Risk Factors Associated with the Carriage of Pathogenic Escherichia coli in Healthy Commercial Meat Chickens in Queensland, Australia † †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Collection of Risk Factor Data
2.4. Bacterial Culture of Samples, Identification and DNA Extraction
2.5. Molecular Detection of Virulence Genes
2.6. Case Definition
2.7. Validation of the Number of E. coli Colonies That Need to Be Screened to Detect APEC VGs
2.8. Virulence Gene Prevalence in APEC Positive and Negative Birds
2.9. Farm-Level, Bird-Level and within-Farm APEC Prevalence
2.10. Risk Factors for APEC within-Farm Prevalence
3. Results
3.1. Overview of Meat Farm Management and Biosecurity Practices
3.2. Validation of the Number of E. coli Colonies That Need to Be Screened to Detect APEC VGs
3.3. Virulence Gene Prevalence in APEC Positive and Negative Birds
3.4. Prevalence of Avian Pathogenic E. coli
3.5. Risk Factors for APEC Bird-Level Prevalence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dho-Moulin, M.; Fairbrother, J.M. Avian pathogenic Escherichia coli (APEC). Vet. Res. 1999, 30, 299–316. [Google Scholar] [PubMed]
- Arné, P.; Marc, D.; Brée, A.; Schouler, C.; Dho-Moulin, M. Increased Tracheal Colonization in Chickens without Impairing Pathogenic Properties of Avian Pathogenic Escherichia coli MT78 with a fimH Deletion. Avian Dis. 2000, 44, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Russo, T.A. Extraintestinal pathogenic Escherichia coli: “The other bad E. coli”. J. Lab. Clin. Med. 2002, 139, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Janssen, T.; Kiessling, S.; Philipp, H.C.; Wieler, L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 2004, 104, 91–101. [Google Scholar] [CrossRef]
- Nolan, L.K.; Barnes, H.; Jean Pirre, V.; Abdul-Aziz, T.; Louge, C.M. Colibacillosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; John Wiley and Sons: Ames, IA, USA, 2013; pp. 751–785. [Google Scholar]
- Collingwood, C.; Kemmett, K.; Williams, N.; Wigley, P. Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Front. Vet. Sci. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Braga, J.F.V.; Chanteloup, N.K.; Trotereau, A.; Baucheron, S.; Guabiraba, R.; Ecco, R.; Schouler, C. Diversity of Escherichia coli strains involved in vertebral osteomyelitis and arthritis in broilers in Brazil. BMC Vet. Res. 2016, 12, 140. [Google Scholar] [CrossRef]
- Ewers, C.; Li, G.W.; Wilking, H.; Kiessling, S.; Alt, K.; Antao, E.M.; Laturnus, C.; Diehl, I.; Glodde, S.; Homeier, T.; et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? Int. J. Med. Microbiol. 2007, 297, 163–176. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.; Clabots, C.R.; Kuskowski, M.A.; Roberts, E.; DebRoy, C. Virulence genotypes and phylogenetic background of Escherichia coli serogroup O6 isolates from humans, dogs, and cats. J. Clin. Microbiol. 2008, 46, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Antao, E.M.; Diehl, I.; Philipp, H.C.; Wieler, L.H. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl. Environ. Microbiol. 2009, 75, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Gao, S.; Huan, H.; Xu, X.; Zhu, X.; Yang, W.; Gao, Q.; Liu, X. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 2009, 155, 1634–1644. [Google Scholar] [CrossRef] [Green Version]
- Thomrongsuwannakij, T.; Blackall, P.J.; Djordjevic, S.P.; Cummins, M.L.; Chansiripornchai, N. A comparison of virulence genes, antimicrobial resistance profiles and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia. Avian Pathol. 2020, 49, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Tivendale, K.A.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.W.; Wannemuehler, Y.; Nolan, L.K. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manges, A.R.; Johnson, J.R. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antao, E.M.; Glodde, S.; Li, G.; Sharifi, R.; Homeier, T.; Laturnus, C.; Diehl, I.; Bethe, A.; Philipp, H.C.; Preisinger, R.; et al. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb. Pathog. 2008, 45, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Maluta, R.P.; Logue, C.M.; Casas, M.R.; Meng, T.; Guastalli, E.A.; Rojas, T.C.; Montelli, A.C.; Sadatsune, T.; de Carvalho Ramos, M.; Nolan, L.K.; et al. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS ONE 2014, 9, e105016. [Google Scholar] [CrossRef]
- Kohler, C.D.; Dobrindt, U. What defines extraintestinal pathogenic Escherichia coli? Int. J. Med. Microbiol. 2011, 301, 642–647. [Google Scholar] [CrossRef]
- Bauchart, P.; Germon, P.; Bree, A.; Oswald, E.; Hacker, J.; Dobrindt, U. Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli search for factors involved in host specificity or zoonotic potential. Microb. Pathog. 2010, 49, 105–115. [Google Scholar] [CrossRef]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Nolan, L.K. Characterizing the APEC pathotype. Vet. Res. 2005, 36, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Guabiraba, R.; Schouler, C. Avian colibacillosis: Still many black holes. FEMS Microbiol. Lett. 2015, 362, 23–30. [Google Scholar] [CrossRef]
- Vandekerchove, D.; De Herdt, P.; Laevens, H.; Pasmans, F. Risk factors associated with colibacillosis outbreaks in caged layer flocks. Avian Pathol. 2004, 33, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Janssen, T.; Kiessling, S.; Philipp, H.C.; Wieler, L.H. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis. 2005, 49, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Fakhr, M.K.; Nolan, L.K. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 2005, 151, 2097–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Circella, E.; Pennelli, D.; Tagliabue, S.; Camarda, A. Virulence-associated genes in avian pathogenic Escherichia coli from laying hens in Apulia, southern Italy. Br. Poult. Sci. 2012, 53, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Kemmett, K.; Humphrey, T.; Rushton, S.; Close, A.; Wigley, P.; Williams, N.J. A longitudinal study simultaneously exploring the carriage of APEC virulence associated genes and the molecular epidemiology of faecal and systemic E. coli in commercial broiler chickens. PLoS ONE 2013, 8, e67749. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.J.; Wannemuehler, Y.; Doetkott, C.; Johnson, S.J.; Rosenberger, S.C.; Nolan, L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 2008, 46, 3987–3996. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R.K.; Aquino, I.; Ferreira, A.L.; Vidotto, M. ECOR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in Southern Brazil. Foodborne Pathog. Dis. 2011, 8, 631–634. [Google Scholar] [CrossRef]
- Hussein, A.H.; Ghanem, I.A.; Eid, A.A.; Ali, M.A.; Sherwood, J.S.; Li, G.; Nolan, L.K.; Logue, C.M. Molecular and phenotypic characterization of Escherichia coli isolated from broiler chicken flocks in Egypt. Avian Dis. 2013, 57, 602–611. [Google Scholar] [CrossRef]
- Dissanayake, D.R.; Octavia, S.; Lan, R. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Vet. Microbiol. 2014, 168, 403–412. [Google Scholar] [CrossRef]
- De Oliveira, A.L.; Rocha, D.A.; Finkler, F.; de Moraes, L.B.; Barbieri, N.L.; Pavanelo, D.B.; Winkler, C.; Grassotti, T.T.; de Brito, K.C.; de Brito, B.G.; et al. Prevalence of ColV plasmid-linked genes and in vivo pathogenicity of avian strains of Escherichia coli. Foodborne Pathog. Dis. 2015, 12, 679–685. [Google Scholar] [CrossRef]
- McPeake, S.J.; Smyth, J.A.; Ball, H.J. Characterisation of avian pathogenic Escherichia coli (APEC) associated with colisepticaemia compared to faecal isolates from healthy birds. Vet. Microbiol. 2005, 110, 245–253. [Google Scholar] [CrossRef]
- Schouler, C.; Schaeffer, B.; Bree, A.; Mora, A.; Dahbi, G.; Biet, F.; Oswald, E.; Mainil, J.; Blanco, J.; Moulin-Schouleur, M. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J. Clin. Microbiol. 2012, 50, 1673–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.-G.; Cha, S.-Y.; Choi, E.-J.; Kim, B.; Song, H.-J.; Jang, H.-K. Epidemiological prevalence of avian pathogenic Escherichia coli differentiated by multiplex PCR from commercial chickens and hatchery in Korea. J. Bacteriol. Virol. 2008, 38, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S.M.L. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitner, G.; Heller, E.D. Colonization of Escherichia coli in young turkeys and chickens. Avian Dis. 1992, 36, 211–220. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, P.B. Why some get sick. J. Appl. Poult. Res. 1997, 6, 453–460. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Cryer, T.L.; Lafi, S.Q.; Basha, E.-A.; Good, L.; Tarazi, Y.H. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. Vet. Res. BMC 2019, 15, 159. [Google Scholar] [CrossRef]
- Wohlsen, T.D. Comparative evaluation of chromogenic agar CM1046 and mFC agar for detection of E. coli and thermotolerant coliform bacteria from water samples. Lett. Appl. Microbiol. 2011, 53, 155–160. [Google Scholar] [CrossRef]
- Abraham, S.; Chin, J.; Brouwers, H.J.; Zhang, R.; Chapman, T.A. Molecular serogrouping of porcine enterotoxigenic Escherichia coli from Australia. J. Microbiol. Methods 2012, 88, 73–76. [Google Scholar] [CrossRef]
- Chen, J.; Griffiths, M.W. PCR differentiation of Escherichia coli from other gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett. Appl. Microbiol. 1998, 27, 369–371. [Google Scholar] [CrossRef]
- Fagan, P.K.; Hornitzky, M.A.; Bettelheim, K.A.; Djordjevic, S.P. Detection of shiga-like toxin (stx(1) and stx(2)), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Appl. Environ. Microbiol. 1999, 65, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, J.N.K.; Scott, A.J. The analysis of categorical data from complex surveys: Chi-squared tests for goodness of t and independence in two-way tables. J. Am. Stat. Assoc. 1981, 76, 221–230. [Google Scholar] [CrossRef]
- Rao, J.; Scott, A. On simple adjustments to chi-square tests with sample survey data. Ann. Stat. 1987, 15, 385–397. [Google Scholar] [CrossRef]
- Skov, T.; Deddens, J.; Petersen, M.; Endahl, L. Prevalence proportion ratios: Estimation and hypothesis testing. Int. J. Epidemiol. 1998, 27, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Hirakata, V. Alternatives for logical regression in cross-sectional studies: An empirical comparison of models that directly estimate tthe prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyerberg, E.W.; Eijkemans, M.J.; Harrell, F.E., Jr.; Habbema, J.D.F. Prognostic modeling with logistic regression analysis: In search of a sensible strategy in small data sets. Med. Decis. Mak. 2001, 21, 45–56. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Dohoo, I.; Martin, S.W.; Stryhn, H. Veterinary Epidemiologic Research/Ian Dohoo, Wayne Martin, Henrik Stryhn, 2nd ed.; Charlotte, P.E.I., Ed.; VER, Inc.: Charlottetown, PE, Canada, 2009. [Google Scholar]
- Hosmer, J.M.; Steiner, A.A.; Lopes, L.B. Lamellar liquid crystalline phases for cutaneous delivery of paclitaxel: Impact of the monoglyceride. Pharm. Res. 2013, 30, 694–706. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Jin, Z.; Tan, H.; Xu, B. Risk factors for infectious diseases in backyard poultry farms in the Poyang Lake area, China. PLoS ONE 2013, 8, e67366. [Google Scholar] [CrossRef]
- Mbanga, J.; Nyararai, Y.O. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. Onderstepoort J. Vet. Res. 2015, 82, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Hasan, B.; Faruque, R.; Drobni, M.; Waldenstrom, J.; Sadique, A.; Ahmed, K.U.; Islam, Z.; Parvez, M.B.H.; Olsen, B.; Alam, M. High prevalence of antibiotic resistance in pathogenic Escherichia coli from large- and small-scale poultry farms in Bangladesh. Avian Dis. 2011, 55, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Vandekerchove, D.; Herdt, P.D.; Laevens, H.; Butaye, P.; Meulemans, G.; Pasmans, F. Significance of interactions between Escherichia coli and respiratory pathogens in layer hen flocks suffering from colibacillosis-associated mortality. Avian Pathol. 2004, 33, 298–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shobrak, M.Y.; Abo-Amer, A.E. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2014, 45, 1199–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, L.D. Drinking water as a risk factor to poultry health. Rev. Bras. Ciência Avícola 2004, 6, 191–199. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Jack, O.K. Two outbreaks of colibacillosis in commercial caged layers. Avian Dis. 1996, 40, 742–746. [Google Scholar] [CrossRef]
- Coleman, B.L.; Salvadori, M.I.; McGeer, A.J.; Sibley, K.A.; Neumann, N.F.; Bondy, S.J.; Gutmanis, I.A.; McEwen, S.A.; Lavoie, M.; Strong, D.; et al. The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol. Infect. 2012, 140, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Whiley, H.; van den Akker, B.; Giglio, S.; Bentham, R. The role of environmental reservoirs in human campylobacteriosis. Int. J. Environ. Res. Public Health 2013, 10, 5886–5907. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, J.; Letellier, A.; Quessy, S.; Normand, V.; Boulianne, M. Prevalence and risk factors for Salmonella spp. and Campylobacter spp. caecal colonization in broiler chicken and turkey flocks slaughtered in Quebec, Canada. Prev. Vet. Med. 2007, 81, 250–264. [Google Scholar] [CrossRef]
- El Houadfi, M.; Fellahi, S.; Nassik, S.; Guerin, J.L.; Ducatez, M.F. First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco. Virol. J. 2016, 13, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Nather, G.; Alter, T.; Martin, A.; Ellerbroek, L. Analysis of risk factors for Campylobacter species infection in broiler flocks. Poult. Sci. 2009, 88, 1299–1305. [Google Scholar] [CrossRef]
- Vandeplas, S.; Dubois Dauphin, R.; Beckers, Y.; Thonart, P.; Thewis, A. Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. J. Food Prot. 2010, 73, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.; Reichardt, J.; Denis, M.; Cardinale, E. Prevalence and risk factors for Campylobacter spp. in chicken broiler flocks in Reunion Island (Indian Ocean). Prev. Vet. Med. 2011, 100, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.; Elvers, K.; Dopfer, D.; Hansson, I.; Jones, P.; James, S.; Gittins, J.; Stern, N.; Davies, R.; Connerton, I. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl. Environ. Microbiol. 2011, 77, 8605–8614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, P.; Blanc, V.; Mora, A.; Dahbi, G.; Blanco, J.E.; Blanco, M.; Lopez, C.; Andreu, A.; Navarro, F.; Alonso, M.P.; et al. Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl. Environ. Microbiol. 2010, 76, 2799–2805. [Google Scholar] [CrossRef] [Green Version]
- Anza, I.; Vidal, D.; Laguna, C.; Diaz-Sanchez, S.; Sanchez, S.; Chicote, A.; Florin, M.; Mateo, R. Eutrophication and bacterial pathogens as risk factors for avian botulism outbreaks in wetlands receiving effluents from urban wastewater treatment plants. Appl. Environ. Microbiol. 2014, 80, 4251–4259. [Google Scholar] [CrossRef] [Green Version]
- Sola-Gines, M.; Cameron-Veas, K.; Badiola, I.; Dolz, R.; Majo, N.; Dahbi, G.; Viso, S.; Mora, A.; Blanco, J.; Piedra-Carrasco, N.; et al. Diversity of multi-drug resistant avian pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PLoS ONE 2015, 10, e0143191. [Google Scholar] [CrossRef] [Green Version]
- Belanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. Fems Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Lim, Y.S.; Kang, Y.H. Comparison of Antimicrobial Resistance in Escherichia coli Strains Isolated From Healthy Poultry and Swine Farm Workers Using Antibiotics in Korea. Osong Public Health Res. Perspect. 2012, 3, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Lynne, A.M.; Kariyawasam, S.; Wannemuehler, Y.; Johnson, T.J.; Johnson, S.J.; Sinha, A.S.; Lynne, D.K.; Moon, H.W.; Jordan, D.M.; Logue, C.M.; et al. Recombinant Iss as a potential vaccine for avian colibacillosis. Avian Dis. 2012, 56, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.Z.; Jiang, J.; Pan, Z.; Hu, L.; Wang, S.; Wang, H.; Leung, F.C.; Dai, J.; Fan, H. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140) shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains. PLoS ONE 2014, 9, e112048. [Google Scholar] [CrossRef] [Green Version]
- East, I.J. Adoption of biosecurity practices in the Australian poultry industries. Aust. Vet. J. 2007, 85, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Keawcharoen, J.; van Riel, D.; van Amerongen, G.; Bestebroer, T.; Beyer, W.E.; van Lavieren, R.; Osterhaus, A.D.; Fouchier, R.A.; Kuiken, T. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 2008, 14, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Kwon, Y.K.; Tamang, M.D.; Jang, H.K.; Jeong, O.M.; Lee, H.S.; Kang, M.S. Plasmid-mediated quinolone resistance in isolates from wild birds and chickens in South Korea. Microb. Drug Resist. 2016, 22, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Darrell, W.T. Integrated farm management to prevent Salmonella Enteritidis contamination of eggs. J. Appl. Poult. Res. 2014, 23, 353–365. [Google Scholar] [CrossRef]
Virulence Genes | Observed Agreement % | Expected Agreement % | Kappa | p-Value |
---|---|---|---|---|
iutA | 97.5 | 88.25 | 0.787 | <0.001 |
Iss | 97.5 | 69.5 | 0.918 | <0.001 |
hlyF | 92.5 | 79.75 | 0.629 | <0.001 |
ompT | 92.5 | 83.75 | 0.539 | <0.001 |
iroN | 97.5 | 72.75 | 0.908 | <0.001 |
Virulence Gene | Number of E. coli Isolates with VG. | Number of APEC with VG. | Number of AFEC with VG. | Prevalence of VG in APEC Positive Chickens (95% Cl) | Prevalence of VG in APEC Negative Chickens (95% Cl) | p-Value |
---|---|---|---|---|---|---|
iss | 269 | 250 | 19 | 99.2 (0.97, 0.99) | 12.8 (7.52, 20.1) | <0.001 |
iroN | 259 | 248 | 11 | 98.4 (0.95, 0.99) | 7.4 (3.52, 14.3) | <0.001 |
ompT | 322 | 252 | 70 | 100 | 47.3 (0.34, 0.58) | <0.001 |
hlyF | 318 | 251 | 67 | 99.6 (0.97, 0.99) | 45.3 (31.4, 57.6) | <0.001 |
iutA | 351 | 237 | 114 | 94.1 (0.90, 0.97) | 77.0 (63.9, 84.5) | <0.001 |
Risk Factor Group | Number (%) | APEC Prevalence | OR (95% CI) | p-Value | Wald Test p-Value |
---|---|---|---|---|---|
Separate age groups of birds housed in a farm at the same time | |||||
No | 10 (25) | 0.62 | Reference | ||
Yes | 30 (75) | 0.46 | 0.52 (0.32–0.82) | 0.005 | |
Drinking water treatment | 0.01 | ||||
None | 10 (25) | 0.53 | Reference | ||
Chlorine | 28 (70) | 0.51 | 0.94 (0.44–1.99) | 0.87 | |
Chlorine and automatic water filtration | 2 (5) | 0.10 | 0.09 (0.05–0.19) | 0.01 | |
Number of days per week external (casual) farmworkers were present on the farm | 0.01 | ||||
None | 16 (40) | 0.59 | Reference | ||
Category 1 ≤ 5 days | 9 (22.5) | 0.43 | 0.52 (0.31–0.88) | 0.02 | |
Category 2 > 5 days | 15 (37.5) | 0.43 | 0.52 (0.33–0.82) | 0.01 | |
Use of protective overalls by farmworkers | |||||
Never | 39 (97.5) | 0.50 | Reference | ||
Always | 1 (2.5) | 0.40 | 0.67 (0.48–0.93) | 0.02 |
Risk Factors | Number of Farms (%) | APEC Prevalence | OR (95% CI) | p-Value | Wald Test p-Value |
---|---|---|---|---|---|
The usage of water well as a source of drinking water | |||||
No | 37 (92.5) | 0.48 | Reference | ||
Yes | 3 (7.5) | 0.66 | 1.81 (1.19, 2.74) | 0.005 | |
The animal species found outside the shed | |||||
None | 39 (97.5) | 0.49 | Reference | ||
Horses | 1 (2.5) | 0.89 | 9.47 (6.88, 13.0) | 0.03 | |
Availability of a shower facility on the farm | |||||
Yes | 7 (17.5) | 0.37 | Reference | ||
No | 33 (82.5) | 0.52 | 1.86 (1.09, 3.17) | <0.001 | |
Frequency of water line disinfection after each flock | |||||
Always | 21 (52.5) | 0.43 | Reference | ||
Often | 19 (47.5) | 0.57 | 1.72 (1.16, 2.56) | 0.007 | |
The mortality variations between the sheds within the last 12 months | |||||
No | 9 (22.5) | 0.39 | Reference | ||
Yes | 31 (77.5) | 0.53 | 1.77 (0.88, 3.55) | 0.10 | |
Presence of wild birds within 50 m of the meat shed(s) | |||||
No | 17 (42.5) | 0.49 | Reference | ||
Yes | 23 (57.5) | 0.51 | 1.15 (0.63, 1.45) | 0.11 | |
Number of rats outside the shed within 50 m | |||||
None | 8 (20) | 0.33 | Reference | 0.01 | |
Category 1 ≤ 5 | 6 (15) | 0.46 | 1.27 (0.85, 1.91) | 0.24 | |
Category 2 > 5 | 26 (65) | 0.56 | 3.39 (2.26, 5.10) | 0.01 | |
Distance between the car park and the shed | |||||
Category 1 ≤ 20 m | 23 (57.5) | 0.44 | Reference | 0.007 | |
Category 2 > 20 m | 17 (42.5) | 0.58 | 1.73 (1.16, 2.59) |
Risk Factors | Number of Farms (%) | APEC Prevalence | OR (95% CI) | p-Value | Wald Test p-Value |
---|---|---|---|---|---|
The usage of a water well as a source of drinking water | |||||
No | 37 (92.5) | 0.48 | |||
Yes | 3 (7.5) | 0.66 | 6.20 (2.32, 16.5) | <0.001 | |
Drinking water treatment | 0.01 | ||||
None | 10 (25) | 0.53 | |||
Chlorine only | 28 (70) | 0.51 | 0.77 (0.46, 1.26) | 0.317 | |
Chlorine and automatic water filtration | 2 (5) | 0.10 | 0.07 (0.02, 0.34) | 0.001 | |
Distance between the car park and the shed | |||||
Category 1 ≤ 20 m | 23 (57.50) | 0.44 | |||
Category 2 > 20 m | 17 (42.5) | 0.58 | 2.16 (1.38, 3.38) | 0.001 | |
Availability of a shower facility on the farm | |||||
Yes | 7 (17.5) | 0.37 | |||
No | 33 (82.5) | 0.52 | 3.59 (1.75, 7.11) | <0.001 | |
Frequency of water line disinfection after each flock | |||||
Always | 21 (52.5) | 0.43 | |||
Often | 19 (47.5) | 0.57 | 2.21 (1.41, 3.47) | 0.001 | |
Presence of wild birds within 50 m of the broiler shed(s) | |||||
No | 17 (42.5) | 0.49 | |||
Yes | 23 (57.5) | 0.51 | 2.28 (1.39, 3.72) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awawdeh, L.; Forrest, R.; Turni, C.; Cobbold, R.; Henning, J.; Gibson, J. Risk Factors Associated with the Carriage of Pathogenic Escherichia coli in Healthy Commercial Meat Chickens in Queensland, Australia †. Poultry 2022, 1, 94-110. https://doi.org/10.3390/poultry1020009
Awawdeh L, Forrest R, Turni C, Cobbold R, Henning J, Gibson J. Risk Factors Associated with the Carriage of Pathogenic Escherichia coli in Healthy Commercial Meat Chickens in Queensland, Australia †. Poultry. 2022; 1(2):94-110. https://doi.org/10.3390/poultry1020009
Chicago/Turabian StyleAwawdeh, Leena, Rachel Forrest, Conny Turni, Rowland Cobbold, Joerg Henning, and Justine Gibson. 2022. "Risk Factors Associated with the Carriage of Pathogenic Escherichia coli in Healthy Commercial Meat Chickens in Queensland, Australia †" Poultry 1, no. 2: 94-110. https://doi.org/10.3390/poultry1020009
APA StyleAwawdeh, L., Forrest, R., Turni, C., Cobbold, R., Henning, J., & Gibson, J. (2022). Risk Factors Associated with the Carriage of Pathogenic Escherichia coli in Healthy Commercial Meat Chickens in Queensland, Australia †. Poultry, 1(2), 94-110. https://doi.org/10.3390/poultry1020009