Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = APEC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11874 KiB  
Article
Bactericidal Activities of Nanoemulsion Containing Piper betle L. Leaf and Hydroxychavicol Against Avian Pathogenic Escherichia coli and Modelling Simulation of Hydroxychavicol Against Bacterial Cell Division Proteins
by Kunchaphorn Ratchasong, Phirabhat Saengsawang, Gorawit Yusakul, Fonthip Makkliang, Hemanth Kumar Lakhanapuram, Phitchayapak Wintachai, Thotsapol Thomrongsuwannakij, Ozioma Forstinus Nwabor, Veerasak Punyapornwithaya, Chonticha Romyasamit and Watcharapong Mitsuwan
Antibiotics 2025, 14(8), 788; https://doi.org/10.3390/antibiotics14080788 - 3 Aug 2025
Viewed by 431
Abstract
Background: Avian pathogenic Escherichia coli (APEC) is a leading cause of colibacillosis in poultry. Piper betle L. is a medicinal plant rich in bioactive compounds including hydroxychavicol that possess potent antibacterial activity. This study aimed to investigate the efficacy of a P. [...] Read more.
Background: Avian pathogenic Escherichia coli (APEC) is a leading cause of colibacillosis in poultry. Piper betle L. is a medicinal plant rich in bioactive compounds including hydroxychavicol that possess potent antibacterial activity. This study aimed to investigate the efficacy of a P. betle L. leaf nanoemulsion (NEPE) and hydroxychavicol against multidrug-resistant APEC isolates. Methods: In vitro and in silico analysis of NEPE and hydroxychavicol against APEC were determined. Results: The nanoemulsion exhibited potent antibacterial activity, with MIC and MBC values of 0.06–0.25% v/v and 0.125–0.25% v/v, respectively. The MIC and MBC values of hydroxychavicol against isolates ranged from 0.25 to 1.0 mg/mL. A time–kill assays revealed rapid bactericidal effects of both compounds, achieving a ≥3-log reduction within 4 h at 4 × MIC. Scanning electron microscopy demonstrated that APEC cells treated with hydroxychavicol exhibited filamentous cells with incomplete septa. Molecular docking and dynamics simulations of hydroxychavicol against APEC cell division proteins were investigated. According to the binding energy, hydroxychavicol exhibited the highest affinity with ZapE, FtsW, FtsX, FtsZ, and FtsA, respectively. However, the FtsA protein showed the least protein conformational change throughout the 5000 ns simulation, reflecting a highly stable conformation. Conclusions: These confirm the potential stability of protein and ligand, as supported by molecular dynamics simulation. The results suggested the potential of NEPE and hydroxychavicol, which may have promising antibacterial potential that can be used to inhibit APEC growth. Full article
(This article belongs to the Special Issue Antimicrobial Extracts and Compounds Derived from Plants)
Show Figures

Figure 1

11 pages, 1106 KiB  
Article
The Role of clbF in the Pathogenicity of Avian Pathogenic Escherichia coli
by Meng Wu, Haitao Wu, Ling Li, Pan Hao and Peili Wang
Vet. Sci. 2025, 12(8), 727; https://doi.org/10.3390/vetsci12080727 - 1 Aug 2025
Viewed by 223
Abstract
The genotoxin colibactin, a complex secondary metabolite, targets eukaryotic cell cycle machinery and contributes to neonatal sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) XM, which produces this genotoxin, is an agent of poultry diseases with zoonotic potential. In this study, we confirmed [...] Read more.
The genotoxin colibactin, a complex secondary metabolite, targets eukaryotic cell cycle machinery and contributes to neonatal sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) XM, which produces this genotoxin, is an agent of poultry diseases with zoonotic potential. In this study, we confirmed that clbF was necessary for the APEC XM strain to produce colibactin, but it did not affect the growth, adhesion, or invasion of cells. Deletion of clbF substantially diminished both virulence and systemic dissemination, but it also changed the gene expression of the antiserum survival factor, adherence and invasion, iron acquisition genes, and the secretion system. In conclusion, clbF is necessary for the synthesis of the genotoxin colibactin and affects the development of APEC meningitis in mice. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

25 pages, 2377 KiB  
Article
Assessment of Storm Surge Disaster Response Capacity in Chinese Coastal Cities Using Urban-Scale Survey Data
by Li Zhu and Shibai Cui
Water 2025, 17(15), 2245; https://doi.org/10.3390/w17152245 - 28 Jul 2025
Viewed by 365
Abstract
Currently, most studies evaluating storm surges are conducted at the provincial level, and there is a lack of detailed research focusing on cities. This paper focuses on the urban scale, using some fine-scale data of coastal areas obtained through remote sensing images. This [...] Read more.
Currently, most studies evaluating storm surges are conducted at the provincial level, and there is a lack of detailed research focusing on cities. This paper focuses on the urban scale, using some fine-scale data of coastal areas obtained through remote sensing images. This research is based on the Hazard–Exposure–Vulnerability (H-E-V) framework and PPRR (Prevention, Preparedness, Response, and Recovery) crisis management theory. It focuses on 52 Chinese coastal cities as the research subject. The evaluation system for the disaster response capabilities of Chinese coastal cities was constructed based on three aspects: the stability of the disaster-incubating environment (S), the risk of disaster-causing factors (R), and the vulnerability of disaster-bearing bodies (V). The significance of this study is that the storm surge capability of China’s coastal cities can be analyzed based on the results of the evaluation, and the evaluation model can be used to identify its deficiencies. In this paper, these storm surge disaster response capabilities of coastal cities were scored using the entropy weighted TOPSIS method and the weight rank sum ratio (WRSR), and the results were also analyzed. The results indicate that Wenzhou has the best comprehensive disaster response capability, while Yancheng has the worst. Moreover, Tianjin, Ningde, and Shenzhen performed well in the three aspects of vulnerability of disaster-bearing bodies, risk of disaster-causing factors, and stability of disaster-incubating environment separately. On the contrary, Dandong (tied with Qinzhou), Jiaxing, and Chaozhou performed poorly in the above three areas. Full article
(This article belongs to the Special Issue Advanced Research on Marine Geology and Sedimentology)
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective
by Jessica Ribeiro, Vanessa Silva, Catarina Freitas, Pedro Pinto, Madalena Vieira-Pinto, Rita Batista, Alexandra Nunes, João Paulo Gomes, José Eduardo Pereira, Gilberto Igrejas, Lillian Barros, Sandrina A. Heleno, Filipa S. Reis and Patrícia Poeta
Vet. Sci. 2025, 12(7), 675; https://doi.org/10.3390/vetsci12070675 - 17 Jul 2025
Viewed by 504
Abstract
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic [...] Read more.
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic analysis revealed a diverse population spanning 15 sequence types, including ST155, ST201, and ST58. Resistance to tetracycline and ciprofloxacin was common, and several isolates carried genes encoding β-lactamases, including blaTEM-1B. Chromosomal mutations associated with quinolone and fosfomycin resistance (e.g., gyrA p.S83L, glpT_E448K) were also identified. WGS revealed a high number of virulence-associated genes per isolate (58–96), notably those linked to adhesion (fim, ecp clusters), secretion systems (T6SS), and iron acquisition (ent, fep, fes), suggesting strong pathogenic potential. Many isolates harbored virulence markers typical of ExPEC/APEC, such as iss, ompT, and traT, even in the absence of multidrug resistance. Our findings suggest that E. coli from sternal bursitis may act as reservoirs of resistance and virulence traits relevant to animal and public health. This highlights the need for including such lesions in genomic surveillance programs and reinforces the importance of integrated One Health approaches. Full article
Show Figures

Graphical abstract

13 pages, 1814 KiB  
Article
Sfm Fimbriae Play an Important Role in the Pathogenicity of Escherichia coli CE129
by Yang Yang, Mingliang Chen, Zixin Han, Congrui Zhu, Ziyan Wu, Junpeng Li and Guoqiang Zhu
Microbiol. Res. 2025, 16(7), 160; https://doi.org/10.3390/microbiolres16070160 - 16 Jul 2025
Viewed by 336
Abstract
Avian pathogenic Escherichia coli (APEC) is highly infective in poultry, causing significant economic losses to the poultry industry. As an extraintestinal pathogenic strain, adherence is a critical step in the infection. The functions of several adhesins, including type I, P, and Curli fimbriae, [...] Read more.
Avian pathogenic Escherichia coli (APEC) is highly infective in poultry, causing significant economic losses to the poultry industry. As an extraintestinal pathogenic strain, adherence is a critical step in the infection. The functions of several adhesins, including type I, P, and Curli fimbriae, have been extensively studied. However, the roles of other adhesins, like Sfm, remain largely unexplored. Sfm is widely present in E. coli. Although the Sfm cluster is an ortholog of the fim gene cluster of Salmonella type I fimbriae, the biological function of Sfm in APEC has not yet been elucidated. To investigate whether Sfm in APEC CE129 plays a role in virulence, in this study, we constructed recombinant strains by expressing Sfm in the fimbriae-deficient strain SE5000. Additionally, a CE129 sfmA mutant strain was constructed. The resulting changes in adherence, biofilm formation, resistance to macrophage phagocytosis, and resistance to serum bactericidal ability were observed. The adherence ability of CE129ΔsfmA was reduced by 41%. HD-11 cells demonstrated a 30% increase in the phagocytosis of CE129ΔsfmA, and a 50% reduction in SE5000 (pBR322-sfm). The sfm deletion mutant showed a 23.9% reduction in the resistance to serum bactericidal ability, while SE5000 (pBR322-sfm) displayed a 32% increase. SE5000 (pBR322-sfm) exhibited a 34% increase in biofilm formation, and CE129ΔsfmA demonstrated a 21% decrease. Real-time PCR was employed to examine the impact of Sfm deletion on the transcription level of key virulence factors (fimA, fliC, papC, tsh, ompA, and iss). The results indicated that Sfm in CE129 is closely associated with bacterial adherence and survivability, contributing to biofilm formation and influencing the expression of key virulence factors. This study yields initial insight into the functional roles of Sfm in APEC and provides a foundation for the effective control of E. coli in the poultry industry. Full article
Show Figures

Figure 1

16 pages, 1767 KiB  
Article
Population Structure, Genomic Features, and Antibiotic Resistance of Avian Pathogenic Escherichia coli in Shandong Province and Adjacent Regions, China (2008–2023)
by Shikai Song, Yao Wang, Zhihai Liu, Rongling Zhang, Kaiyuan Li, Bin Yin, Zunxiang Yan, Shifa Yang, Shuqian Lin and Yunpeng Yi
Microorganisms 2025, 13(7), 1655; https://doi.org/10.3390/microorganisms13071655 - 13 Jul 2025
Viewed by 701
Abstract
Avian pathogenic Escherichia coli (APEC) poses a global threat to poultry health and public safety due to its high lethality, limited treatment options, and potential for zoonotic transmission via the food chain. However, long-term genomic surveillance remains limited, especially in countries like China [...] Read more.
Avian pathogenic Escherichia coli (APEC) poses a global threat to poultry health and public safety due to its high lethality, limited treatment options, and potential for zoonotic transmission via the food chain. However, long-term genomic surveillance remains limited, especially in countries like China where poultry farming is highly intensive. This study aimed to characterize the population structure, virulence traits, and antimicrobial resistance of 81 APEC isolates from diseased chickens collected over 16 years from Shandong and neighboring provinces in eastern China. The isolates were grouped into seven Clermont phylogroups, with A and B1 being dominant. MLST revealed 27 STs, and serotyping identified 29 O and 16 H antigens, showing high genetic diversity. The minor phylogroups (B2, C, D, E, G) encoded more virulence genes and had higher virulence-plasmid ColV carriage, with enrichment for iron-uptake, protectins, and extraintestinal toxins. In contrast, the dominant phylogroups A and B1 primarily carried adhesin and enterotoxin genes. Antimicrobial resistance was widespread: 76.5% of isolates were multidrug-resistant. The minor phylogroups exhibited higher tetracycline resistance (mediated by tet(A)), whereas the major phylogroups showed increased resistance to third- and fourth-generation cephalosporins (due to blaCTX-M-type ESBL genes). These findings offer crucial data for APEC prevention and control, safeguarding the poultry industry and public health. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

31 pages, 1686 KiB  
Review
Strategic Detection of Escherichia coli in the Poultry Industry: Food Safety Challenges, One Health Approaches, and Advances in Biosensor Technologies
by Jacquline Risalvato, Alaa H. Sewid, Shigetoshi Eda, Richard W. Gerhold and Jie Jayne Wu
Biosensors 2025, 15(7), 419; https://doi.org/10.3390/bios15070419 - 1 Jul 2025
Viewed by 1153
Abstract
Escherichia coli (E. coli) remains a major concern in poultry production due to its ability to incite foodborne illness and public health crisis, zoonotic potential, and the increasing prevalence of antibiotic-resistant strains. The contamination of poultry products with pathogenic E. coli [...] Read more.
Escherichia coli (E. coli) remains a major concern in poultry production due to its ability to incite foodborne illness and public health crisis, zoonotic potential, and the increasing prevalence of antibiotic-resistant strains. The contamination of poultry products with pathogenic E. coli, including avian pathogenic E. coli (APEC) and Shiga toxin-producing E. coli (STEC), presents risks at multiple stages of the poultry production cycle. The stages affected by E. coli range from, but are not limited to, the hatcheries to grow-out operations, slaughterhouses, and retail markets. While traditional detection methods such as culture-based assays and polymerase chain reaction (PCR) are well-established for E. coli detection in the food supply chain, their time, cost, and high infrastructure demands limit their suitability for rapid and field-based surveillance—hindering the ability for effective cessation and handling of outbreaks. Biosensors have emerged as powerful diagnostic tools that offer rapid, sensitive, and cost-effective alternatives for E. coli detection across various stages of poultry development and processing where detection is needed. This review examines current biosensor technologies designed to detect bacterial biomarkers, toxins, antibiotic resistance genes, and host immune response indicators for E. coli. Emphasis is placed on field-deployable and point-of-care (POC) platforms capable of integrating into poultry production environments. In addition to enhancing early pathogen detection, biosensors support antimicrobial resistance monitoring, facilitate integration into Hazard Analysis Critical Control Points (HACCP) systems, and align with the One Health framework by improving both animal and public health outcomes. Their strategic implementation in slaughterhouse quality control and marketplace testing can significantly reduce contamination risk and strengthen traceability in the poultry value chain. As biosensor technology continues to evolve, its application in E. coli surveillance is poised to play a transformative role in sustainable poultry production and global food safety. Full article
(This article belongs to the Special Issue Biosensors for Food Safety)
Show Figures

Figure 1

12 pages, 603 KiB  
Case Report
First Successful Fertility Preservation Using Oocyte Vitrification in Patient with Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy
by Yuka Tanaka, Bunpei Ishizuka and Kazuhiro Kawamura
Endocrines 2025, 6(3), 31; https://doi.org/10.3390/endocrines6030031 - 1 Jul 2025
Viewed by 353
Abstract
Background/Objectives: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autoimmune disorder caused by mutations in the AIRE gene. Approximately 60% of affected females develop premature ovarian insufficiency (POI) by age 30, often most commonly due to steroidogenic autoantibodies. Although APECED is typically diagnosed in [...] Read more.
Background/Objectives: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autoimmune disorder caused by mutations in the AIRE gene. Approximately 60% of affected females develop premature ovarian insufficiency (POI) by age 30, often most commonly due to steroidogenic autoantibodies. Although APECED is typically diagnosed in childhood, its reproductive implications are underrecognized. This study reports a case of successful fertility preservation in an adult woman with APECED and reviews the relevant literature. Methods: We describe the clinical course of a 37-year-old woman with genetically confirmed APECED who underwent ovarian stimulation for fertility preservation. A comprehensive PubMed search was also conducted to identify English-language case reports on fertility preservation in APECED-associated POI. Results: The patient experienced menarche at age 13, adrenal insufficiency at 14, and menstrual irregularities from age 18. Genetic analysis confirmed an AIRE mutation (NM_000383: exon 11: c.1400+1G>A). Given her relatively high anti-Müllerian hormone level, she opted for fertility preservation and underwent six cycles of ovarian stimulation, resulting in the cryopreservation of 17 mature oocytes. During ovarian stimulation, multiple follicular developments were observed, but serum E2 levels remained low. The literature review identified fewer than 20 reported cases addressing fertility preservation in APECED, highlighting its rarity and the lack of standardized management. Conclusions: Although APECED frequently leads to early POI due to impaired steroidogenesis, residual ovarian function may persist. Early assessment of ovarian reserve and timely fertility counseling are crucial, even in asymptomatic patients or those diagnosed in childhood. Reproductive planning should be integrated into the long-term care of women with APECED. Full article
Show Figures

Figure 1

32 pages, 352 KiB  
Review
Advancing Energy Storage Technologies and Governance in the Asia-Pacific Region: A Review of International Frameworks, Research Insights, and Regional Case Studies
by Chung-Han Yang and Jack Huang
Energy Storage Appl. 2025, 2(3), 8; https://doi.org/10.3390/esa2030008 - 23 Jun 2025
Viewed by 599
Abstract
This review explores the development of energy storage technologies and governance frameworks in the Asia-Pacific region, where rapid economic growth and urbanisation drive the demand for sustainable energy solutions. Energy storage systems (ESS) are integral to balancing renewable energy fluctuations, improving grid resilience, [...] Read more.
This review explores the development of energy storage technologies and governance frameworks in the Asia-Pacific region, where rapid economic growth and urbanisation drive the demand for sustainable energy solutions. Energy storage systems (ESS) are integral to balancing renewable energy fluctuations, improving grid resilience, and reducing greenhouse gas emissions. This paper examines the role of international organisations, including the United Nations, International Energy Agency (IEA), and International Renewable Energy Agency (IRENA), in promoting energy storage advancements through strategic initiatives, policy frameworks, and funding mechanisms. Regionally, the Asia-Pacific Economic Cooperation (APEC), the Association of Southeast Asian Nations (ASEAN), and the Asian Development Bank (ADB) have launched programs fostering collaboration, technical support, and knowledge sharing. Detailed case studies of Japan, Thailand, and China highlight the diverse policy approaches, technological innovations, and international collaborations shaping energy storage advancements. While Japan emphasises cutting-edge innovation, Thailand focuses on regional integration, and China leads in large-scale deployment and manufacturing. This analysis identifies key lessons from these frameworks and case studies, providing insights into governance strategies, policy implications, and the challenges of scaling energy storage technologies. It offers a roadmap for advancing regional and global efforts toward achieving low-carbon, resilient energy systems aligned with sustainability and climate goals. Full article
16 pages, 687 KiB  
Article
Serogroup Prevalence, Virulence Profile and Antibiotic Resistance of Avian Pathogenic Escherichia coli Isolated from Broiler Chicken
by Showkat A. Shah, Masood S. Mir, Shayaib A. Kamil, Majid Shafi, Mudasir A. Rather, Azmat A. Khan, Zahoor A. Wani, Sheikh Adil, Fatmah M. Alqahtani, Majid Alhomrani and Manzoor Wani
Vet. Sci. 2025, 12(6), 592; https://doi.org/10.3390/vetsci12060592 - 16 Jun 2025
Viewed by 763
Abstract
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, leading to significant economic losses and concerns for food safety in the poultry industry. This study focused on examining the virulence gene profile, antibiotic resistance prevalence, and resistance patterns of APEC isolates. A total of [...] Read more.
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, leading to significant economic losses and concerns for food safety in the poultry industry. This study focused on examining the virulence gene profile, antibiotic resistance prevalence, and resistance patterns of APEC isolates. A total of 250 bacterial strains were collected from birds affected by colibacillosis. Serogrouping revealed diverse serotypes, with O2 being the most common (16%), followed by O1, O8, and O76. All isolates tested positive for at minimum one virulence gene, with 7.2% carrying all five targeted genes, particularly in serogroups O1, O8, O45, and O88. The most detected gene was iss, present in 79.6% of isolates, followed by tsh, iucC, sitA, and papC. The antibiotic resistance analysis showed that all isolates exhibited multidrug resistance, although they remained susceptible to gentamicin, amikacin, ciprofloxacin, and chloramphenicol. Moreover, specific antibiotic resistance genes were known in the isolates, with tetA detected in 54.8%, tetB in 51.7%, sul1 in 50%, and aadA1 in 29.2%. These findings highlight the widespread antibiotic resistance in chicken carcasses, which poses a hazard to human health in terms of transfer of resistance to humans, reduced effectiveness of antibiotics and impaired ability to contain infectious diseases. Therefore, it is crucial to implement strict monitoring programs to regulate antibiotic usage in poultry production. Full article
Show Figures

Figure 1

22 pages, 7012 KiB  
Article
Multi-Omics Unveils Inflammatory Regulation of Fermented Sini Decoction Dregs in Broilers Infected with Avian Pathogenic Escherichia coli
by Shuanghao Mo, Xin Fang, Wenxi Xiao, Bowen Huang, Chunsheng Li, Hui Yang, Yilin Wu, Yiming Wang and Hongxia Ma
Vet. Sci. 2025, 12(5), 479; https://doi.org/10.3390/vetsci12050479 - 15 May 2025
Cited by 1 | Viewed by 572
Abstract
Avian colibacillosis causes significant economic losses and raises concerns for human health due to food safety risks, a problem exacerbated by the increase in antibiotic resistance. This study aimed to develop novel antibacterial strategies using fermented liquid of Sini decoction dregs to address [...] Read more.
Avian colibacillosis causes significant economic losses and raises concerns for human health due to food safety risks, a problem exacerbated by the increase in antibiotic resistance. This study aimed to develop novel antibacterial strategies using fermented liquid of Sini decoction dregs to address these challenges. We analyzed the transcriptome of the chicken thymus sample GSE69014 in the GEO database to identify immune-related genes, performed molecular docking to assess compound interactions, and experimental validation via Western blot and ELISA to evaluate anti-inflammatory effects. Results revealed 11 core genes, including TLR4, critical for immune responses against the infection, with TLR4 activating key inflammatory pathways. Fermented liquid with probiotics enhanced bioactivity, and natural compounds Dioscin and Celastrol from the fermented liquid inhibited inflammation by targeting the TLR4-MD2 complex. In animal models, fermented liquid outperformed individual compounds, likely due to synergistic effects, significantly reducing inflammatory markers. These findings demonstrate that fermented liquid of Sini decoction dregs offers a promising, sustainable approach to control avian colibacillosis, mitigate antibiotic resistance, and improve poultry health, providing a scientific foundation for its application in farming to reduce economic losses and enhance food safety. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

13 pages, 1091 KiB  
Article
Evaluation of Different Biowaste Collection Scenarios and Comparison of Periodic and Dynamic Collection
by Antoine Lesieur, Mahdi Zargayouna and Vincent Loubière
Sustainability 2025, 17(9), 4206; https://doi.org/10.3390/su17094206 - 7 May 2025
Viewed by 399
Abstract
Efficient biowaste management is critical for sustainable urban development, and directly influences environmental outcomes and operational efficiency. As dense urban areas face increasing volumes of waste and stricter regulations, as in France’s “loi APEC”, optimizing collection strategies is becoming a pressing challenge. The [...] Read more.
Efficient biowaste management is critical for sustainable urban development, and directly influences environmental outcomes and operational efficiency. As dense urban areas face increasing volumes of waste and stricter regulations, as in France’s “loi APEC”, optimizing collection strategies is becoming a pressing challenge. The aim of this paper is to compute routing scenarios in order to determine which one is the more sustainable. The study examines biowaste management in urban environments for one year, evaluating and comparing the economic and environmental impacts of two distinct waste collection strategies: traditional periodic collection and an advanced signal-based collection system. To achieve this, we used a synthetic population model and clustering algorithms to map the distribution of biowaste bins throughout the study area. Subsequently, a Capacity Vehicle Routing Problem (CVRP) algorithm was applied to optimize the collection routes for both scenarios, and we specifically adapted it to represent the specificities of bio-waste management. The traditional method involves weekly collection regardless of bin fill levels, whereas the signal-based approach dynamically triggers collection based on predefined fill thresholds. The signal-based collection system initiates waste collection when a bin exceeds an upper threshold (t1) and includes all bins filled above a lower threshold (t0, where t1t0). The results demonstrate a 35% reduction in waste collection time in the signal-based system on a running year, highlighting its potential for significant improvements in operational efficiency and environmental sustainability. This paper provides a rigorous analysis of the methodologies used and discusses the implications of transitioning to adaptive biowaste collection systems in urban settings. Full article
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Molecular Characterization, Antibiotic Resistance, and Biofilm Formation of Escherichia coli Isolated from Commercial Broilers from Four Chinese Provinces
by Saqib Nawaz, Muhammad Shoaib, Cuiqin Huang, Wei Jiang, Yinli Bao, Xiuyi Wu, Lianhua Nie, Wenyan Fan, Zhihao Wang, Zhaoguo Chen, Huifang Yin and Xiangan Han
Microorganisms 2025, 13(5), 1017; https://doi.org/10.3390/microorganisms13051017 - 28 Apr 2025
Cited by 1 | Viewed by 855
Abstract
Escherichia coli (E. coli) represents a significant etiological agent of colibacillosis in poultry, resulting in considerable economic losses for the global poultry sector. The present study aimed to determine molecular characterization, antibiotic resistance, and biofilm formation of E. coli strains isolated [...] Read more.
Escherichia coli (E. coli) represents a significant etiological agent of colibacillosis in poultry, resulting in considerable economic losses for the global poultry sector. The present study aimed to determine molecular characterization, antibiotic resistance, and biofilm formation of E. coli strains isolated from diseased broilers from four provinces of China. A total of 200 tissue samples were collected from the intestine, liver, crop, heart, and spleen and processed for microbiological examination. Molecular detection of E. coli strains, virulence genes, and serotypes was performed using polymerase chain reaction (PCR). Antibiotic susceptibility testing and biofilm formation were assessed using disk diffusion and 96-well microtiter plate assays. The study retrieved 68% (136/200) of E. coli strains from collected samples. Most of the E. coli strains were resistant to enrofloxacin (56%), followed by cefepime (54%), amoxicillin/clavulanate (52%), streptomycin (50%), ampicillin (48%), clindamycin (47%), kanamycin (41%), polymyxin B (37%), tetracycline (35%), sulfamethoxazole/trimethoprim (33%), ceftazidime (31%), meropenem (4.7%), and florfenicol (2.9%). Similarly, the E. coli strains tested positive for at least one virulence gene and specific serotypes. Among these, O145 was the most prevalent serotype, identified in 22 isolates (16.2%), followed by O8 (12.5%), O102 (11.8%), and O9 (11.0%). The tsh gene (10.2%) was the most prevalent virulence gene. This study found that 47.1% of E. coli strains were biofilm-producing, with 62.5% exhibiting weak biofilm production, 29.7% mild biofilm production, and 7.8% strong biofilm production. Similarly, 24.2% of the E. coli strains were avian pathogenic E. coli strains due to the presence of five or more virulence genes, specifically tsh, ompA, fimC, iss, fyuA, and astA, in a single strain by multiplex PCR. The present study recommends continuous surveillance and effective control measures to reduce the burden of avian pathogenic E. coli-related infections in poultry. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

25 pages, 1770 KiB  
Article
Redimensioning the Theory of Planned Behavior on Workplace Energy Saving Intention: The Mediating Role of Environmental Knowledge and Organizational Culture
by Luis J. Camacho, Moises Banks, Satesh Sookhai and Emely Concepción
Sustainability 2025, 17(8), 3574; https://doi.org/10.3390/su17083574 - 16 Apr 2025
Cited by 2 | Viewed by 1262
Abstract
This study extends the Theory of Planned Behavior (TPB) to examine the factors influencing the employees’ intentions to save energy in the workplace (INSER), incorporating organizational culture (ORGCULT) and environmental knowledge (ENVKNOW) as mediating variables. Structural equation modeling (SEM) of survey data reveals [...] Read more.
This study extends the Theory of Planned Behavior (TPB) to examine the factors influencing the employees’ intentions to save energy in the workplace (INSER), incorporating organizational culture (ORGCULT) and environmental knowledge (ENVKNOW) as mediating variables. Structural equation modeling (SEM) of survey data reveals that attitudes toward energy saving (ATESs) and perceived behavioral control (PERBCON) significantly predict INSER, while subjective norms (SUBNORMS) do not exert a direct effect. ORGCULT emerges as a strong mediator, highlighting its role in translating pro-environmental attitudes into actionable intentions. In contrast, ENVKNOW does not mediate the examined relationships, challenging the assumption that knowledge alone is sufficient to drive energy-saving behavior. These findings suggest that organizational commitment and leadership engagement exert a greater influence than peer norms or informational efforts in shaping sustainable workplace behaviors. From a practical perspective, the study underscores the importance of cultivating a sustainability-oriented organizational culture, implementing structural supports, and employing behavioral interventions beyond traditional awareness campaigns. Theoretically, it refines the TPB by illustrating that institutional factors may precede normative pressures in professional settings. Overall, the research contributes to the corporate sustainability literature by advocating for leadership-driven engagement strategies and policy-level interventions to promote long-term energy efficiency. Full article
Show Figures

Figure 1

12 pages, 1978 KiB  
Article
Probiotic Lactocaseibacillus casei NK1 Enhances Growth and Gut Microbiota in Avian Pathogenic Escherichia coli Challenged Broilers
by Nimra Khalid, Syed Mohsin Bukhari, Waqas Ali, Ali Ahmad Sheikh, Hafiz Muhammad Abdullah and Ali Nazmi
Animals 2025, 15(8), 1136; https://doi.org/10.3390/ani15081136 - 15 Apr 2025
Viewed by 700
Abstract
The present study was conducted to assess the efficacy of Laboratory-Isolated Lactocaseibacillus casei NK1 (Lc. NK1) in broilers hypothesizing that, Lc. NK1 supplementation will enhance growth performance, modulate the gut microbiome, and reduce fecal pathogenic Escherichia coli in broilers. The experiment spanned 35 [...] Read more.
The present study was conducted to assess the efficacy of Laboratory-Isolated Lactocaseibacillus casei NK1 (Lc. NK1) in broilers hypothesizing that, Lc. NK1 supplementation will enhance growth performance, modulate the gut microbiome, and reduce fecal pathogenic Escherichia coli in broilers. The experiment spanned 35 days where 60 one-day-old broiler chicks were randomly assigned to four treatment groups (n = 15); control-group with no treatment (NC), APEC (challenged with E. coli only), CProb (received commercial probiotics), and LNK1 (treated with Lc. NK1). The APEC, CProb, and LNK1 groups were infected with E. coli O78 strain at 11 days of age. Growth performance analysis revealed that the LNK1 group by day 35 gained body weight similar to the CProb group, with both groups significantly outperforming the APEC group (p < 0.001). Both the LNK1 and CProp groups exhibited similar reduction in E. coli while increasing Lactobacillus colorizations in the cloacal swabs from day 21 to 35 of age (p > 0.05). Metagenomic analysis using 16S rRNA sequencing showed that the LNK1 group maintained a diverse and balanced gut microbiota, characterized by increased Firmicutes and reduced Proteobacteria. In contrast, the APEC group exhibited reduced diversity and dominance of Escherichia-Shigella (p < 0.001). These findings suggest Lc. NK1 could be a promising probiotic for enhancing gut health and growth performance in broilers, even under pathogenic challenges, offering a potential alternative to antibiotics in poultry production. Full article
(This article belongs to the Special Issue Intervention Strategies to Control Foodborne Pathogens in Poultry)
Show Figures

Figure 1

Back to TopTop