Effects of FPV Drone Frame Materials on Thermal Conditions of Motors Under Extreme Payloads: Experimental and Numerical Analysis
Abstract
1. Introduction
- Infrared thermographic measurements;
- Finite element method (FEM)-based numerical simulations;
- Engineering evaluation of thermal and mechanical material properties;
- Experimental data extracted from flight log files recorded during test flights.
2. Materials and Methods
- Aluminum 6061-T6 (AL)—a widely used structural alloy characterized by good thermal conductivity and moderate density.
- Carbon fiber (CF)—a composite material with high stiffness and chemical resistance but inherently low thermal conductivity.
- -
- Motor load distribution;
- -
- Total electrical power drawn from the battery;
- -
- Gyroscope data for determining resonant frequencies of the drones along all three spatial axes.
3. Results and Discussion
3.1. Experimental Results
3.2. FEM Simulation
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Carbon fiber-reinforced polymer |
AL | Aluminum alloy |
FPV | First Person View |
UAV | Unmanned Aerial Vehicles |
FEM | Finite Element Method |
SAR | Search-and-Rescue |
FC | Flight Controller |
ESC | Electronic Speed Controller |
VTX | Video transmitter |
HTC | Heat Transfer Coefficient |
References
- Hairi, S.M.F.B.S.; Saleh, S.J.M.B.M.; Ariffin, A.H.; Omar, Z.B. A Review on Composite Aerostructure Development for UAV Application. In Green Hybrid Composite in Engineering and Non-Engineering Applications; Khan, T., Jawaid, M., Eds.; Springer Nature: Singapore, 2023; pp. 137–157. [Google Scholar] [CrossRef]
- Sourav, B.; Raviraj, P.; Subash, D.; Gowtham, D.M. Surveillance and Inspection Micro Quadcopter Drone in Agriculture. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 2340–2348. [Google Scholar] [CrossRef]
- Zaluzhnyi, V.; Hryshchuk, R.; Ihor, S.; Oleksiy, H. The Armed Forces of Ukraine Unmanned Systems Future Development. Mil. Sci. 2024, 2, 5–16. [Google Scholar] [CrossRef]
- Aláez, D.; Prieto, M.; Villadangos, J.; Astrain, J.J. Towards a Heat-Resistant Tethered Micro-Aerial Vehicle for Structure Fire Sensing. Appl. Sci. 2025, 15, 2388. [Google Scholar] [CrossRef]
- Anand, S.; Mishra, A.K. High-Performance Materials Used for UAV Manufacturing: Classified Review. Int. J. All Res. Educ. Sci. Methods 2022, 7, 2811–2819. [Google Scholar]
- Sonmez, M.; Pelin, C.-E.; Pelin, G.; Rusu, B.; Stefan, A.; Stelescu, M.D.; Ignat, M.; Gurau, D.; Georgescu, M.; Nituica, M.; et al. Development, Testing, and Thermoforming of Thermoplastics Reinforced with Surface-Modified Aramid Fibers for Cover of Electronic Parts in Small Unmanned Aerial Vehicles Using 3D-Printed Molds. Polymers 2024, 16, 1536. [Google Scholar] [CrossRef] [PubMed]
- Milenin, A. The Impact of FPV Drone Frame Materials on Motor Thermal Conditions: Experimental and Numerical Analysis. In Proceedings of the KomPlasTech 2025, Krynica Zdrój, Poland, 2–5 March 2025; pp. 1–3. Available online: https://komplastech.agh.edu.pl/public_repo/2025/45.pdf (accessed on 16 August 2025).
- Klippstein, H.; Hassanin, H.; Diaz De Cerio Sanchez, A.; Zweiri, Y.; Seneviratne, L. Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications. Adv. Eng. Mater. 2018, 20, 1800290. [Google Scholar] [CrossRef]
- Schleijpen, R.; van Binsbergen, S.; Geljon, M.; Meuken, D.; Deiana, D.; van Leeuwen, B. 30kW Laser Experiments against Drones. In Proceedings of the SPIE 11539, Emerging Technologies in Security and Defence III, Online, 21–24 September 2020; p. 115390A. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Dib, A.; Babamohammadi, S.; Campigli, S.; Benedetti, D.; Agnelli, J. Mechanical Analysis of a Carbon Fibre Composite Woven Composite Laminate for Ultra-Light Applications in Aeronautics. Compos. Part C Open Access 2024, 14, 100447. [Google Scholar] [CrossRef]
- MatWeb. 6000 Series Aluminum Alloy—Thermal Properties. Available online: https://www.matweb.com/search/DataSheet.aspx?MatGUID=26d19f2d20654a489aefc0d9c247cebf (accessed on 16 August 2025).
- Rooy, A. Introduction to Aluminium and Aluminium Alloys. In ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Materials Park, OH, USA, 1990; p. 1328. Available online: https://www.asminternational.org/results/-/journal_content/56/06182G/PUBLICATION/?srsltid=AfmBOoqC7PhvUKt_VmHwlkcqb3D5__28w9D6s94KXpDJFHxrSv7NK4P9 (accessed on 16 August 2025).
- Nasri, W.; Driss, Z.; Djebali, R.; Lee, K.Y.; Park, H.H.; Bezazi, A.; Reis, P.N. Thermal Study of Carbon-Fiber-Reinforced Polymer Composites Using Multiscale Modeling. Materials 2023, 16, 7233. [Google Scholar] [CrossRef] [PubMed]
- BVN, N.K.; Agrawal, A. Framework to Drone Part Selection, Verification and Fabrication of UAV for Multiple Applications. In Proceedings of the 2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom), Chennai, India, 7–9 December 2023; pp. 105–110. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Li, J.; Li, W.; Yuan, W.; Ma, Y.; Yao, Z. Progress of high-temperature superconducting composite materials for aerospace applications. Supercond. Sci. Technol. 2024, 37, 043001. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Huang, Y.; Ma, Y.; Liu, Z.; Zhang, Y. Aerothermal effects on the thermal and structural responses of high-speed UAVs. Aerosp. Sci. Technol. 2024, 149, 109448. [Google Scholar] [CrossRef]
- Raza, M.; Tariq, M.; Abbas, S.M.; Alghamdi, H.; Alqarni, M.; Shafiq, M.; Ahmed, M.; Ali, H. Temperature measurement and monitoring for UAV-based systems using infrared thermography. Measurement 2025, 236, 117637. [Google Scholar] [CrossRef]
- Pätzold, F.; Bauknecht, A.; Schlerf, A.; Sotomayor Zakharov, D.; Bretschneider, L.; Lampert, A. Flight Experiments and Numerical Simulations for Investigating Multicopter Flow Field and Structure Deformation. Atmosphere 2023, 14, 1336. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; John Wiley & Sons: Hoboken, NJ, USA, 2010; p. 613. [Google Scholar]
- Piljek, P.; Kotarski, D.; Krznar, M. Method for Characterization of a Multirotor UAV Electric Propulsion System. Appl. Sci. 2020, 10, 8229. [Google Scholar] [CrossRef]
- Saemi, F.; Benedict, M. Brushless DC Motor Sizing Algorithm for Small UAS Conceptual Designers. Aerospace 2024, 11, 649. [Google Scholar] [CrossRef]
- Pamula, G.; Ramachandran, A. Thermal Management for Unmanned Aerial Vehicle Payloads: Mechanisms, Systems, and Applications. Drones 2025, 9, 350. [Google Scholar] [CrossRef]
- El-Latif, E.I.A.; El-dosuky, M. Predicting power consumption of drones using explainable optimized mathematical and machine learning models. J. Supercomput. 2025, 81, 646. [Google Scholar] [CrossRef]
- Saemi, F.; Whitson, A.; Benedict, M. Heat Transfer Models and Measurements of Brushless DC Motors for Small UASs. Aerospace 2024, 11, 401. [Google Scholar] [CrossRef]
- Kang, J.; Lee, J.; Kim, H.J.; Nguyen, T.T.; Lee, J.; Song, Y.H.; Yoo, S.-J. Thermal Analysis of Outer Rotor BLDC Motor for Drone Considering Airflow Ventilation Cooling. IEEE Access 2025, 13, 128518–128531. [Google Scholar] [CrossRef]
Property | AL (6xxx) | CF (Carbon Fiber) | Sources |
---|---|---|---|
Young’s Modulus [GPa] | 67–140 | 70–150(fiber dependent) | [1,5] |
Ultimate Tensile Strength [MPa] | 90–565 | 500–1500 | [6,10,11,12] |
Density [g/cm3] | 2.68–2.92 | 1.55–1.65 | [10,12] |
Thermal Conductivity [W/mK] | 130–226 | 5–20 | [10,12] |
Specific Heat Capacity [J/kgK] | 800–900 | ~800 | [10,12] |
Damping Ratio (logarithmic) | 0.01 | 0.05–0.1 | [10,12] |
Corrosion Resistance | Moderate | Excellent | [6,10] |
Relative Material Cost | Low | High | [6] |
Variant | Power, W | Motor 1 | Motor 2 | Motor 3 | Motor 4 |
---|---|---|---|---|---|
CF 0 N | 213.74 | 0.264 | 0.242 | 0.253 | 0.241 |
CF 20 N | 774.46 | 0.252 | 0.245 | 0.272 | 0.232 |
AL 0 N | 250.24 | 0.268 | 0.231 | 0.261 | 0.239 |
AL 20 N | 741.78 | 0.270 | 0.230 | 0.255 | 0.245 |
Parameter | Payload | CF Frame | AL Frame | Observations |
---|---|---|---|---|
Max. motor temperature (°C) | 0 N | ~45 °C | ~46 °C | Comparable, well below 60 °C limit. |
20 N | >90 °C | <60 °C | AL reduces motor temp. by ~30 °C; CF overheats dangerously. | |
Motor temperature difference (°C) | 20 N | ~25 °C | ~6–7 °C | AL frame yields more uniform motor temperatures due to better heat conduction. |
Total power consumption (W) | 0 N | 213.0 | 250.24 | AL is slightly higher due to greater mass. |
20 N | 774.46 | 741.78 | AL consumes less under high load; CF efficiency drops from overheating. | |
Resonant vibration peaks | 0 N | 60 Hz, 120 Hz, 180 Hz | <20 Hz | AL has a single low-frequency peak; CF shows multiple. |
20 N | +320 Hz (high amplitude) | +400 Hz (low amplitude) | CF shows a strong, undesirable high-frequency resonance; AL’s is weaker. |
Variant | Pheat, W | , W | |||
---|---|---|---|---|---|
Motor 1 | Motor 2 | Motor 3 | Motor 4 | ||
CF 0 N | 17.31 | 4.57 | 4.19 | 4.38 | 4.17 |
CF 20 N | 62.73 | 15.79 | 15.37 | 17.04 | 14.53 |
AL 0 N | 20.27 | 5.44 | 4.69 | 5.29 | 4.85 |
AL 20 N | 60.08 | 16.20 | 13.81 | 15.34 | 14.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenin, A. Effects of FPV Drone Frame Materials on Thermal Conditions of Motors Under Extreme Payloads: Experimental and Numerical Analysis. Processes 2025, 13, 3034. https://doi.org/10.3390/pr13103034
Milenin A. Effects of FPV Drone Frame Materials on Thermal Conditions of Motors Under Extreme Payloads: Experimental and Numerical Analysis. Processes. 2025; 13(10):3034. https://doi.org/10.3390/pr13103034
Chicago/Turabian StyleMilenin, Andrij. 2025. "Effects of FPV Drone Frame Materials on Thermal Conditions of Motors Under Extreme Payloads: Experimental and Numerical Analysis" Processes 13, no. 10: 3034. https://doi.org/10.3390/pr13103034
APA StyleMilenin, A. (2025). Effects of FPV Drone Frame Materials on Thermal Conditions of Motors Under Extreme Payloads: Experimental and Numerical Analysis. Processes, 13(10), 3034. https://doi.org/10.3390/pr13103034