-
A High-Affinity Monoclonal Antibody Against the Pancreatic Ductal Adenocarcinoma Target, Anterior Gradient-2 (AGR2/PDIA17)
-
Metabolic Engineering of Glycofusion Bispecific Antibodies for α-Dystroglycanopathies
-
Limited Biomarker Potential for IgG Autoantibodies Reactive to Linear Epitopes in Systemic Lupus Erythematosus or Spondyloarthropathy
-
Anti-MET Antibody Therapies in Non-Small-Cell Lung Cancer: Current Progress and Future Directions
Journal Description
Antibodies
Antibodies
is an international, peer-reviewed, open access journal on immunoglobulins, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubMed, PMC, Embase, CAPlus / SciFinder, and other databases.
- Journal Rank: CiteScore - Q2 (Drug Discovery)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.8 days after submission; acceptance to publication is undertaken in 4.9 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.0 (2023);
5-Year Impact Factor:
4.7 (2023)
Latest Articles
Is There a Diagnostic and Prognostic Role for Anti-Nephrin Autoantibodies in Diabetic Nephropathy?
Antibodies 2025, 14(1), 25; https://doi.org/10.3390/antib14010025 - 12 Mar 2025
Abstract
►
Show Figures
Diabetic nephropathy (DN) is one of the key causes of end-stage kidney disease worldwide, especially in developed countries. The classic pathogenic development of DN is characterized by microalbuminuria which would progress to nephrotic-range proteinuria and loss of kidney function. The degree of albuminuria
[...] Read more.
Diabetic nephropathy (DN) is one of the key causes of end-stage kidney disease worldwide, especially in developed countries. The classic pathogenic development of DN is characterized by microalbuminuria which would progress to nephrotic-range proteinuria and loss of kidney function. The degree of albuminuria is considered an independent risk factor for all-cause mortality in patients with DN. It is now well established that albuminuria stems from disruptions in podocyte structure and function. Podocytes play a major role in the glomerular filtration barrier. The nephrin protein has been identified as a core component of the slit diaphragm in podocytes, and as such, the downregulation of nephrin expression has been described well in various proteinuric glomerulopathies, including DN. Previous studies have shown that the presence of urinary nephrin potentially signifies an early marker of podocyte injury in DN. More recently, there have been increasing bodies of evidence which suggest that circulating autoantibodies targeting nephrin contributes to the pathogenesis of podocytopathies. However, the functional significance of these circulating autoantibodies in patients with DN is not well understood. In this review, we aim to evaluate the significance of nephrin dysregulation in the pathogenesis of DN based on the current available literature and provide an overview on the application of circulating anti-nephrin autoantibodies in relation to its diagnostic as well as prognostic role in podocytopathies, including DN.
Full article
Open AccessReview
Anti-ADAMTS13 Autoantibodies in Immune-Mediated Thrombotic Thrombocytopenic Purpura
by
Michael R. Snyder and Robert W. Maitta
Antibodies 2025, 14(1), 24; https://doi.org/10.3390/antib14010024 - 10 Mar 2025
Abstract
►▼
Show Figures
Autoantibodies to ADAMTS13 are at the center of pathology of the immune-mediated thrombotic thrombocytopenic purpura. These autoantibodies can be either inhibitory (enzymatic function) or non-inhibitory, resulting in protein depletion. Under normal physiologic conditions, antibodies are generated in response to foreign antigens, which can
[...] Read more.
Autoantibodies to ADAMTS13 are at the center of pathology of the immune-mediated thrombotic thrombocytopenic purpura. These autoantibodies can be either inhibitory (enzymatic function) or non-inhibitory, resulting in protein depletion. Under normal physiologic conditions, antibodies are generated in response to foreign antigens, which can include infectious agents; however, these antibodies may at times cross-react with self-epitopes. This is one of the possible mechanisms mediating formation of anti-ADAMTS13 autoantibodies. The process known as “antigenic mimicry” may be responsible for the development of these autoantibodies that recognize and bind cryptic epitopes in ADAMTS13, disrupting its enzymatic function over ultra large von Willebrand factor multimers, forming the seeds for platelet activation and microthrombi formation. In particular, specific amino acid sequences in ADAMTS13 may lead to conformational structures recognized by autoantibodies. Generation of these antibodies may occur more frequently among patients with a genetic predisposition. Conformational changes in ADAMTS13 between open and closed states can also constitute the critical change driving either interactions with autoantibodies or their generation. Nowadays, there is a growing understanding of the role that autoantibodies play in ADAMTS13 pathology. This knowledge, especially of functional qualitative differences among antibodies and the ADAMTS13 sequence specificity of such antibodies, may make possible the development of targeted therapeutic agents to treat the disease. This review aims to present what is known of autoantibodies against ADAMTS13 and how their structure and function result in disease.
Full article

Figure 1
Open AccessArticle
The Use of Heterologous Antigens for Biopanning Enables the Selection of Broadly Neutralizing Nanobodies Against SARS-CoV-2
by
Vazirbek S. Aripov, Anna V. Zaykovskaya, Ludmila V. Mechetina, Alexander M. Najakshin, Alexander A. Bondar, Sergey G. Arkhipov, Egor A. Mustaev, Margarita G. Ilyina, Sophia S. Borisevich, Alexander A. Ilyichev, Valentina S. Nesmeyanova, Anastasia A. Isaeva, Ekaterina A. Volosnikova, Dmitry N. Shcherbakov and Natalia V. Volkova
Antibodies 2025, 14(1), 23; https://doi.org/10.3390/antib14010023 - 7 Mar 2025
Abstract
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are
[...] Read more.
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are unable to neutralize new variants. Antibodies that neutralize a broad range of SARS-CoV-2 variants are of significant value in combating both current and potential future variants, making the identification and development of such antibodies an ongoing critical goal. This study discusses the strategy of using heterologous antigens in biopanning rounds. Methods: After four rounds of biopanning, nanobody variants were selected from a phage display library. Immunochemical methods were used to evaluate their specificity to the S protein of various SARS-CoV-2 variants, as well as to determine their competitive ability against ACE2. Viral neutralization activity was analyzed. A three-dimensional model of nanobody interaction with RBD was constructed. Results: Four nanobodies were obtained that specifically bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and exhibit neutralizing activity against various SARS-CoV-2 strains. Conclusions: The study demonstrates that performing several rounds of biopanning with heterologous antigens allows the selection of nanobodies with a broad reactivity spectrum. However, the fourth round of biopanning does not lead to the identification of nanobodies with improved characteristics.
Full article
(This article belongs to the Section Antibody Discovery and Engineering)
►▼
Show Figures

Graphical abstract
Open AccessReview
Treatment of Ebola Virus Disease: From Serotherapy to the Use of Monoclonal Antibodies
by
Dmitriy N. Shcherbakov, Anastasiya A. Isaeva and Egor A. Mustaev
Antibodies 2025, 14(1), 22; https://doi.org/10.3390/antib14010022 - 5 Mar 2025
Abstract
Ebola virus disease (EVD) is an acute illness with a high-case fatality rate (CFR) caused by an RNA virus belonging to the Filoviridae family. Over the past 50 years, regular EVD outbreaks have been reported. The West African EVD outbreak of 2013–2016 proved
[...] Read more.
Ebola virus disease (EVD) is an acute illness with a high-case fatality rate (CFR) caused by an RNA virus belonging to the Filoviridae family. Over the past 50 years, regular EVD outbreaks have been reported. The West African EVD outbreak of 2013–2016 proved to be significantly more widespread and complex than previous ones, resulting in approximately 11,000 deaths. A coordinated international effort was required to bring the outbreak under control. One of the main challenges faced by clinicians and researchers combating EVD was the absence of vaccines and preventive treatments. Only recently have efforts led to the development of effective therapeutic options. Among these, monoclonal antibody-based drugs have emerged as the most promising agents for the urgent treatment of EVD. This article aims to review the key milestones in the development of antibody-based therapies for EVD, tracing the journey from the use of convalescent serum to the creation of effective monoclonal antibody-based drugs and their combinations.
Full article
(This article belongs to the Section Antibody-Based Therapeutics)
►▼
Show Figures

Figure 1
Open AccessCommunication
Development of Fully Human Antibodies Targeting SIRPα and PLA2G7 for Cancer Therapy
by
Seungmin Shin, Du-San Baek, John W. Mellors, Dimiter S. Dimitrov and Wei Li
Antibodies 2025, 14(1), 21; https://doi.org/10.3390/antib14010021 - 3 Mar 2025
Abstract
Background: Macrophages play an important role in eliminating diseased and damaged cells through programmed cell death. Signal regulatory protein alpha (SIRPα) is a crucial immune checkpoint primarily expressed on myeloid cells and macrophages. It initiates a ‘do not eat me’ signal when engaged
[...] Read more.
Background: Macrophages play an important role in eliminating diseased and damaged cells through programmed cell death. Signal regulatory protein alpha (SIRPα) is a crucial immune checkpoint primarily expressed on myeloid cells and macrophages. It initiates a ‘do not eat me’ signal when engaged with CD47, which is typically expressed at elevated levels on multiple solid tumors. The phospholipase A2 Group 7 (PLA2G7), which is mainly secreted by macrophages, interacts with oxidized low-density lipoprotein (oxLDL) and associates with several vascular diseases and cancers. Methods: To identify potent fully human monoclonal antibodies (mAbs) against human SIRPα and PLA2G7, we conducted bio-panning of phage antibody libraries. Results: We isolated one human Fab (1B3) and VH (1A3) for SIRPα, as well as one human Fab (1H8) and one VH (1A9) for PLA2G7; the 1B3 Fab and 1A3 VH are competitively bound to SIRPα, interfering with CD47 binding. The 1B3 IgG and 1A3 VH-Fc augmented macrophage-mediated phagocytic activity when combined with the anti-EGFR antibody, cetuximab. The anti-PLA2G7 antibodies exhibited high specificity for the PLA2G7 antigen and effectively blocked the PLA2G7 enzymatic activity with half-maximal inhibitory concentrations (IC50) in the single-digit nanomolar range. Additionally, 1H8 IgG and its derivative bispecific antibody exhibited the ability to block PLA2G7-mediated tumor cell migration. Conclusions: Our anti-SIRPα mAbs are expected to serve as potent and fully human immune checkpoint inhibitors of SIRPα, enhancing the antitumor responses of SIRPα-positive immune cells. Moreover, our anti-PLA2G7 mAbs represent promising fully human PLA2G7 enzymatic blockade antibodies with the potential to enhance both anti-tumor and anti-aging responses. Anti-SIRPα and PLA2G7 mAbs can modulate macrophage phagocytic activity and inflammatory responses against tumors.
Full article
(This article belongs to the Section Antibody-Based Therapeutics)
►▼
Show Figures

Figure 1
Open AccessReview
Monoclonal Antibodies in Light of Mpox Outbreak: Current Research, Therapeutic Targets, and Animal Models
by
Vladimir N. Nikitin, Iuliia A. Merkuleva and Dmitriy N. Shcherbakov
Antibodies 2025, 14(1), 20; https://doi.org/10.3390/antib14010020 - 26 Feb 2025
Abstract
The rapid rise in monkeypox virus infections among humans from 2022 to 2024 has captured the attention of the global healthcare community. In light of the lack of mandatory vaccination and limited data on next-generation vaccines for monkeypox prevention, the urgent development of
[...] Read more.
The rapid rise in monkeypox virus infections among humans from 2022 to 2024 has captured the attention of the global healthcare community. In light of the lack of mandatory vaccination and limited data on next-generation vaccines for monkeypox prevention, the urgent development of therapeutic agents has become a priority. One promising approach involves the use of neutralizing monoclonal antibodies. This review highlights significant advancements in the search for antibodies against human pathogenic orthopoxviruses, particularly focusing on their potential application against the monkeypox virus. We also analyze viral proteins that serve as targets for identifying therapeutic antibodies capable of neutralizing a wide range of viruses. Finally, we deemed it essential to address the challenges associated with selecting an animal model that can adequately reflect the infectious process of each orthopoxvirus species in humans.
Full article
(This article belongs to the Special Issue Therapeutic Antibodies: New Trends in Discovery, Developability and Characterization)
►▼
Show Figures

Figure 1
Open AccessArticle
IgE-Crosslinking-Induced Luciferase Expression Test as a Sensitive Indicator of Anisakis Allergy
by
Haruyo Akiyama, Masashi Niwa, Chisato Kurisaka, Yuto Hamada, Yuma Fukutomi and Reiko Teshima
Antibodies 2025, 14(1), 19; https://doi.org/10.3390/antib14010019 - 25 Feb 2025
Abstract
Background: Anisakis allergy has been increasing, and the diagnosis of it is based on specific serum IgE detection. Recently, the IgE-crosslinking-induced luciferase expression (EXiLE) test has been proposed as convenient tool for detecting functionally specific IgE antibodies. Here, we investigated if the
[...] Read more.
Background: Anisakis allergy has been increasing, and the diagnosis of it is based on specific serum IgE detection. Recently, the IgE-crosslinking-induced luciferase expression (EXiLE) test has been proposed as convenient tool for detecting functionally specific IgE antibodies. Here, we investigated if the EXiLE test is a useful tool in the diagnosis of Anisakis allergy. Methods: HuRa-40 cells were sensitized using six serum types from three patients with Anisakis allergy at the time of the initial test and after 6–12 months. Thereafter, various concentrations of Anisakis worm protein (AWP) were reacted to measure the degree of EXiLE. The degree of EXiLE was compared with Anisakis-specific IgE antibody levels measured by the CAP-FEIA method, and the IgE-antibody-binding protein profile was examined using IgE immunoblotting. Results: The results showed a good correlation between the CAP-FEIA values and EXiLE obtained with 5 μg/mL of AWP (R = 0.91, p < 0.01), a strong response on IgE immunoblotting in the region containing proteins weighing ≥40,000 Da. In addition, after the onset of Anisakis allergy, the degree of serum EXiLE decreased in two patients whose Anisakis-specific IgE antibody levels decreased over time but increased in one patient whose specific IgE antibodies increased after repeated antigen sensitization. Conclusions: Based on these data, the AWP-induced EXiLE test seemed to be useful and convenient for the diagnosis of Anisakis allergy, supplementing specific IgE determinants. After allergy onset, the use of this method to observe changes in specific IgE levels over time may be important for predicting the risk of recurrence.
Full article
(This article belongs to the Section Antibody-Based Diagnostics)
►▼
Show Figures

Figure 1
Open AccessReview
Avian Antibodies as Potential Therapeutic Tools
by
Mats Eriksson and Anders Larsson
Antibodies 2025, 14(1), 18; https://doi.org/10.3390/antib14010018 - 14 Feb 2025
Abstract
Immunoglobulin Y (IgY) is the primary antibody found in the eggs of chicken (Gallus domesticus), allowing for large-scale antibody production with high titers, making them cost-effective antibody producers. IgY serves as a valuable alternative to mammalian antibodies typically used in immunodiagnostics
[...] Read more.
Immunoglobulin Y (IgY) is the primary antibody found in the eggs of chicken (Gallus domesticus), allowing for large-scale antibody production with high titers, making them cost-effective antibody producers. IgY serves as a valuable alternative to mammalian antibodies typically used in immunodiagnostics and immunotherapy. Compared to mammalian antibodies, IgY offers several biochemical advantages, and its straightforward purification from egg yolk eliminates the need for invasive procedures like blood collection, reducing stress in animals. Due to the evolutionary differences between birds and mammals, chicken antibodies can bind to a broader range of epitopes on mammalian proteins than their mammalian counterparts. Studies have shown that chicken antibodies bind 3–5 times more effectively to rabbit IgG than swine antibodies, enhancing the signal in immunological assays. Additionally, IgY does not interact with rheumatoid factors or human anti-mouse IgG antibodies (HAMA), helping to minimize interference from these factors. IgY obtained from egg yolk of hens immunized against Pseudomonas aeruginosa has been used in patients suffering from cystic fibrosis and chronic pulmonary colonization with this bacterium. Furthermore, IgY has been used to counteract streptococcus mutans in the oral cavity and for the treatment of enteral infections in both humans and animals. However, the use of avian antibodies is limited to pulmonary, enteral, or topical application and should, due to immunogenicity, not be used for systemic administration. Thus, IgY expands the range of strategies available for combating pathogens in medicine, as a promising candidate both as an alternative to antibiotics and as a valuable tool in research and diagnostics.
Full article
(This article belongs to the Special Issue Therapeutic Antibodies: New Trends in Discovery, Developability and Characterization)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of Antibody Pharmacokinetics in Male Reproductive System and Its Characterization Using a Translational PBPK Model
by
Sree Ojili and Dhaval K. Shah
Antibodies 2025, 14(1), 17; https://doi.org/10.3390/antib14010017 - 13 Feb 2025
Abstract
Objectives: To investigate the pharmacokinetics (PK) of the monoclonal antibody (mAb) in male reproductive tissues and develop a translational physiologically based pharmacokinetic (PBPK) model to characterize the PK data. Method: The PK of a non-cross-reactive antibody (trastuzumab) was investigated in human FcRn-expressing male
[...] Read more.
Objectives: To investigate the pharmacokinetics (PK) of the monoclonal antibody (mAb) in male reproductive tissues and develop a translational physiologically based pharmacokinetic (PBPK) model to characterize the PK data. Method: The PK of a non-cross-reactive antibody (trastuzumab) was investigated in human FcRn-expressing male mice following a 10 mg/kg intravenous dose. The PK in plasma and male reproductive tissues (i.e., epididymis, testes, vas deferens, seminal vesicles, and prostate glands) were evaluated. The observed PK data in mice were mathematically characterized using a novel PBPK model for antibodies that contained male reproductive systems. The mouse PBPK model was scaled to rats, monkeys, and humans to predict the PK of antibodies in male reproductive organs across animal species. Results: Plasma and tissue PK data generated in mice suggest that antibody distribution in male reproductive tissues is generally lower compared to that of most of the organs. The antibody exposure in the testes was 1.70%, in the epididymis was 2.57%, in the vas deferens was 2.01%, in the seminal vesicle was 0.42%, and in the prostate gland was 0.52% of the plasma exposure. The plasma and tissue PK data were simultaneously characterized using the PBPK model, which incorporated the novel male reproductive system. All the predicted PK profiles were within two-fold of the observed data, as indicated by percentage prediction error (%PE) values. The mouse model was successfully translated to bigger animals, and the model was used to simulate the PK of antibodies in rat, monkey, and human male reproductive systems. Conclusions: The combination of the experimental data and novel PBPK model presented here provides unprecedented insights into the antibody distributions in different male reproductive tissues. The PBPK model can serve as a crucial tool for advancing the development of antibody-based therapies for treating sexually transmitted infections (STIs), cancers, and contraceptives.
Full article
(This article belongs to the Section Antibody-Based Therapeutics)
►▼
Show Figures

Figure 1
Open AccessReview
Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment
by
Hyukmin In, Minkyoung Park, Hyeonsik Lee and Kyung Ho Han
Antibodies 2025, 14(1), 16; https://doi.org/10.3390/antib14010016 - 11 Feb 2025
Abstract
Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system’s anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune
[...] Read more.
Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system’s anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune evasion and MHC downregulation, addressing critical barriers in cancer treatment. T-cell engagers (TCEs), led by bispecific T-cell engagers (BiTEs), dominate the field, with innovations such as half-life-extended BiTEs, trispecific antibodies, and checkpoint inhibitory T-cell engagers driving their application in hematologic and solid malignancies. NK cell engagers (NKCEs) and phagocyte cell engagers (PCEs) are rapidly progressing, drawing on NK cells’ innate cytotoxicity and macrophages’ phagocytic abilities to target tumors, particularly in immunosuppressive microenvironments. Since the FDA approval of Blinatumomab in 2014, ICEs have transformed the oncology landscape, with nine FDA-approved products and numerous candidates in clinical trials. Despite challenges such as toxicity, resistance, and limited efficacy in solid tumors, ongoing research into advanced platforms and combination therapies highlights the growing potential of ICEs to provide personalized, scalable, and effective cancer treatments. This review investigates the mechanisms, platforms, research trends, and clinical progress of ICEs, emphasizing their pivotal role in advancing precision immunotherapy and their promise as a cornerstone of next-generation cancer therapies.
Full article
(This article belongs to the Section Antibody-Based Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing the Influence of Selected Permeabilization Methods on Lymphocyte Single-Cell Multi-Omics
by
Shifan Ding, Na Lu and Hassan Abolhassani
Antibodies 2025, 14(1), 15; https://doi.org/10.3390/antib14010015 - 10 Feb 2025
Abstract
►▼
Show Figures
(1) Background: Single-cell multi-omics is a powerful method for the dissection and detection of complicated immunologic functions and synapses. However, most currently available technologies merge datasets of different omics from separate portions of the same sample to generate combined multi-omics. This process is
[...] Read more.
(1) Background: Single-cell multi-omics is a powerful method for the dissection and detection of complicated immunologic functions and synapses. However, most currently available technologies merge datasets of different omics from separate portions of the same sample to generate combined multi-omics. This process is a source of bias, mainly in the field of immunology on cells originating from pluripotent hematopoietic stem cells with high flexibility during maturation. (2) Methods: Although new multi-omics approaches have been developed to use the advantages of cellular and molecular barcoding and next-generation sequencing to solve this issue, one of the main current challenges is intracellular proteomics, which should be combined with other omics data with high importance for immune system studies. We designed this study to evaluate previously recommended minimal permeabilization and fixation methods on the quality and quantity of transcriptomics and proteomics data generated by the BD Rhapsody™ Single-Cell Analysis System. (3) Results: Our findings showed that high-throughput sequencing with advanced quality and read-out is required for the combination of multi-omics outcomes from a permeabilized single cell. Therefore, the HiseqX platform was selected for further analysis. The effect of immune stimulation was observed clearly as the separated clusters of helper and cytotoxic T cells using unsupervised clustering. Importantly, fixation and permeabilization did not affect the general expression profile of unstimulated cells. However, fixation and permeabilization were proved to negatively impact the detection of the whole transcriptome for single-cell assay. Nevertheless, about 60% of the transcriptomic signature of the stimulation was detected. If the measurement of combined surface and intracellular markers is required to be achieved, the modified fixation and permeabilization method is recommended because of a lower transcriptomic loss and more precise proteomic fingerprint detected. (4) Conclusions: The findings of this study support the potential possibility for integrating intracellular proteomics, which needs to be optimized and tested with newly designed oligonucleotide-tagged antibodies targeting intracellular proteins.
Full article

Figure 1
Open AccessArticle
Clinical Scaleup of Humanized AnnA1 Antibody Yielded Unexpected High Reticuloendothelial (RES) Uptake in Mice
by
Lu Lucy Xu, Satyendra Kumar Singh, Chelsea Nayback, Abdullah Metebi, Dalen Agnew, Tim Buss, Jan Schnitzer and Kurt R. Zinn
Antibodies 2025, 14(1), 14; https://doi.org/10.3390/antib14010014 - 6 Feb 2025
Abstract
►▼
Show Figures
Background/Objectives: A mouse antibody directed against truncated Annexin A1 showed high tumor retention in pre-clinical cancer models and was approved by the National Cancer Institute Experimental Therapeutics (NExT) program for humanization and large batch cGMP production for toxicology and clinical trials. In this
[...] Read more.
Background/Objectives: A mouse antibody directed against truncated Annexin A1 showed high tumor retention in pre-clinical cancer models and was approved by the National Cancer Institute Experimental Therapeutics (NExT) program for humanization and large batch cGMP production for toxicology and clinical trials. In this process, a contractor for Leidos accidentally produced a mutated version of humanized AnnA1 (hAnnA1-mut) with a single nucleotide deletion in the terminal Fc coding region that increased the translated size by eight amino acids with random alterations in the final twenty-four amino acids. We investigated the tissue distribution of hAnnA1-mut, hAnnA1, mAnnA1, and isotope-matched human IgG1 under various injection and conjugation conditions with C57BL/6, FVB, and BALB/c nude mice strains. Methods: Biodistribution studies were performed 24 h after injection of Tc-99m-HYNIC radiolabeled antibodies (purity > 98%). Non-reducing gel electrophoresis studies were conducted with IR680 labeled antibodies incubated with various mouse sera. Results: Our results showed that Tc-99m-HYNIC-hAnnA1 had low spleen and liver retention not statistically different from Tc-99m-HYNIC-IgG1 and Tc-99m-HYNIC-mAnnA1, with corresponding higher blood levels; however, Tc-99m-HYNIC-hAnnA1-mut had high levels in the spleen and liver with differences identified among the mouse strains, radiolabeling conditions, and injection routes. Histopathology showed no morphological change in the liver or spleen from any conditions. Gel electrophoresis showed an upward shift of hAnnA1-mut, consistent with the binding of blood serum protein. Conclusions: The changes in the Fc region of hAnnA1-mut led to higher liver and spleen uptake, suggesting the antibody’s recognition by the innate immune system (likely complement protein binding) and subsequent clearance. Future clinical translation using hAnnA1 and other antibodies needs to limit protein modifications that could drastically reduce blood clearance.
Full article

Graphical abstract
Open AccessArticle
Evaluation of SARS-CoV-2 Antibody Response Between Paired Fingerprick (HemaPEN®) and Venepuncture Collected Samples in Children and Adults
by
Nadia Mazarakis, Zheng Quan Toh, Jill Nguyen, Rachel A. Higgins, James Rudge, Belinda Whittle, Nicholas J. Woudberg, Justin Devine, Andrew Gooley, Florian Lapierre, Nigel W. Crawford, Shidan Tosif and Paul V. Licciardi
Antibodies 2025, 14(1), 13; https://doi.org/10.3390/antib14010013 - 5 Feb 2025
Abstract
Serological surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies is important to monitor population COVID-19 immunity. Dried blood spots (DBS) are a valuable method for serosurveys, particularly in remote settings and in children. We compared the measurement of SARS-CoV-2 spike-specific IgG
[...] Read more.
Serological surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies is important to monitor population COVID-19 immunity. Dried blood spots (DBS) are a valuable method for serosurveys, particularly in remote settings and in children. We compared the measurement of SARS-CoV-2 spike-specific IgG in paired blood samples collected using standard venepuncture (serum) and the hemaPEN® microsampling DBS device from children and adults. A total of 83 participants (10 months to 65 years of age), comprising COVID-positive and -negative participants, were recruited. Paired serum and DBS samples were assayed for SARS-CoV-2 receptor-binding domain (RBD) and Spike (S1) antibodies using an established in-house ELISA. RBD and S1 IgG concentrations of paired hemaPEN DBS eluates and serum samples were compared using a non-parametric Wilcoxon matched-pairs signed ranked test. A Pearson’s correlation was used for RBD and S1 IgG concentrations and the level of agreement between the hemaPEN DBS eluates and serum samples was assessed by Bland–Altman analysis. A total of N = 41 adults (36 COVID-positive and 5 COVID-negative), and N = 42 children (37 COVID-positive, and 5 COVID-negative) have paired serum and DBS assayed. We found moderate to strong correlations between paired hemaPEN DBS eluates and serum SARS-CoV-2 IgG antibodies for RBD (r = 0.9472, p < 0.0001) and S1 proteins (r = 0.6892, p < 0.0001). Similar results were observed in both adult and paediatric populations. No significant differences in S1-specific IgG levels were observed in hemaPEN DBS samples stored for up to 35 weeks at room temperature. Eluted hemaPEN samples showed high specificity and sensitivity (100% and 89.89%, respectively) compared with serum. The use of the microsampling hemaPEN device for DBS sample collection is a feasible approach for assessing SARS-CoV-2 antibodies for serosurveillance studies, particularly in remote settings and in children.
Full article
(This article belongs to the Section Antibody-Based Diagnostics)
►▼
Show Figures

Figure 1
Open AccessArticle
Efficient Identification of Monoclonal Antibodies Against Rift Valley Fever Virus Using High-Throughput Single Lymphocyte Transcriptomics of Immunized Mice
by
Ronit Rosenfeld, Ron Alcalay, Yfat Yahalom-Ronen, Sharon Melamed, Avital Sarusi-Portuguez, Tal Noy-Porat, Ofir Israeli, Adi Beth-Din, Ronnie Blecher-Gonen, Theodor Chitlaru, Erez Bar-Haim, Tomer Israely, Anat Zvi and Efi Makdasi
Antibodies 2025, 14(1), 12; https://doi.org/10.3390/antib14010012 - 4 Feb 2025
Abstract
Background: Rift Valley fever virus (RVFV) is a zoonotic virus that poses a significant threat to both livestock and human health and has caused outbreaks in endemic regions. In humans, most patients experience a febrile illness; however, in some patients, RVF disease
[...] Read more.
Background: Rift Valley fever virus (RVFV) is a zoonotic virus that poses a significant threat to both livestock and human health and has caused outbreaks in endemic regions. In humans, most patients experience a febrile illness; however, in some patients, RVF disease may result in hemorrhagic fever, retinitis, or encephalitis. While several veterinary vaccines are being utilized in endemic countries, currently, there are no licensed RVF vaccines or therapeutics for human use. Neutralizing antibodies specifically targeting vulnerable pathogen epitopes are promising candidates for prophylactic and therapeutic interventions. In the case of RVFV, the surface glycoproteins Gc and Gn, which harbor neutralizing epitopes, represent the primary targets for vaccine and neutralizing antibody development. Methods: We report the implementation of advanced 10x Genomics technology, enabling high-throughput single-cell analysis for the identification of rare and potent antibodies against RVFV. Following the immunization of mice with live attenuated rMP-12-GFP virus and successive Gc/Gn boosts, memory B cell populations (both general and antigen-specific) were sorted from splenocytes by flow cytometry. Deep sequencing of the antibody repertoire at a single-cell resolution, together with bioinformatic analyses, was applied for BCR pair selection based on their abundance and specificity. Results: Twenty-three recombinant monoclonal antibodies (mAbs) were selected and expressed, and their antigen-binding capacities were characterized. About half of them demonstrated specific binding to their cognate antigen with relatively high binding affinities. Conclusions: These antibodies could be used for the future development of efficacious therapeutics, as well as for studying virus-neutralizing mechanisms. The current study, in which the single-cell sequencing approach was implemented for the development of antibodies targeting the RVFV surface proteins Gc and Gn, demonstrates the effective applicability of this technique for antibody discovery purposes.
Full article
(This article belongs to the Section Antibody Discovery and Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Purification of a Fc-Fusion Protein with [Bathophenathroline:metal] Complexes
by
Thisara Jayawickrama Withanage, Ron Alcalay, Olga Krichevsky, Ellen Wachtel, Ohad Mazor and Guy Patchornik
Antibodies 2025, 14(1), 11; https://doi.org/10.3390/antib14010011 - 31 Jan 2025
Abstract
In this study, we assess an alternative Fc-fusion protein purification method that does not rely on chromatographic media or ligands. Recombinant human acetylcholinesterase, fused to the Fc domain of human IgG1 (henceforth, AChE-Fc), was purified with precipitated aromatic complexes composed of the bathophenanthroline
[...] Read more.
In this study, we assess an alternative Fc-fusion protein purification method that does not rely on chromatographic media or ligands. Recombinant human acetylcholinesterase, fused to the Fc domain of human IgG1 (henceforth, AChE-Fc), was purified with precipitated aromatic complexes composed of the bathophenanthroline (henceforth, batho) chelator with either Zn2+ or Cu2+ ions (i.e., [(batho)3:Zn2+] or [(batho)2:Cu2+]) in the presence of polyethylene glycol 6000 (PEG-6000). In a three-step purification process conducted at pH 7, AChE-Fc was captured by the aromatic complexes (Step 1); unbound or weakly bound protein impurities were removed with 20 mM NaCl (Step 2); and AChE-Fc was then extracted at pH 7 (Step 3) using 100 mM Na citrate buffer in 250 mM NaCl. Purified AChE-Fc was not aggregated (as determined by dynamic light scattering (DLS) and Native PAGE). However, full enzymatic activity was only preserved with the [(batho)3:Zn2+] complex. Interaction between AChE-Fc and [(batho)3:Zn2+] led to ~83–88% overall protein yield. Thirty-fold process upscaling by volume required only proportional increase in the amounts of [(batho)3:Zn2+] and PEG-6000. Efficient (95–97%) chelator recycling was achieved by recrystallization. Chelator leaching into purified AchE-Fc was estimated to be ~0.3% relative to the total amount used. Taken together, this novel procedure has the potential to provide an economical and practical avenue for the industrial purification of Fc-fusion proteins.
Full article
(This article belongs to the Section Antibody-Based Therapeutics)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Exploring Anticitrullinated Antibodies (ACPAs) and Serum-Derived Exosomes Cargoes
by
Mohammed A. Alghamdi, Sami M. Bahlas, Sultan Abdulmughni Alamry, Ehab H. Mattar and Elrashdy M. Redwan
Antibodies 2025, 14(1), 10; https://doi.org/10.3390/antib14010010 - 26 Jan 2025
Abstract
►▼
Show Figures
Background: Autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein autoantibodies (ACPAs) are useful tools for rheumatoid arthritis (RA). The presence of ACPAs against citrullinated proteins (CPs), especially citrullinated fibrinogen (cFBG), seems to be a useful serological marker for diagnosing RA. RA patients’
[...] Read more.
Background: Autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein autoantibodies (ACPAs) are useful tools for rheumatoid arthritis (RA). The presence of ACPAs against citrullinated proteins (CPs), especially citrullinated fibrinogen (cFBG), seems to be a useful serological marker for diagnosing RA. RA patients’ sera were found to be enriched in exosomes that can transmit many proteins. Exosomes have been found to express citrullinated protein such as cFBG. Objective: We conducted this study in two stages. In the first phase, we aimed to evaluate the association between autoantibodies and risk factors. In the next step, ACPA-positive serum samples from the first phase were subjected to exosomal studies to explore the presence of cFBG, which is a frequent target for ACPAs. Methods: We investigated the autoantibodies in one hundred and sixteen Saudi RA patients and correlated with host-related risk factors. Exosomes were extracted from patients’ sera and examined for the presence of cFBG using monoclonal antibodies. Results: The study reported a high female-to-male ratio of 8:1, and seropositive RA (SPRA) was more frequent among included RA patients. The frequency and the levels of ACPAs were similar in both genders. Autoantibodies incidences have a direct correlations with patient age, while the average titers decreased as the age increased. Further, the highest incidence and levels of autoantibodies were reported in patients with RA duration between 5 and 10 years. Smoking and family history have no impact on autoantibody, except for ACPAs titers among smokers’ RA. Our analysis of serum exosomes revealed that about 50% of SPRA patients expressed cFBG. Conclusions: The female-to-male ratio is 8:1, which is higher than the global ratio. We can conclude that patients’ age and disease duration contribute to the autoantibodies, particularly RF and anti-MCV, whereas smoking and family history had no effects on autoantibodies. We detected cFBG in all exosomes from SPRA patients; thus, we suggest that the precise mechanism of exosomes in RA pathogenesis can be investigated to develop effective treatment strategies.
Full article

Graphical abstract
Open AccessArticle
Influence of High Eimeria tenella Immunization Dosages on Total Oocyst Output and Specific Antibodies Recognition Response in Hybrid Pullets (Gallus gallus)—A Pilot Study
by
Marco A. Juarez-Estrada, Guillermo Tellez-Isaias, Víctor M. Petrone-Garcia, Amanda Gayosso-Vazquez, Xochitl Hernandez-Velasco and Rogelio A. Alonso-Morales
Antibodies 2025, 14(1), 9; https://doi.org/10.3390/antib14010009 - 26 Jan 2025
Abstract
Background: Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. Methods: Acquired immunity was evaluated following primary immunization and two booster doses with the homologous
[...] Read more.
Background: Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. Methods: Acquired immunity was evaluated following primary immunization and two booster doses with the homologous strain. Total oocyst shedding, clinical signs, and viability of every bird/group after each immunization/booster were recorded. Indirect ELISA measured the time course of humoral responses from each immunization group against sporozoite and second-generation merozoite of E. tenella. Antigen pattern recognition on these two asexual zoite stages of E. tenella was analyzed using Western blotting with antibodies from each immunization program. Afterwards, antigen recognition of specific life-cycle stages was performed using individual pullet serums from the best immunization program. Results: A primary-immunization dose of 1 × 104 oocysts/bird reduced the oocyst output; however, all pullets exhibited severe clinical signs and low specific antibodies titers, with decreased polypeptide recognition on both E. tenella asexual zoite stages. In contrast, immunization with 5 × 103 oocysts/bird yielded the best outcomes regarding increased oocyst collection and early development of sterilizing immunity. After the first booster dosage, this group’s antisera revealed a strong pattern of specific antigen recognition on the two assayed E. tenella life-cycle stages. Conclusions: The E. tenella-specific antibodies from the 5 × 103 oocysts/bird immunization program can aid in passive immunization trials and further research to identify B-cell immunoprotective antigens, which could help in the development of a genetically modified anticoccidial vaccine.
Full article
(This article belongs to the Special Issue Unravelling Effector Functions of B cells in Infectious Diseases and Cancer)
►▼
Show Figures

Figure 1
Open AccessArticle
In Vitro Functional Validation of an Anti-FREM2 Nanobody for Glioblastoma Cell Targeting
by
Gloria Krapež, Neja Šamec, Alja Zottel, Mojca Katrašnik, Ana Kump, Jernej Šribar, Igor Križaj, Jurij Stojan, Rok Romih, Gregor Bajc, Matej Butala, Serge Muyldermans and Ivana Jovčevska
Antibodies 2025, 14(1), 8; https://doi.org/10.3390/antib14010008 - 24 Jan 2025
Abstract
Background/Objectives: Glioblastomas are the most common brain malignancies. Despite the implementation of multimodal therapy, patient life expectancy after diagnosis is barely 12 to 18 months. Glioblastomas are highly heterogeneous at the genetic and epigenetic level and comprise multiple different cell subpopulations. Therefore,
[...] Read more.
Background/Objectives: Glioblastomas are the most common brain malignancies. Despite the implementation of multimodal therapy, patient life expectancy after diagnosis is barely 12 to 18 months. Glioblastomas are highly heterogeneous at the genetic and epigenetic level and comprise multiple different cell subpopulations. Therefore, small molecules such as nanobodies, able to target membrane proteins specific to glioblastoma cells or specific cell types within the tumor are being investigated as novel tools to treat glioblastomas. Methods: Here, we describe the identification of such a nanobody and its in silico and in vitro validation. NB3F18, as we named it, is directed against the membrane-associated protein FREM2, overexpressed in glioblastoma stem cells. Results: Three dimensional in silico modeling indicated that NB3F18 and FREM2 form a stable complex. Surface plasmon resonance confirmed their interaction with moderate affinity. As we demonstrated by flow cytometry, NB3F18 binds to glioblastoma stem cells to a greater extent than to differentiated glioblastoma cells and astrocytes. Immunocytochemistry revealed surface localization of NB3F18 on glioblastoma stem cells, whereas cytoplasmic localization of NB3F18 was observed in other cell lines. NB3F18 was detected by transmission electron microscopy on the plasma membrane and in various compartments of the endocytic pathway, from endocytic vesicles to multivesicular bodies (endosomes) and lysosomes. Interestingly, NB3F18 was cytotoxic to glioblastoma stem cells. Conclusions: Collectively, NB3F18 has been qualified as an interesting tool to target glioblastoma cells and as a potential vehicle to deliver biological or pharmaceutical agents to these cells.
Full article
(This article belongs to the Section Antibody Discovery and Engineering)
►▼
Show Figures

Graphical abstract
Open AccessArticle
A Strategy for Simultaneous Engineering of Interspecies Cross-Reactivity, Thermostability, and Expression of a Bispecific 5T4 x CD3 DART® Molecule for Treatment of Solid Tumors
by
Renhua R. Huang, Michael Spliedt, Tom Kaufman, Sergey Gorlatov, Bhaswati Barat, Kalpana Shah, Jeffrey Gill, Kurt Stahl, Jennifer DiChiara, Qian Wang, Jonathan C. Li, Ralph Alderson, Paul A. Moore, Jennifer G. Brown, James Tamura, Xiaoyu Zhang, Ezio Bonvini and Gundo Diedrich
Antibodies 2025, 14(1), 7; https://doi.org/10.3390/antib14010007 - 17 Jan 2025
Abstract
Background: Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. Method: To overcome limitations in the properties
[...] Read more.
Background: Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. Method: To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level. Results: This approach generated multiple DART molecules that exhibited significant improvements in all three properties. The lead DART molecule demonstrated potent in vitro and in vivo anti-tumor activity. Although its clearance in human FcRn-transgenic mice was comparable to that of the parental molecule, faster clearance was observed in cynomolgus monkeys. The lead α5T4 x αCD3 DART molecule displayed no evidence of off-target binding or polyspecificity, suggesting that the increased affinity for the target may account for its accelerated clearance in cynomolgus monkeys. Conclusions: This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.
Full article
(This article belongs to the Section Antibody Discovery and Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Phenomenological Modeling of Antibody Response from Vaccine Strain Composition
by
Victor Ovchinnikov and Martin Karplus
Antibodies 2025, 14(1), 6; https://doi.org/10.3390/antib14010006 - 16 Jan 2025
Abstract
►▼
Show Figures
The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in
[...] Read more.
The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in preclinical animal models and in clinical trials. To improve outcomes for such vaccines, it would be useful to develop methods that can predict vaccine efficacies against arbitrary pathogen variants. As a step in this direction, here, we describe a simple biologically motivated model of antibody reactivity elicited by nanoparticle-based vaccines using only antigen amino acid sequences, parametrized with a small sample of experimental antibody binding data from influenza or SARS-CoV-2 nanoparticle vaccinations. Results: The model is able to recapitulate the experimental data to within experimental uncertainty, is relatively insensitive to the choice of the parametrization/training set, and provides qualitative predictions about the antigenic epitopes exploited by the vaccine, which are testable by experiment. For the mosaic nanoparticle vaccines considered here, model results suggest indirectly that the sera obtained from vaccinated mice contain bnAbs, rather than simply different strain-specific Abs. Although the present model was motivated by nanoparticle vaccines, we also apply it to a mutlivalent mRNA flu vaccination study, and demonstrate good recapitulation of experimental results. This suggests that the model formalism is, in principle, sufficiently flexible to accommodate different vaccination strategies. Finally, we show how the model could be used to rank the efficacies of vaccines with different antigen compositions. Conclusions: Overall, this study suggests that simple models of vaccine efficacy parametrized with modest amounts of experimental data could be used to compare the effectiveness of designed vaccines.
Full article

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Antibodies Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Conferences
Special Issues
Special Issue in
Antibodies
Therapeutic Antibodies: New Trends in Discovery, Developability and Characterization
Guest Editors: Anne Zeck, David J VanceDeadline: 21 March 2025
Special Issue in
Antibodies
Recombinant Binding Proteins and Genetically Engineered T-cells Targeting Intracellular Neoantigens
Guest Editors: Thomas Böldicke, Ana Maria Waaga-GasserDeadline: 30 May 2025
Special Issue in
Antibodies
Unravelling Effector Functions of B cells in Infectious Diseases and Cancer
Guest Editor: Farhat AfrinDeadline: 30 June 2025
Special Issue in
Antibodies
A Festschrift Celebrating Dr. Dimiter Stanchev Dimitrov: Antibodies, Innovation, and Impact on Infectious Disease and Cancer Research
Guest Editors: Ponraj Prabakaran, Tianlei Ying, Wei LiDeadline: 30 June 2025
Topical Collections
Topical Collection in
Antibodies
Computational Antibody and Antigen Design
Collection Editor: Buyong Ma