- Review
Vis Inertiae and Statistical Inference: A Review of Difference-in-Differences Methods Employed in Economics and Other Subjects
- Bruno Paolo Bosco and
- Paolo Maranzano
Difference in Differences (DiD) is a useful statistical technique employed by researchers to estimate the effects of exogenous events on the outcome of some response variables in random samples of treated units (i.e., units exposed to the event) ideally drawn from an infinite population. The term “effect” should be understood as the discrepancy between the post-event realisation of the response and the hypothetical realisation of that same outcome for the same treated units in the absence of the event. This theoretical discrepancy is clearly unobservable. To circumvent the implicit missing variable problem, DiD methods utilise the realisations of the response variable observed in comparable random samples of untreated units. The latter are samples of units drawn from the same population, but they are not exposed to the event under investigation. They function as the control or comparison group and serve as proxies for the non-existent untreated realisations of the responses in treated units during post-treatment periods. In summary, the DiD model posits that, in the absence of intervention and under specific conditions, treated units would exhibit behaviours that are indistinguishable from those of control or untreated units during the post-treatment periods. For the purpose of estimation, the method employs a combination of before–after and treatment–control group comparisons. The event that affects the response variables is referred to as “treatment.” However, it could also be referred to as “causal factor” to emphasise that, in the DiD approach, the objective is not to estimate a mere statistical association among variables. This review introduces the DiD techniques for researchers in economics, public policy, health research, management, environmental analysis, and other fields. It commences with the rudimentary methods employed to estimate the so-called Average Treatment Effect upon Treated (ATET) in a two-period and two-group case and subsequently addresses numerous issues that arise in a multi-unit and multi-period context. A particular focus is placed on the statistical assumptions necessary for a precise delineation of the identification process of the cause–effect relationship in the multi-period case. These assumptions include the parallel trend hypothesis, the no-anticipation assumption, and the SUTVA assumption. In the multi-period case, both the homogeneous and heterogeneous scenarios are taken into consideration. The homogeneous scenario refers to the situation in which the treated units are initially treated in the same periods. In contrast, the heterogeneous scenario involves the treatment of treated units in different periods. A portion of the presentation will be allocated to the developments associated with the DiD techniques that can be employed in the context of data clustering or spatio-temporal dependence. The present review includes a concise exposition of some policy-oriented papers that incorporate applications of DiD. The areas of focus encompass income taxation, migration, regulation, and environmental management.
30 September 2025