You are currently viewing a new version of our website. To view the old version click .

Biomimetics

Biomimetics is an international, peer-reviewed, open access journal on biomimicry and bionics, published monthly online by MDPI. 

Indexed in PubMed | Quartile Ranking JCR - Q1 (Engineering, Multidisciplinary)

All Articles (2,764)

  • Systematic Review
  • Open Access

Smart Ring in Clinical Medicine: A Systematic Review

  • Eun Jeong Gong,
  • Chang Seok Bang and
  • Jae Jun Lee
  • + 1 author

Background: Smart rings enable continuous physiological monitoring through finger-worn sensors. Despite growing consumer adoption, their clinical utility beyond sleep tracking remains unclear. Objectives: To systematically review evidence for smart ring applications in clinical medicine, assess measurement accuracy, and evaluate clinical outcomes. Methods: We searched PubMed/MEDLINE, Embase, Cochrane Library, and Web of Science through 31 July 2025. Two reviewers independently screened studies and extracted data. Risk of bias was assessed using ROBINS-I and RoB 2.0. Results: From 862 citations, 107 studies met inclusion criteria including approximately 100,000 participants. Studies were equally distributed between sleep (47.7%) and non-sleep applications (52.3%). Smart rings demonstrated high accuracy: heart rate r2 = 0.996, heart rate variability r2 = 0.980, and sleep detection 93–96% sensitivity. Predictive capabilities included COVID-19 detection 2.75 days pre-symptom (82% sensitivity), inflammatory bowel disease flare prediction 7 weeks early (72% accuracy), and bipolar episode detection 3–7 days early (79% sensitivity). However, 65% of studies had moderate-to-high bias risk. Limitations included small samples, proprietary algorithms (89%), poor diversity reporting (35%), and declining adherence (80% at 3 months to 43% at 12 months). Conclusion: Smart rings have evolved into clinical tools capable of early disease detection. However, algorithmic opacity, population homogeneity, and adherence challenges require attention before widespread implementation.

5 December 2025

Study selection flow.

This study aimed to investigate the timing of foot-off and initial contact at the end of the first walking training session with a Wearable Power-Assist Locomotor (WPAL) in novice healthy users. Eight healthy volunteers with no walking experience with the WPAL participated in this study. The participants walked back and forth on a straight 5 m path for 60 min with the WPAL. We calculated the differences between the participant’s foot-off and initial contact timing, as well as the start and end timing of the pre-programmed WPAL lower-limb swing time. Data were divided into four segments of 100 data points. We calculated the median of the last 100 data points and examined whether it falls within an appropriate time range. The foot-off timing tended to be within the appropriate time range (median, −0.44 s); however, the initial contact timing was earlier than the appropriate time range (median, −0.17 s). Although some participants performed foot-off within the appropriate time range, all performed initial contact earlier than the appropriate time range. These findings may contribute to establishing practice protocols for stable walking with wearable robotic exoskeletons in patients with spinal cord injury.

7 December 2025

Highly sensitive bioinspired cutaneous receptors are essential for realistic human-robot interaction. This study presents a biomimetic tactile sensor morphologically modeled after the Meissner corpuscle, designed for high dynamic sensitivity achieved using a coiled configuration. Our proposed electrolytic polymerization technique with magnet-responsive hybrid fluid (HF) was employed to fabricate soft, elastic rubber sensors with embedded coiled electrodes. The coiled configuration, optimized by electrolytic polymerization, exhibited high responsiveness to dynamic motions including pressing, pinching, twisting, bending, and shearing. The mechanism of the haptic property was analyzed by electrochemical impedance spectroscopy (EIS), revealing that reactance variations define an equivalent electric circuit (EEC) whose resistance (Rp), capacitance (Cp), and inductance (Lp) change with applied force; these changes correspond to mechanical deformation and the resulting variation in the sensor’s built-in voltage. The roll-type Meissner-inspired sensor demonstrated fast-adapting behavior and broadband vibratory sensitivity, indicating its potential for high-performance tactile and auditory sensing. These findings confirm the feasibility of electrolytically polymerized hybrid fluid rubber as a platform for next-generation bioinspired haptic interfaces.

5 December 2025

Artificial intelligence (AI) is increasingly shaping interventional oncology, with growing interest in its application across thermal ablation modalities such as radiofrequency ablation (RFA), cryoablation, high-intensity focused ultrasound (HIFU), and microwave ablation (MWA). This review characterises the current landscape of AI-enhanced thermal ablation, with particular emphasis on emerging opportunities within MWA technologies. We examine how AI-driven methods—convolutional neural networks, radiomics, and reinforcement learning—are being applied to optimise patient selection, automate image segmentation, predict treatment response, and support real-time procedural guidance. Comparative insights are provided across ablation modalities to contextualise the unique challenges and opportunities presented by microwave systems. Emphasis is placed on integrating AI into clinical workflows, ensuring safety, improving consistency, and advancing personalised therapy. Tables summarising AI methods and applications, a conceptual workflow figure, and a research gap analysis for MWA are included to guide future work. While existing applications remain largely investigational, the convergence of AI with advanced imaging and energy delivery holds significant promise for precision oncology. We conclude with a roadmap for research and clinical translation, highlighting the need for prospective validation, regulatory clarity, and interdisciplinary collaboration to support the adoption of AI-enabled thermal ablation into routine practice.

5 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Bio-Inspired Soft Robotics
Reprint

Bio-Inspired Soft Robotics

Design, Fabrication and Applications
Editors: Yong Zhong, Pei Jiang, Sun Yi

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Biomimetics - ISSN 2313-7673