You are currently on the new version of our website. Access the old version .

Biomimetics

Biomimetics is an international, peer-reviewed, open access journal on biomimicry and bionics, published monthly online by MDPI. 

Indexed in PubMed | Quartile Ranking JCR - Q1 (Engineering, Multidisciplinary)

All Articles (2,864)

To address the insufficient exploration ability, susceptibility to local optima, and limited convergence accuracy of the standard Student Psychology-Based Optimization (SPBO) algorithm in three-dimensional UAV trajectory planning, we propose an enhanced variant, Enhanced SPBO (ESPBO). ESPBO augments SPBO with three complementary strategies: (i) Time-Adaptive Scheduling, which uses normalized time ( ) to schedule global step-size shrinking, Gaussian fine-tuning, and Lévy flight intensity, enabling strong early exploration and fine late-stage exploitation; (ii) Mentor Pool Guidance, which selects a top-K mentor set and applies time-varying guidance weights to reduce misleading attraction and improve directional stability; and (iii) Directional Jump Exploration, which couples a differential vector with Lévy flights to strengthen basin-crossing while keeping the differential step bounded for robustness. Numerical experiments on CEC2017, CEC2020 and CEC2022 benchmark functions compare ESPBO with Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Improved multi-strategy adaptive Grey Wolf Optimization (IAGWO), Dung Beetle Optimization (DBO), Snake Optimization (SO), Rime Optimization (RIME), and the original SPBO. We evaluate best path length, mean trajectory length, standard deviation, and convergence curves and assess statistical stability via Wilcoxon rank-sum tests (p = 0.05) and the Friedman test. ESPBO significantly outperforms the comparison algorithms in path-planning accuracy and convergence stability, ranking first on both test suites. Applied to 3D UAV trajectory planning in mountainous terrain with no-fly zones, ESPBO achieves an optimal path length of 199.8874 m, an average path length of 205.8179 m, and a standard deviation of 5.3440, surpassing all baselines; notably, ESPBO’s average path length is even lower than the optimal path length of other algorithms. These results demonstrate that ESPBO provides an efficient and robust solution for UAV trajectory optimization in intricate environments and extends the application of swarm intelligence algorithms in autonomous navigation.

14 January 2026

Comparison of different improvement strategies.

Large multi-UAV mission systems operate over time-varying communication graphs with heterogeneous platforms, where classical distributed task assignment may incur excessive message passing and suboptimal task–resource matching. To address these challenges, this paper proposes CLAC-CBBA (Centrality-Driven and Load-Aware Adaptive Clustering CBBA), an enhanced variant of the Consensus-Based Bundle Algorithm (CBBA) for large heterogeneous swarms. The proposed method is biomimetic in the sense that it integrates swarm-inspired self-organization and load-aware self-regulation to improve scalability and robustness, resembling decentralized role emergence and negative-feedback workload balancing in natural swarms. Specifically, CLAC-CBBA first identifies key nodes via a centrality-based adaptive cluster-reconfiguration mechanism (CenCluster) and partitions the network into cooperation domains to reduce redundant communication. It then applies a load-aware cluster self-regulation mechanism (LCSR), which combines resource attributes and spatial information, uses K-medoids clustering, and triggers split/merge reconfiguration based on real-time load imbalance. CBBA bidding is executed locally within clusters, while anchors and cluster representatives synchronize winners/bids to ensure globally consistent, conflict-free assignments. Simulations across diverse network densities and swarm sizes show that CLAC-CBBA reduces communication overhead and runtime while improving total task score compared with CBBA and several advanced variants, with statistically significant gains. These results demonstrate that CLAC-CBBA is scalable and robust for large-scale heterogeneous UAV task allocation.

14 January 2026

Functional workflow of CBBA. The left block illustrates bundle construction, and the right block illustrates conflict resolution/consensus. Solid links denote physical communication connectivity between UAVs, whereas dashed links indicate bid/winner information exchanges during the consensus stage (arrows show the direction of information flow).

To address the deficiencies in global search capability and population diversity decline of the black-winged kite algorithm (BKA), this paper proposes an enhanced black-winged kite algorithm integrating opposition-based learning and quasi-Newton strategy (OQBKA). The algorithm introduces a mirror imaging strategy based on convex lens imaging (MOBL) during the migration phase to enhance the population’s spatial distribution and assist individuals in escaping local optima. In later iterations, it incorporates the quasi-Newton method to enhance local optimization precision and convergence performance. Ablation studies on the CEC2017 benchmark set confirm the strong complementarity between the two integrated strategies, with OQBKA achieving an average ranking of 1.34 across all 29 test functions. Comparative experiments on the CEC2022 benchmark suite further verify its superior exploration–exploitation balance and optimization accuracy: under 10- and 20-dimensional settings, OQBKA attains the best average rankings of 2.5 and 2.17 across all 12 test functions, outperforming ten state-of-the-art metaheuristic algorithms. Moreover, evaluations on three constrained engineering design problems, including step-cone pulley optimization, corrugated bulkhead design, and reactor network design, demonstrate the practicality and robustness of the proposed approach in generating feasible solutions under complex constraints.

14 January 2026

Algorithm flowchart.

Research Progress on Biomimetic Water Collection Materials

  • Hengyu Pan,
  • Lingmei Zhu and
  • Huijie Wei
  • + 5 authors

Water scarcity constitutes a major global challenge. Biomimetic water collection materials, which mimic the efficient water capture and transport mechanisms, offer a crucial approach to addressing the water crisis. This review summarizes the research progress on biomimetic water collection materials, focusing on biological prototypes, operational mechanisms, and core aspects of biomimetic design. Typical water-collecting biological surfaces in nature exhibit distinctive structure–function synergy: spider silk achieves directional droplet transport via periodic spindle-knot structures, utilizing Laplace pressure difference and surface energy gradient; the desert beetle’s back features hydrophilic microstructures and a hydrophobic waxy coating, forming a fog-water collection system based on heterogeneous wettability; cactus spines enhance droplet transport efficiency through the synergy of gradient grooves and barbs; and shorebird beaks enable rapid water convergence via liquid bridge effects. These biological prototypes provide vital inspiration for the design of biomimetic water collection materials. Drawing on biological mechanisms, researchers have developed diverse biomimetic water collection materials. This review offers a theoretical reference for their structural design and performance enhancement, highlighting bio-inspiration’s core value in high-efficiency water collection material development. Additionally, this paper discusses challenges and opportunities of these materials, providing insights for advancing the engineering application of next-generation high-efficiency biomimetic water collection materials.

13 January 2026

Biological surfaces with water collection function: spider silk, shorebird beak, cactus spine, and desert beetle back [30,31,32,33,34].

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Bio-Inspired Soft Robotics
Reprint

Bio-Inspired Soft Robotics

Design, Fabrication and Applications
Editors: Yong Zhong, Pei Jiang, Sun Yi

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Biomimetics - ISSN 2313-7673