Scarabaeidae Protaetia brevitarsis and Cetoniidae Torynorrhina fulvopilosa slide through cashew-shaped bumps on both sides of the femur in a guide rail consisting of a ring and a cone bump. The femur–tibial joint of Buprestidae Chrysodema radians is composed of a conical convex tibia and a circular concave femur. A bionic structure design was developed out based on the characteristics of the structure of the femur–tibial joints. Differences in the failure of different joint models were obtained through experiments and finite element analysis. The experimental results show that although the spherical connection model can bear low loads, it can maintain partial integrity of the structure and avoid complete failure. The cuboid connection model shows a higher load-bearing capacity, but its failure mode is irreversible deformation. As key parts of rotatable mechanisms, the bionic models have the potential for wide application in the high-load engineering field.
Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 4th Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
Adaptive Bi-Operator Evolution for Multitasking Optimization Problems
by
Changlong Wang, Zijia Wang and Zheng Kou
Biomimetics 2024, 9(10), 604; https://doi.org/10.3390/biomimetics9100604 (registering DOI) - 8 Oct 2024
Abstract
The field of evolutionary multitasking optimization (EMTO) has been a highly anticipated research topic in recent years. EMTO aims to utilize evolutionary algorithms to concurrently solve complex problems involving multiple tasks. Despite considerable advancements in this field, numerous evolutionary multitasking algorithms continue to
[...] Read more.
The field of evolutionary multitasking optimization (EMTO) has been a highly anticipated research topic in recent years. EMTO aims to utilize evolutionary algorithms to concurrently solve complex problems involving multiple tasks. Despite considerable advancements in this field, numerous evolutionary multitasking algorithms continue to use a single evolutionary search operator (ESO) throughout the evolution process. This strategy struggles to completely adapt to different tasks, consequently hindering the algorithm’s performance. To overcome this challenge, this paper proposes multitasking evolutionary algorithms via an adaptive bi-operator strategy (BOMTEA). BOMTEA adopts a bi-operator strategy and adaptively controls the selection probability of each ESO according to its performance, which can determine the most suitable ESO for various tasks. In an experiment, BOMTEA showed outstanding results on two well-known multitasking benchmark tests, CEC17 and CEC22, and significantly outperformed other comparative algorithms.
Full article
(This article belongs to the Special Issue Bio-Inspired Optimization Algorithms and Designs for Engineering Applications: 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
MSAO-EDA: A Modified Snow Ablation Optimizer by Hybridizing with Estimation of Distribution Algorithm
by
Wuke Li, Xiaoxiao Chen and Hector Chimeremeze Okere
Biomimetics 2024, 9(10), 603; https://doi.org/10.3390/biomimetics9100603 (registering DOI) - 7 Oct 2024
Abstract
Metaheuristic algorithms provide reliable and effective methods for solving challenging optimization problems. The snow ablation algorithm (SAO) performs favorably as a physics-based metaheuristic algorithm. Nevertheless, SAO has some shortcomings. SAO is overpowered in its exploitation, has difficulty in balancing the proportion of global
[...] Read more.
Metaheuristic algorithms provide reliable and effective methods for solving challenging optimization problems. The snow ablation algorithm (SAO) performs favorably as a physics-based metaheuristic algorithm. Nevertheless, SAO has some shortcomings. SAO is overpowered in its exploitation, has difficulty in balancing the proportion of global and local search, and is prone to encountering local optimum traps when confronted with complex problems. To improve the capability of SAO, this paper proposes a modified snow ablation algorithm hybrid distribution estimation algorithm named MSAO-EDA. In this work, a collaborative search framework is proposed where SAO and EDA can be organically integrated together to fully utilize the exploitation capability of SAO and the exploration capability of EDA. Secondly, an offset EDA approach that combines the optimal solution and the agent itself is used to replace SAO’s exploration strategy for the purpose of enhancing SAO’s exploration capability. Finally, the convergence of SAO is accelerated by selecting the next generation of agents through a greedy strategy. MSAO-EDA is tested on the CEC 2017 and CEC 2022 test suites and compared with EO, RIME, MRFO, CFOA, and four advanced algorithms, AFDBARO, CSOAOA, EOSMA, and JADE. The experimental results show that MSAO-EDA has excellent efficiency in numerical optimization problems and is a highly competitive SAO variant.
Full article
(This article belongs to the Special Issue Bio-Inspired Optimization Algorithms and Designs for Engineering Applications: 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization
by
Yubao Xu and Jinzhong Zhang
Biomimetics 2024, 9(10), 602; https://doi.org/10.3390/biomimetics9100602 - 7 Oct 2024
Abstract
►▼
Show Figures
The whale optimization algorithm (WOA) is constructed on a whale’s bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence
[...] Read more.
The whale optimization algorithm (WOA) is constructed on a whale’s bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The sine cosine algorithm (SCA) constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. Therefore, a hybrid nonlinear WOA with SCA (SCWOA) is emphasized to estimate benchmark functions and engineering designs, and the ultimate intention is to investigate reasonable solutions. Compared with other algorithms, such as BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, SCWOA exemplifies a superior convergence effectiveness and greater computation profitability. The experimental results emphasize that the SCWOA not only integrates investigation and extraction to avoid premature convergence and realize the most appropriate solution but also exhibits superiority and practicability to locate greater computation precision and faster convergence speed.
Full article
Figure 1
Open AccessArticle
Gender Differences in Performing an Overhead Drilling Task Using an Exoskeleton—A Cross-Sectional Study
by
Bettina Wollesen, Julia Gräf, Sander De Bock, Eligia Alfio, María Alejandra Díaz and Kevin De Pauw
Biomimetics 2024, 9(10), 601; https://doi.org/10.3390/biomimetics9100601 - 7 Oct 2024
Abstract
(1) Exoskeletons offer potential benefits for overhead working tasks, but gender effects or differences are unclear. This study aimed to compare the performance as well as subjective body strain and comfort of men and women using an upper-body exoskeleton. (2) n = 20
[...] Read more.
(1) Exoskeletons offer potential benefits for overhead working tasks, but gender effects or differences are unclear. This study aimed to compare the performance as well as subjective body strain and comfort of men and women using an upper-body exoskeleton. (2) n = 20 female and n = 16 male participants performed an overhead drilling task with and without a passive upper-body exoskeleton in a randomized cross-over study. The task performance of different movement phases, perceived exertion, and ease of use were measured to compare gender differences. One- and two-way analyses were used to compare genders in the different conditions. The body mass index (BMI) was included as a covariate. (3) Gender differences in task performance were found for error integrals (p < 0.001) with higher values in male participants. Moreover, there was a significant interaction effect for gender x exoskeleton use. While females showed performance decrements in aiming with exoskeleton use, the males’ performance increased (p = 0.025). No other gender differences were observed. (4) Gender differences in task performance using an upper-body industrial exoskeleton were less detectable than expected, indicating that body composition and anthropometrics might be valuable indicators for performance including assisting devices. Moreover, future studies should also integrate the examination of muscle activity to gain more insights into potential gender movement control patterns.
Full article
(This article belongs to the Special Issue Bionic Technology—Robotic Exoskeletons and Prostheses: 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessReview
Biomimetic Origami: A Biological Influence in Design
by
Hadi Ebrahimi Fakhari, Juan Rosario Barboza and Pezhman Mardanpour
Biomimetics 2024, 9(10), 600; https://doi.org/10.3390/biomimetics9100600 - 4 Oct 2024
Abstract
Origami, the art of paper folding, has long fascinated researchers and designers in its potential to replicate and tap the complexity of nature. In this paper, we pursue the crossing of origami engineering structures and biology, the realm of biologically-inspired origami structures categorized
[...] Read more.
Origami, the art of paper folding, has long fascinated researchers and designers in its potential to replicate and tap the complexity of nature. In this paper, we pursue the crossing of origami engineering structures and biology, the realm of biologically-inspired origami structures categorized by the two biggest taxonomy kingdoms and DNA origami. Given the diversity of life forms that Earth comprises, we pursue an analysis of biomimetic designs that resemble intricate patterns and functionalities occurring in nature. Our research begins by setting out a taxonomic framework for the classification of origami structures based on biologically important kingdoms. From each of these, we explore the engineering structures inspired by morphological features, behaviors, and ecological adaptations of organisms. We also discuss implications in realms such as sustainability, biomaterials development, and bioinspired robotics. Thus, by parlaying the principles found in nature’s design playbook through the art of folding, biologically inspired origami becomes fertile ground for interdisciplinary collaboration and creativity. Through this approach, we aim to inspire readers, researchers, and designers to embark on a journey of discovery in which the boundaries between art, science, and nature are blurred, providing a foundation for innovation to thrive.
Full article
(This article belongs to the Special Issue Bio-Inspired Mechanical Design and Control)
►▼
Show Figures
Figure 1
Open AccessArticle
A Fast Grasp Planning Algorithm for Humanoid Robot Hands
by
Ziqi Liu, Li Jiang and Ming Cheng
Biomimetics 2024, 9(10), 599; https://doi.org/10.3390/biomimetics9100599 - 4 Oct 2024
Abstract
Grasp planning is crucial for robots to perform precision grasping tasks, where determining the grasp points significantly impacts the performance of the robotic hand. Currently, the majority of grasp planning methods based on analytic approaches solve the problem by transforming it into a
[...] Read more.
Grasp planning is crucial for robots to perform precision grasping tasks, where determining the grasp points significantly impacts the performance of the robotic hand. Currently, the majority of grasp planning methods based on analytic approaches solve the problem by transforming it into a nonlinear constrained planning problem. This method often requires performing convex hull computations, which tend to have high computational complexity. This paper proposes a new algorithm for calculating multi-finger force-closure grasps of three-dimensional objects based on humanoid multi-fingered hands. Firstly, sufficient conditions for the multi-finger force-closure grasps of three-dimensional objects are derived from a point contact model with friction. These three-dimensional force-closure conditions are then transformed into two-dimensional plane conditions, leading to a simple algorithm for multi-finger force-closure determination. This method is purely based on geometric analysis, resulting in low computational demands and enabling the rapid assessment of force-closure grasps, which are beneficial for real-time applications. Finally, the algorithm is validated through two case studies, demonstrating its feasibility and effectiveness.
Full article
(This article belongs to the Special Issue Human-Inspired Grasp Control in Robotics)
►▼
Show Figures
Figure 1
Open AccessReview
The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas
by
Thamires Santos da Silva, Leandro Norberto da Silva-Júnior, Bianca de Oliveira Horvath-Pereira, Maria Carolina Miglino Valbão, Matheus Henrique Herminio Garcia, Juliana Barbosa Lopes, Carlos Henrique Bertoni Reis, Rodrigo da Silva Nunes Barreto, Daniela Vieira Buchaim, Rogerio Leone Buchaim and Maria Angelica Miglino
Biomimetics 2024, 9(10), 598; https://doi.org/10.3390/biomimetics9100598 - 2 Oct 2024
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate
[...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas’s intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Full article
(This article belongs to the Special Issue Advancements in Regenerative Medicine: An Integrated Approach Using Nanotechnology and 3D Culture Platforms)
►▼
Show Figures
Figure 1
Open AccessArticle
Design and Demonstration of Hingeless Pneumatic Actuators Inspired by Plants
by
Xiangli Zeng, Yingzhe Wang and Keisuke Morishima
Biomimetics 2024, 9(10), 597; https://doi.org/10.3390/biomimetics9100597 - 1 Oct 2024
Abstract
Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation.
[...] Read more.
Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation. To improve the modes of motion, two pneumatic actuators that mimic the principles of the plants (the birds-of-paradise plant and the waterwheel plant) were designed, simulated, and tested using physical models in this study. The most common deformation pattern of the pneumatic actuator, bending deformation, was utilized and hingeless structures based on the plants were fabricated for a more complex motion of the lobes. Here, an ABP (actuator inspired by the birds-of-paradise plant) could bend its midrib downward to open the lobes, but an AWP (actuator inspired by the waterwheel plant) could bend its midrib upward to open the two lobes. In both the computational and physical models, the associated movements of the midrib and lobes could be observed and measured. As it lacks multiple parts that have to be assembled using joints, the actuator would be simpler to fabricate, have a variety of deformation modes, and be applicable in more fields.
Full article
(This article belongs to the Special Issue The Latest Progress in Bionics Research)
►▼
Show Figures
Graphical abstract
Open AccessArticle
A Reinforcement Learning-Based Bi-Population Nutcracker Optimizer for Global Optimization
by
Yu Li and Yan Zhang
Biomimetics 2024, 9(10), 596; https://doi.org/10.3390/biomimetics9100596 - 1 Oct 2024
Abstract
►▼
Show Figures
The nutcracker optimizer algorithm (NOA) is a metaheuristic method proposed in recent years. This algorithm simulates the behavior of nutcrackers searching and storing food in nature to solve the optimization problem. However, the traditional NOA struggles to balance global exploration and local exploitation
[...] Read more.
The nutcracker optimizer algorithm (NOA) is a metaheuristic method proposed in recent years. This algorithm simulates the behavior of nutcrackers searching and storing food in nature to solve the optimization problem. However, the traditional NOA struggles to balance global exploration and local exploitation effectively, making it prone to getting trapped in local optima when solving complex problems. To address these shortcomings, this study proposes a reinforcement learning-based bi-population nutcracker optimizer algorithm called RLNOA. In the RLNOA, a bi-population mechanism is introduced to better balance global and local optimization capabilities. At the beginning of each iteration, the raw population is divided into an exploration sub-population and an exploitation sub-population based on the fitness value of each individual. The exploration sub-population is composed of individuals with poor fitness values. An improved foraging strategy based on random opposition-based learning is designed as the update method for the exploration sub-population to enhance diversity. Meanwhile, Q-learning serves as an adaptive selector for exploitation strategies, enabling optimal adjustment of the exploitation sub-population’s behavior across various problems. The performance of the RLNOA is evaluated using the CEC-2014, CEC-2017, and CEC-2020 benchmark function sets, and it is compared against nine state-of-the-art metaheuristic algorithms. Experimental results demonstrate the superior performance of the proposed algorithm.
Full article
Graphical abstract
Open AccessArticle
Heuristic Optimization Algorithm of Black-Winged Kite Fused with Osprey and Its Engineering Application
by
Zheng Zhang, Xiangkun Wang and Yinggao Yue
Biomimetics 2024, 9(10), 595; https://doi.org/10.3390/biomimetics9100595 - 1 Oct 2024
Abstract
Swarm intelligence optimization methods have steadily gained popularity as a solution to multi-objective optimization issues in recent years. Their study has garnered a lot of attention since multi-objective optimization problems have a hard high-dimensional goal space. The black-winged kite optimization algorithm still suffers
[...] Read more.
Swarm intelligence optimization methods have steadily gained popularity as a solution to multi-objective optimization issues in recent years. Their study has garnered a lot of attention since multi-objective optimization problems have a hard high-dimensional goal space. The black-winged kite optimization algorithm still suffers from the imbalance between global search and local development capabilities, and it is prone to local optimization even though it combines Cauchy mutation to enhance the algorithm’s optimization ability. The heuristic optimization algorithm of the black-winged kite fused with osprey (OCBKA), which initializes the population by logistic chaotic mapping and fuses the osprey optimization algorithm to improve the search performance of the algorithm, is proposed as a means of enhancing the search ability of the black-winged kite algorithm (BKA). By using numerical comparisons between the CEC2005 and CEC2021 benchmark functions, along with other swarm intelligence optimization methods and the solutions to three engineering optimization problems, the upgraded strategy’s efficacy is confirmed. Based on numerical experiment findings, the revised OCBKA is very competitive because it can handle complicated engineering optimization problems with a high convergence accuracy and quick convergence time when compared to other comparable algorithms.
Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
Real-Time Home Automation System Using BCI Technology
by
Marius-Valentin Drăgoi, Ionuț Nisipeanu, Aurel Frimu, Ana-Maria Tălîngă, Anton Hadăr, Tiberiu Gabriel Dobrescu, Cosmin Petru Suciu and Andrei Rareș Manea
Biomimetics 2024, 9(10), 594; https://doi.org/10.3390/biomimetics9100594 - 1 Oct 2024
Abstract
A Brain–Computer Interface (BCI) processes and converts brain signals to provide commands to output devices to carry out certain tasks. The main purpose of BCIs is to replace or restore the missing or damaged functions of disabled people, including in neuromuscular disorders like
[...] Read more.
A Brain–Computer Interface (BCI) processes and converts brain signals to provide commands to output devices to carry out certain tasks. The main purpose of BCIs is to replace or restore the missing or damaged functions of disabled people, including in neuromuscular disorders like Amyotrophic Lateral Sclerosis (ALS), cerebral palsy, stroke, or spinal cord injury. Hence, a BCI does not use neuromuscular output pathways; it bypasses traditional neuromuscular pathways by directly interpreting brain signals to command devices. Scientists have used several techniques like electroencephalography (EEG) and intracortical and electrocorticographic (ECoG) techniques to collect brain signals that are used to control robotic arms, prosthetics, wheelchairs, and several other devices. A non-invasive method of EEG is used for collecting and monitoring the signals of the brain. Implementing EEG-based BCI technology in home automation systems may facilitate a wide range of tasks for people with disabilities. It is important to assist and empower individuals with paralysis to engage with existing home automation systems and gadgets in this particular situation. This paper proposes a home security system to control a door and a light using an EEG-based BCI. The system prototype consists of the EMOTIV Insight™ headset, Raspberry Pi 4, a servo motor to open/close the door, and an LED. The system can be very helpful for disabled people, including arm amputees who cannot close or open doors or use a remote control to turn on or turn off lights. The system includes an application made in Flutter to receive notifications on a smartphone related to the status of the door and the LEDs. The disabled person can control the door as well as the LED using his/her brain signals detected by the EMOTIV Insight™ headset.
Full article
(This article belongs to the Special Issue Bio-Inspired Mechanical Design and Control)
►▼
Show Figures
Figure 1
Open AccessArticle
Impact of Vehicle Steering Strategy on the Severity of Pedestrian Head Injury
by
Danqi Wang, Wengang Deng, Lintao Wu, Li Xin, Lizhe Xie and Honghao Zhang
Biomimetics 2024, 9(10), 593; https://doi.org/10.3390/biomimetics9100593 - 30 Sep 2024
Abstract
In response to the sudden violation of pedestrians crossing the road, intelligent vehicles take into account factors such as the road conditions in the accident zone, traffic rules, and surrounding vehicles’ driving status to make emergency evasive decisions. Thus, the collision simulation models
[...] Read more.
In response to the sudden violation of pedestrians crossing the road, intelligent vehicles take into account factors such as the road conditions in the accident zone, traffic rules, and surrounding vehicles’ driving status to make emergency evasive decisions. Thus, the collision simulation models for pedestrians and three types of vehicles, i.e., sedans, Sport Utility Vehicles (SUVs), and Multi-Purpose Vehicle (MPVs), are built to investigate the impact of vehicle types, vehicle steering angles, collision speeds, collision positions, and pedestrian orientations on head injuries of pedestrians. The results indicate that the Head Injury Criterion (HIC) value of the head increases with the increase in collision speed. Regarding the steering angles, when a vehicle’s steering direction aligns with a pedestrian’s position, the pedestrian remains on top of the vehicle’s hood for a longer period and moves together with the vehicle after the collision. This effectively reduces head injuries to pedestrians. However, when the vehicle’s steering direction is opposite to the pedestrian’s position, the pedestrian directly collides with the ground, resulting in higher head injuries. Among them, MPVs cause the most severe injuries, followed by SUVs, and sedans have the least impact. Overall, intelligent vehicles have great potential to reduce head injuries of pedestrians in the event of sudden pedestrian-vehicle collisions by combining with Automatic Emergency Steering (AES) measures. In the future, efforts need to be made to establish an optimized steering strategy and optimize the handling of situations where steering is ineffective or even harmful.
Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
A Motion Planner Based on Mask-D3QN of Quadruped Robot Motion for Steam Generator
by
Biying Xu, Xuehe Zhang, Xuan Yu, Yue Ou, Kuan Zhang, Hegao Cai, Jie Zhao and Jizhuang Fan
Biomimetics 2024, 9(10), 592; https://doi.org/10.3390/biomimetics9100592 - 30 Sep 2024
Abstract
Crawling robots are the focus of intelligent inspection research, and the main feature of this type of robot is the flexibility of in-plane attitude adjustment. The crawling robot HIT_Spibot is a new type of steam generator heat transfer tube inspection robot with a
[...] Read more.
Crawling robots are the focus of intelligent inspection research, and the main feature of this type of robot is the flexibility of in-plane attitude adjustment. The crawling robot HIT_Spibot is a new type of steam generator heat transfer tube inspection robot with a unique mobility capability different from traditional quadrupedal robots. This paper introduces a hierarchical motion planning approach for HIT_Spibot, aiming to achieve efficient and agile maneuverability. The proposed method integrates three distinct planners to handle complex motion tasks: a nonlinear optimization-based base motion planner, a TOPSIS-based base orientation planner, and a Mask-D3QN (MD3QN) algorithm-based gait motion planner. Initially, the robot’s base and foot workspace were delineated through envelope analysis, followed by trajectory computation using Larangian methods. Subsequently, the TOPSIS algorithm was employed to establish an evaluation framework conducive to foundational turning planning. Finally, the MD3QN algorithm trained foot-points to facilitate robot movement along predefined paths. Experimental results demonstrated the method’s adaptability across diverse tube structures, showcasing robust performance even in environments with random obstacles. Compared to the D3QN algorithm, MD3QN achieved a 100% success rate, enhanced average overall scores by 6.27%, reduced average stride lengths by 39.04%, and attained a stability rate of 58.02%. These results not only validate the effectiveness and practicality of the method but also showcase the significant potential of HIT_Spibot in the field of industrial inspection.
Full article
(This article belongs to the Special Issue Bio-Inspired Locomotion and Manipulation of Legged Robot: 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
Biomimetic Studies on the Antimicrobial Activity of Some Biocides Based on Garlic and Lavender in Surface Waters
by
Mădălina Grinzeanu, Oanamari Daniela Orbuleț, Annette Madelene Dăncilă, Constantin Bobirică, Cristina Modrogan, Liliana Bobirică and Mădălina Andreea Pandele
Biomimetics 2024, 9(10), 591; https://doi.org/10.3390/biomimetics9100591 - 29 Sep 2024
Abstract
For a given aquatic ecosystem that will be used as a water source, it is necessary to establish the quality of the water from a microbiological point of view by identifying the pathogens present in the water. The aim of this study was
[...] Read more.
For a given aquatic ecosystem that will be used as a water source, it is necessary to establish the quality of the water from a microbiological point of view by identifying the pathogens present in the water. The aim of this study was to determine and analyze the antimicrobial activity of some biocides derived from garlic (garlic–methanol extract) and lavender (lavender–water extract). Their efficiency was evaluated at different concentrations and contact times. Initially, through specific laboratory analyses, the microbiological characteristics of the river were determined. Biomimetic studies on the antimicrobial activity of biocides based on garlic and lavender in surface waters involved detailed exploration of how the natural antimicrobial properties of these plants can be effectively utilized to treat water contaminated with harmful microorganisms. Both the contact time and the amount of biocide used have a significant effect on the microorganisms of interest. Thus, to describe the degradation rate of coliform bacteria, a pseudo-first-order and zero-order kinetic model was used, şi , where r is the rate of degradation of microorganisms (CFU/min), N0 is the initial number of microorganisms in the aqueous solution (colony-forming unit, CFU), N is the final number of microorganisms after a contact time t (CFU), kobs is the pseudo-first-order rate constant (min−1), t is the contact time (min), r0 is the initial rate of degradation of microorganisms (CFU/min), and k0 is the pseudo-rate constant zero order (min−1). Following 60 min of treatment with 1 mL of lavender-water biocide, the inhibition rate of pathogenic microorganisms in the water reached 59.09%, whereas, under the same conditions, the garlic–methanol biocide achieved an inhibition rate of 40.86%. This study confirms the antimicrobial activity of both lavender and garlic biocides, highlighting their potential in mitigating water pollution caused by pathogens.
Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2024)
►▼
Show Figures
Graphical abstract
Open AccessArticle
A Flexible Hierarchical Framework for Implicit 3D Characterization of Bionic Devices
by
Yunhong Lu, Xiangnan Li and Mingliang Li
Biomimetics 2024, 9(10), 590; https://doi.org/10.3390/biomimetics9100590 - 29 Sep 2024
Abstract
In practical applications, integrating three-dimensional models of bionic devices with simulation systems can predict their behavior and performance under various operating conditions, providing a basis for subsequent engineering optimization and improvements. This study proposes a framework for characterizing three-dimensional models of objects, focusing
[...] Read more.
In practical applications, integrating three-dimensional models of bionic devices with simulation systems can predict their behavior and performance under various operating conditions, providing a basis for subsequent engineering optimization and improvements. This study proposes a framework for characterizing three-dimensional models of objects, focusing on extracting 3D structures and generating high-quality 3D models. The core concept involves obtaining the density output of the model from multiple images to enable adaptive boundary surface detection. The framework employs a hierarchical octree structure to partition the 3D space based on surface and geometric complexity. This approach includes recursive encoding and decoding of the octree structure and surface geometry, ultimately leading to the reconstruction of the 3D model. The framework has been validated through a series of experiments, yielding positive results.
Full article
(This article belongs to the Special Issue Biomimetic Aspects of Human–Computer Interactions)
►▼
Show Figures
Figure 1
Open AccessArticle
Effects of Coaxial Nozzle’s Inner Nozzle Diameter on Filament Strength and Gelation in Extrusion-Based 3D Printing with In Situ Ionic Crosslinking
by
Taieba Tuba Rahman, Al Mazedur Rahman, Zhijian Pei, Nathan Wood and Hongmin Qin
Biomimetics 2024, 9(10), 589; https://doi.org/10.3390/biomimetics9100589 - 29 Sep 2024
Abstract
►▼
Show Figures
This study systematically investigates the effects of the coaxial nozzle’s inner nozzle diameter on the strength and gelation of filaments produced via extrusion-based 3D printing with in situ ionic crosslinking. In this system, bioink (sodium alginate solution) was extruded through the outer nozzle,
[...] Read more.
This study systematically investigates the effects of the coaxial nozzle’s inner nozzle diameter on the strength and gelation of filaments produced via extrusion-based 3D printing with in situ ionic crosslinking. In this system, bioink (sodium alginate solution) was extruded through the outer nozzle, and the ionic crosslinking solution (calcium chloride solution) was extruded through the inner nozzle. The outer nozzle diameter was fixed at 2.16 mm, and the inner nozzle diameter was varied among 1.19, 0.84, and 0.584 mm. The results indicate that, as the inner nozzle diameter decreased, filament strength decreased, and filament gelation became poorer. These findings highlight the importance of optimizing inner nozzle diameter for improved filament strength and gelation in extrusion-based 3D printing with in situ ionic crosslinking.
Full article
Figure 1
Open AccessArticle
Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications
by
Kenshin Takemura, Taisei Motomura and Yuko Takagi
Biomimetics 2024, 9(10), 588; https://doi.org/10.3390/biomimetics9100588 - 28 Sep 2024
Abstract
Biospecimen imaging is essential across various fields. In particular, a considerable amount of research has focused on developing pretreatment techniques, ranging from freeze-drying to the use of highly conductive polymers, and on advancements in instrumentation, such as cryogenic electron microscopy. These specialized techniques
[...] Read more.
Biospecimen imaging is essential across various fields. In particular, a considerable amount of research has focused on developing pretreatment techniques, ranging from freeze-drying to the use of highly conductive polymers, and on advancements in instrumentation, such as cryogenic electron microscopy. These specialized techniques and equipment have facilitated nanoscale and microscale bioimaging. However, user access to these environments remains limited. This study introduced a novel technique to achieve high conductivity in bioimaging by employing a magnetically controlled sputtering cathode to facilitate low-temperature deposition and low-electron bombardment. This approach allows for the convenient high-magnification observation of highly structured three-dimensional specimens, such as pill bugs and butterfly wings, and fragile specimens, such as single-cell protozoan parasites, using metal deposition only. Furthermore, it is easily accessible in the field of bioimaging because it does not require any pretreatment and enables surface analysis of biospecimens with an electron microscope using only a single pretreatment process. Protozoa, which are microorganisms, were successfully observed at high magnification without structural changes due to thermal denaturation. Furthermore, metallic film deposition and electrochemical signal measurements using these metallic films were achieved in pill bugs.
Full article
(This article belongs to the Section Development of Biomimetic Methodology)
►▼
Show Figures
Figure 1
Open AccessArticle
Leveraging Machine Learning for Optimized Mechanical Properties and 3D Printing of PLA/cHAP for Bone Implant
by
Francis T. Omigbodun, Norman Osa-Uwagboe, Amadi Gabriel Udu and Bankole I. Oladapo
Biomimetics 2024, 9(10), 587; https://doi.org/10.3390/biomimetics9100587 - 27 Sep 2024
Abstract
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds’ mechanical and thermal properties, making them suitable for load-bearing
[...] Read more.
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds’ mechanical and thermal properties, making them suitable for load-bearing biomedical applications. The results indicate that increasing cHAP content improves the tensile and compressive strength of the scaffolds, although it also increases brittleness. Notably, incorporating cHAP at 7.5% and 10% significantly enhances thermal stability and mechanical performance, with properties comparable to or exceeding those of human cancellous bone. Furthermore, this study integrates machine learning techniques to predict the mechanical properties of these composites, employing algorithms such as XGBoost and AdaBoost. The models demonstrated high predictive accuracy, with R2 scores of 0.9173 and 0.8772 for compressive and tensile strength, respectively. These findings highlight the potential of using data-driven approaches to optimise material properties autonomously, offering significant implications for developing custom-tailored scaffolds in bone tissue engineering and regenerative medicine. The study underscores the promise of PLA/cHAP composites as viable candidates for advanced biomedical applications, particularly in creating patient-specific implants with improved mechanical and thermal characteristics.
Full article
(This article belongs to the Special Issue Advancements in 3D Printing and Additive Manufacturing for Orthopedic Applications)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Bioengineering, Biology, Biomimetics, Life, Molecules
Biomarkers and Therapeutic Targets Based on Bioinformatical Studies
Topic Editors: Qingjia Chi, Xiangcheng ChenDeadline: 31 December 2024
Topic in
Molecules, Biomimetics, Chemosensors, Life, AI, Sci
Recent Advances in Chemical Artificial Intelligence
Topic Editors: Pier Luigi Gentili, Jerzy Górecki, David C Magri, Pasquale StanoDeadline: 1 March 2025
Topic in
Applied Sciences, Electronics, Future Internet, Machines, Systems, Technologies, Biomimetics
Theoretical and Applied Problems in Human-Computer Intelligent Systems
Topic Editors: Jiahui Yu, Charlie Yang, Zhenyu Wen, Dalin Zhou, Dongxu Gao, Changting LinDeadline: 30 June 2025
Conferences
Special Issues
Special Issue in
Biomimetics
Human-Inspired Grasp Control in Robotics
Guest Editors: Yi Zhang, Junzhi YuDeadline: 15 October 2024
Special Issue in
Biomimetics
Biomimetic Approach to Dental Implants: 2nd EditionGuest Editors: Dijana Mitic, Jelena CarkicDeadline: 15 October 2024
Special Issue in
Biomimetics
Advances in Bone Regeneration and Dental Implant Therapies: Innovations, Technologies, and Biomaterials
Guest Editors: David Minjoon Kim, Chia-Yu ChenDeadline: 15 October 2024
Special Issue in
Biomimetics
Bio-Inspired Data-Driven Methods and Their Applications in Engineering Control, Optimization and AI
Guest Editors: Ameer Tamoor Khan, Shuai Li, Bolin LiaoDeadline: 15 October 2024