Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation
Abstract
1. Introduction
2. Materials and Methods
2.1. The Examined Sample
2.2. Sample Preparations
2.3. Particle Size Measurment
2.4. Chemical Analysis
2.5. SEM–EDX Analysis
2.6. XRD Analysis
2.7. Processes of Froth Flotation
3. Results and Discussion
3.1. Forth Flotation Tests
3.1.1. Effect of Reagents and Flotation Parameters on Zinc Recovery in Collective Concentrate
3.1.2. Effect of Reagents and Flotation Parameters on Lead Recovery in Collective Concentrate
3.1.3. Effect of Reagents and Flotation Parameters on Copper Recovery in Collective Concentrate
4. Conclusions
- Valuable metals including zinc, lead, and copper were successfully recovered from historical uranium and polymetallic tailings through the application of froth flotation techniques. This approach demonstrates the potential of reprocessing legacy mining waste to recover critical resources that would otherwise remain untapped and continue contributing to environmental liabilities.
- The tailings, containing 7.38% Zn, 1.45% Pb, and 0.49% Cu, yielded exceptionally high metal recovery rates under optimized flotation conditions. Specifically, recoveries exceeded 96% for lead, 87% for zinc, and 88% for copper, in the collective concentrate, confirming the technical feasibility and efficiency of the selected flotation process for extracting valuable metals from complex tailings material.
- The final flotation concentrates achieved metal grades of 7.65% Pb, 24.76% Zn, and 3.5% Cu, indicating effective enrichment of lead, zinc, and copper from the processed ore.
- Among the tested flotation reagents, DF 607 emerged as the most effective collector for all three metals—lead, zinc, and copper—delivering consistently high recovery rates and favorable concentrate grades. The most effective configuration was achieved using the DF collector at a dosage of 50 g·t−1, complemented by a frother dosage of 100 g·t−1 and a slurry density of 500 g·L−1.
- Slurry density was found to significantly influence flotation performance, with clear trends observed across different metals. Lower slurry densities enhanced the grade of zinc concentrates by improving selectivity but led to a reduction in overall zinc recovery. Conversely, higher slurry densities proved more beneficial for lead and copper recovery, likely due to improved collision frequency between particles and bubbles in denser pulp conditions.
- The high-grade concentrates obtained from this process are well-suited for further metallurgical treatment, such as hydrometallurgical extraction or smelting.
- In addition to generating economic value, the reprocessing of these tailings contributes to sustainable mining practices by recovering residual metals, minimizing waste, and significantly reducing the environmental footprint of past mining activities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nkuna, R.; Ijoma, G.N.; Matambo, T.S.; Chimwani, N. Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. Minerals 2022, 12, 506. [Google Scholar] [CrossRef]
- Hermanus, M. Mining redesigned—Innovation and technology needs for the future-A South African perspective. J. South. Afr. Inst. Min. Metall. 2017, 117, 811–818. [Google Scholar] [CrossRef]
- Parker, G.K.; Buckley, A.N.; Woods, R.; Hope, G.A. The interaction of the flotation reagent, n-octanohydroxamate, with sulfide minerals. Miner. Eng. 2012, 36–38, 81–90. [Google Scholar] [CrossRef]
- Nkosi, N.; Nheta, W. Pretreatment and recovery of base metals from oxidised ores by froth flotation technology—A review. Miner. Eng. 2024, 218, 109024. [Google Scholar] [CrossRef]
- Moon, K.S.; Fuerstenau, D.W. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates. Int. J. Miner. Process. 2003, 72, 11–24. [Google Scholar] [CrossRef]
- Xu, L.; Tian, J.; Wu, H.; Lu, Z.; Sun, W.; Hu, Y. The flotation and adsorption of mixed collectors on oxide and silicate minerals. Adv. Colloid Interface Sci. 2017, 250, 1–14. [Google Scholar] [CrossRef]
- Bilal, M.; Park, I.; Hornn, V.; Ito, M.; Hassan, F.U.; Jeon, S.; Hiroyoshi, N. The Challenges and Prospects of Recovering Fine Copper Sulfides from Tailings Using Different Flotation Techniques: A Review. Minerals 2022, 12, 586. [Google Scholar] [CrossRef]
- Qin, S.; Dou, S.; Ma, S.; Zhang, Z.; Hu, Y.; Li, Y.; Liu, P.; Lin, F.; Zhao, H. Enhanced recovery of low-grade copper ore and associated precious metals from iron tailings: A case study in China. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 699, 134656. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, T.; Shen, Z.; Ma, S.; Shi, S.; Deng, J.; Deng, J. The depression mechanism of magnesium on the flotation of sphalerite with different iron contents: DFT and experimental studies. Sep. Purif. Technol. 2025, 353, 128379. [Google Scholar] [CrossRef]
- Abkhoshk, E.; Jorjani, E.; Al-Harahsheh, M.S.; Rashchi, F.; Naazeri, M. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 2014, 149, 153–167. [Google Scholar] [CrossRef]
- Wang, H.; Wen, S.; Han, G.; Feng, Q. Effect of copper ions on surface properties of ZnSO4-depressed sphalerite and its response to flotation. Sep. Purif. Technol. 2019, 228, 115756. [Google Scholar] [CrossRef]
- Nayak, A.; Jena, M.S.; Mandre, N.R. Beneficiation of Lead-Zinc Ores–A Review. Miner. Process. Extr. Metall. Rev. 2022, 43, 564–583. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Han, Y. Efficient flotation separation of lead–zinc oxide ores using mineral sulfidation reconstruction technology: A review. Green Smart Min. Eng. 2024, 1, 175–189. [Google Scholar] [CrossRef]
- Ahmed, M.M.M.; Zhang, Z.; Liu, M.; Zeng, G.; Liu, G. The selective flotation separation of galena from sphalerite with 5-heptyl-1,3,4-thiadiazole-2-thione: Emphasizing on adsorption mechanism. Appl. Surf. Sci. 2025, 702, 163204. [Google Scholar] [CrossRef]
- Prior, T.; Giurco, D.; Mudd, G.; Mason, L.; Behrisch, J. Resource depletion, peak minerals and the implications for sustainable resource management. Glob. Environ. Change 2012, 22, 577–587. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Ma, Z.; Peng, W.; Huang, Y.; Wang, W.; Cao, Y. Recent advances in oxidation pretreatment and flotation separation of metal sulfide ores. Green Smart Min. Eng. 2025, 2, 142–155. [Google Scholar] [CrossRef]
- Qi, M.; Peng, W.; Wang, W.; Cao, Y.; Zhang, L.; Huang, Y. A novel molybdenite depressant for efficient selective flotation separation of chalcopyrite and molybdenite. Int. J. Min. Sci. Technol. 2024, 34, 1179–1196. [Google Scholar] [CrossRef]
- Mesa, D.; Brito-Parada, P.R. Scale-up in froth flotation: A state-of-the-art review. Sep. Purif. Technol. 2019, 210, 950–962. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, C.; Sun, W.; Gao, Y.; Kowalczuk, P.B. Froth flotation of fluorite: A review. Adv. Colloid Interface Sci. 2021, 290, 102382. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Wen, S.; Wang, H.; Zhao, W.; Han, G. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. 2022, 32, 1351–1364. [Google Scholar] [CrossRef]
- Álvarez, M.L.; Méndez, A.; Rodríguez-Pacheco, R.; Paz-Ferreiro, J.; Gascó, G. Recovery of zinc and copper from mine tailings by acid leaching solutions combined with carbon-based materials. Appl. Sci. 2021, 11, 5166. [Google Scholar] [CrossRef]
- James, L.P.; Cooksey, W.H.; Park, M.E.; Sung, K.Y. Economic and Environmental Applications for Recent Innovations of Nonferrous Metallurgy in Some Industrial Nations. Korean J. Chem. Eng. 2001, 18, 948–954. [Google Scholar] [CrossRef]
- Kursunoglu, S. A Review on the Recovery of Critical Metals from Mine and Mineral Processing Tailings: Recent Advances. J. Sustain. Metall. 2025, 1–28. [Google Scholar] [CrossRef]
- Uranium Mine No. 16. Available online: https://www.mindat.org/loc-25641.html (accessed on 22 June 2025).
- Škácha, P.; Sejkora, J.; Plášil, J. Selenide mineralization in the příbram uranium and base-metal district (Czech Republic). Minerals 2017, 7, 91. [Google Scholar] [CrossRef]
- Haldar, S.K. Mineral Exploration: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef]
- Wang, G.C. The Utilization of Slag in Civil Infrastructure Construction; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar]
- Toolbars, T. Sim Module—Common Tools Table of Contents. Available online: https://www.metso.com/globalassets/portfolio/hsc-chemistry/40-sim-common-tools.pdf (accessed on 4 February 2025).
- Heydari, G.; Mehrabani, J.V.; Bagheri, B. Selective separation of galena and sphalerite from pyrite-rich lead-zinc ores: A case study of the Kooshk mine, Central Iran. Int. J. Min. Geo-Eng. 2019, 53, 43–50. [Google Scholar] [CrossRef]
- Nanda, S.; Kumar, S.; Mandre, N.R. Flotation behavior of a complex lead-zinc ore using individual collectors and its blends for lead sulfide. J. Dispers. Sci. Technol. 2023, 44, 1703–1710. [Google Scholar] [CrossRef]
- Zhuo, Q.; Liu, W.; Xu, H.; Sun, X.; Zhang, H.; Zheng, X.; Wei, H. Research progress of relative motion between particles and bubbles in froth flotation. Meitan Xuebao/J. China Coal Soc. 2019, 44. [Google Scholar] [CrossRef]
- Li, S.; Jue, K.; Sun, C. Effect of bubble surface properties on bubble–particle collision efficiency in froth flotation. Minerals 2020, 10, 367. [Google Scholar] [CrossRef]
- Gungoren, C.; Baktarhan, Y.; Demir, I.; Ozkan, S.G. Enhancement of galena-potassium ethyl xanthate flotation system by low power ultrasound. Trans. Nonferrous Met. Soc. China 2020, 30, 1102–1110. [Google Scholar] [CrossRef]
- Turysbekov, D.; Tussupbayev, N.; Narbekova, S.; Kaldybayeva, Z. Combined microflotation effects in polymetallic ores beneficiation. SN Appl. Sci. 2023, 5, 124. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Z.; Mulenga, H.; Sun, W.; Cao, J.; Gao, Z. Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite. Chem. Eng. Sci. 2020, 226, 115860. [Google Scholar] [CrossRef]
- Tijsseling, L.T.; Dehaine, Q.; Rollinson, G.K.; Glass, H.J. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Miner. Eng. 2019, 138, 246–256. [Google Scholar] [CrossRef]
- Xu, W.; Shi, B.; Tian, Y.; Chen, Y.; Li, S.; Cheng, Q.; Mei, G. Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China. Minerals 2021, 11, 1249. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Jia, X.; Cai, J.; Su, C.; Yu, X.; Zheng, Q.; Peng, R.; Shen, P.; Liu, D. Role of ammonium phosphate in improving the physical characteristics of malachite sulfidation flotation. Physicochem. Probl. Miner. Process. 2023, 59, 161510. [Google Scholar] [CrossRef]
- Mavhungu, E.M.S.; Nheta, W.; Rose, D. Characterization of Hydrocarbons Contaminated Platinum Group Metals Mine Sludge from the Bushveld Complex. In Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM’22), Prague, Czech Republic, 31 July–2 August 2022. [Google Scholar]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Whitworth, A.J.; Forbes, E.; Verster, I.; Jokovic, V.; Awatey, B.; Parbhakar-Fox, A. Review on advances in mineral processing technologies suitable for critical metal recovery from mining and processing wastes. Clean. Eng. Technol. 2022, 7, 100451. [Google Scholar] [CrossRef]
Chemical Composition (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|
Zn | Pb | Cu | Si | Fe | Al | Ca | Other | |
Ore sample | 7.38 | 1.45 | 0.49 | 17.82 | 7.84 | 11.5 | 4.8 | 48.72 |
Reagent | Dosage (g·t−1) | Purity | Purpose | Producer | City/State |
---|---|---|---|---|---|
PEG 600 | 50; 100 | Analytical | Frother | Thermo Fisher Scientific | Ward Hill, MA, USA |
KEX | 50; 80 | Analytical | Collector | Tokyo Chemical Industry Co., Ltd. | Tokyo, Japan |
Aero | 50; 80 | Analytical | Collector | Cytec Industries Inc. | Princeton, NJ, USA |
DF 067 | 50; 80 | Analytical | Collector | FMC Corporation | Harboøre, Denmark |
No. | Slurry Density (g·L−1) | PEG Dosage (g·t−1) | Collector | Collector Dosage (g·t−1) | Yield Concentrate (wt.%) | Yield Waste (wt.%) |
---|---|---|---|---|---|---|
1 | 500 | 50 | Aero | 50 | 7.43 | 92.57 |
2 | 500 | 50 | Aero | 80 | 8.02 | 91.98 |
3 | 500 | 100 | Aero | 50 | 17.53 | 82.47 |
4 | 500 | 100 | Aero | 80 | 16.19 | 83.81 |
5 | 500 | 50 | DF | 50 | 11.20 | 88.80 |
6 | 500 | 50 | DF | 80 | 11.52 | 88.48 |
7 | 500 | 100 | DF | 50 | 26.16 | 73.84 |
8 | 500 | 100 | DF | 80 | 26.06 | 73.94 |
9 | 500 | 50 | KEX | 50 | 10.98 | 89.02 |
10 | 500 | 50 | KEX | 80 | 12.76 | 87.24 |
11 | 500 | 100 | KEX | 50 | 21.89 | 78.11 |
12 | 500 | 100 | KEX | 80 | 25.33 | 74.67 |
13 | 300 | 100 | Aero | 50 | 18.82 | 81.18 |
14 | 300 | 100 | Aero | 80 | 20.31 | 79.69 |
15 | 300 | 100 | DF | 50 | 20.88 | 79.12 |
16 | 300 | 100 | DF | 80 | 20.22 | 79.78 |
17 | 300 | 100 | KEX | 50 | 20.63 | 79.37 |
18 | 300 | 100 | KEX | 80 | 22.04 | 77.96 |
19 | 300 | 50 | Aero | 50 | 10.02 | 89.98 |
20 | 300 | 50 | Aero | 80 | 10.94 | 89.06 |
21 | 300 | 50 | DF | 50 | 11.46 | 88.54 |
22 | 300 | 50 | DF | 80 | 12.11 | 87.89 |
23 | 300 | 50 | KEX | 50 | 11.93 | 88.07 |
24 | 300 | 50 | KEX | 80 | 12.09 | 87.91 |
No. | Pb Grade (%) | Pb Recovery (%) | Zn Grade (%) | Zn Recovery (%) | Cu Grade (%) | Cu Recovery (%) |
---|---|---|---|---|---|---|
1 | 20.52 | 73.57763 | 16.59 | 16.69662 | 3.62 | 41.15401 |
2 | 17.55 | 67.96915 | 16.88 | 18.34935 | 3.28 | 40.27576 |
3 | 9.76 | 82.5922 | 24.16 | 57.38518 | 2.88 | 77.27105 |
4 | 9.74 | 76.10751 | 22.73 | 49.85189 | 3.01 | 74.57104 |
5 | 14.47 | 78.23891 | 18.19 | 27.60582 | 3.25 | 55.71508 |
6 | 13.81 | 76.81279 | 24.03 | 37.5152 | 3.34 | 58.90084 |
7 | 7.21 | 91.05219 | 24.76 | 87.7646 | 2.55 | 95.26589 |
8 | 7.65 | 96.24855 | 23.62 | 83.41156 | 2.44 | 90.84364 |
9 | 9.9 | 52.48039 | 17.52 | 26.06811 | 2.4 | 40.33743 |
10 | 10.56 | 65.05611 | 23.93 | 41.37904 | 3.08 | 60.1603 |
11 | 8.48 | 89.60294 | 24.76 | 73.43289 | 2.62 | 87.77338 |
12 | 7.4 | 90.48301 | 24.17 | 82.95175 | 2.48 | 89.73439 |
13 | 8.06 | 73.21314 | 24.84 | 63.33142 | 2.55 | 73.43944 |
14 | 8.28 | 81.17825 | 25.11 | 69.09867 | 2.53 | 78.6439 |
15 | 7.85 | 79.14063 | 26.55 | 75.12907 | 2.75 | 87.90179 |
16 | 7.85 | 76.61625 | 28.07 | 76.89662 | 3.06 | 92.16572 |
17 | 7.65 | 76.19508 | 25.97 | 72.60241 | 2.73 | 86.21112 |
18 | 8.12 | 86.41177 | 28.57 | 85.33766 | 2.94 | 95.2293 |
19 | 6.83 | 33.03287 | 24.58 | 33.3673 | 2.11 | 32.35514 |
20 | 6.56 | 34.63545 | 23.44 | 34.73667 | 2.02 | 33.81454 |
21 | 8.44 | 46.71079 | 28.27 | 43.91513 | 2.73 | 47.90409 |
22 | 6.74 | 39.40542 | 28.49 | 46.75221 | 3.3 | 61.17095 |
23 | 8.82 | 50.77746 | 27.52 | 44.46972 | 2.98 | 54.39435 |
24 | 9.4 | 54.8432 | 29.51 | 48.32565 | 3.22 | 59.56429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcin, M.; Sisol, M.; Laubertová, M.; Behunová, D.M.; Ďuriška, I. Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation. Processes 2025, 13, 2158. https://doi.org/10.3390/pr13072158
Marcin M, Sisol M, Laubertová M, Behunová DM, Ďuriška I. Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation. Processes. 2025; 13(7):2158. https://doi.org/10.3390/pr13072158
Chicago/Turabian StyleMarcin, Michal, Martin Sisol, Martina Laubertová, Dominika Marcin Behunová, and Igor Ďuriška. 2025. "Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation" Processes 13, no. 7: 2158. https://doi.org/10.3390/pr13072158
APA StyleMarcin, M., Sisol, M., Laubertová, M., Behunová, D. M., & Ďuriška, I. (2025). Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation. Processes, 13(7), 2158. https://doi.org/10.3390/pr13072158