Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6926 KB  
Review
Utilization of Additive Manufacturing in the Thermal Design of Electrical Machines: A Review
by Martin Sarap, Ants Kallaste, Payam Shams Ghahfarokhi, Hans Tiismus and Toomas Vaimann
Machines 2022, 10(4), 251; https://doi.org/10.3390/machines10040251 - 31 Mar 2022
Cited by 24 | Viewed by 8853
Abstract
Additive manufacturing (AM) is a key technology for advancing many fields, including electrical machines. It offers unparalleled design freedom together with low material waste and fast prototyping, which is why it has become to focus of many researchers. For electrical machines, AM allows [...] Read more.
Additive manufacturing (AM) is a key technology for advancing many fields, including electrical machines. It offers unparalleled design freedom together with low material waste and fast prototyping, which is why it has become to focus of many researchers. For electrical machines, AM allows the production of designs with optimized mechanical, electromagnetic and thermal parameters. This paper attempts to give the reader an overview of the existing research and thermal solutions which have been realized with the use of AM. These include novel heat sink and heat exchanger designs, solutions for cooling the machine windings directly, and additively manufactured hollow windings. Some solutions such as heat pipes, which have been produced with AM but not used to cool electrical machines, are also discussed, as these are used in conventional designs and will certainly be used for additively manufactured electrical machines in the future. Full article
Show Figures

Figure 1

15 pages, 1601 KB  
Article
The Existence of Autonomous Chaos in EDM Process
by Peng Wang, Zhuo Wang, Lihui Wang, Bo-Hu Li and Binxiu Wang
Machines 2022, 10(4), 252; https://doi.org/10.3390/machines10040252 - 31 Mar 2022
Cited by 1 | Viewed by 2264
Abstract
The dynamical evolution of electrical discharge machining (EDM) has drawn immense research interest. Previous research on mechanism analysis has discussed the deterministic nonlinearity of gap states at pulse-on discharging duration, while describing the pulse-off deionization process separately as a stochastic evolutionary process. In [...] Read more.
The dynamical evolution of electrical discharge machining (EDM) has drawn immense research interest. Previous research on mechanism analysis has discussed the deterministic nonlinearity of gap states at pulse-on discharging duration, while describing the pulse-off deionization process separately as a stochastic evolutionary process. In this case, the precise model describing a complete machining process, as well as the optimum performance parameters of EDM, can hardly be determined. The main purpose of this paper is to clarify whether the EDM system can maintain consistency in dynamic characteristics within a discharge interval. A nonlinear self-maintained equivalent model is first established, and two threshold conditions are obtained by the Shilnikov theory. The theoretical results prove that the EDM system could lead to chaos without external excitation. The time series of the deionization process recorded in the EDM experiments are then analyzed to further validate this theoretical conclusion. Qualitative chaotic analyses verify that the autonomous EDM process has chaotic characteristics. Quantitative methods are used to estimate the chaotic feature of the autonomous EDM process. By comparing the quantitative results of the autonomous EDM process with the non-autonomous EDM process, a deduction is further made that the EDM system will evolve towards steady chaos under an autonomous state. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

21 pages, 5279 KB  
Article
Analytical Determination and Influence Analysis of Stiffness Matrix of Ball Bearing under Different Load Conditions
by Qingbo Niu, Yeteng Li, Yongsheng Zhu, Shiyuan Pei, Yanjing Yin and Dongfeng Wang
Machines 2022, 10(4), 238; https://doi.org/10.3390/machines10040238 - 28 Mar 2022
Cited by 5 | Viewed by 5640
Abstract
Bearing stiffness, as one of the most important service characteristics for ball bearing, plays a crucial role in the bearing design and rotor dynamic analysis. To rapidly and accurately calculate the stiffness matrix of ball bearing under the arbitrary load conditions, a 5-DOF [...] Read more.
Bearing stiffness, as one of the most important service characteristics for ball bearing, plays a crucial role in the bearing design and rotor dynamic analysis. To rapidly and accurately calculate the stiffness matrix of ball bearing under the arbitrary load conditions, a 5-DOF analytical model for bearing stiffness matrix analysis has been established by the ball–raceway contact analysis, implicit/explicit differential method, and matrix operations. The model has been validated comparing with the previous methods and experimental results. Based on this, the model has been used to investigate the influences of the load and operation conditions, the structural parameters variation on stiffness of ball bearing. The results show that property increasing axial preload can inhibit the attenuation of speed-varying stiffness, and the contact states between balls and raceways also have significant influence on the change in the stiffness of ball bearings. Besides, a larger curvature coefficient of inner raceway and a small curvature coefficient of outer raceway can effectively improve the stiffness of ball bearing at high speed. Therefore, the proposed method can be a useful tool in bearing optimize design and performance analysis of ball and rotor system under various load conditions. Full article
Show Figures

Figure 1

15 pages, 7479 KB  
Article
The Modelling and Analysis of Micro-Milling Forces for Fabricating Thin-Walled Micro-Parts Considering Machining Dynamics
by Peng Wang, Qingshun Bai, Kai Cheng, Liang Zhao and Hui Ding
Machines 2022, 10(3), 217; https://doi.org/10.3390/machines10030217 - 20 Mar 2022
Cited by 13 | Viewed by 3587
Abstract
In the fabrication process of thin-walled micro-parts, both micro-cutting tools and thin-walled micro-parts have the characteristics of small size and low stiffness. Therefore, the regenerative chatter during the machining process cannot be ignored. The influence of the tool runout error and actual trochoidal [...] Read more.
In the fabrication process of thin-walled micro-parts, both micro-cutting tools and thin-walled micro-parts have the characteristics of small size and low stiffness. Therefore, the regenerative chatter during the machining process cannot be ignored. The influence of the tool runout error and actual trochoidal trajectories of the cutting edge on micro-milling forces should also be considered comprehensively. In this paper, the tool runout error in the micro-milling process is first analysed, and an instantaneous undeformed chip thickness model is established considering the runout error. On this basis, the dynamic deformation of the micro-cutting tool and thin-walled micro-part is studied, and an instantaneous, undeformed, chip-thickness model is proposed with the consideration of both the runout error and dynamic deformation. The dynamic parameters of the machining system are obtained using the receptance coupling method. Finally, thin-walled micro-part machining experiments are carried out, and the obtained results of micro-milling force simulation based on the proposed model are compared with the experimental results. The results indicate that the micro-milling force modelling, by taking the influence of machining dynamics into account, has better prediction accuracy, and the difference between the predicted resultant forces and the experimental results is less than 11%. Full article
Show Figures

Figure 1

19 pages, 5887 KB  
Article
Partial Shaking Moment Balancing of Spherical Parallel Robots by a Combined Counterweight and Adjusting Kinematic Parameters Approach
by Hongfei Yu, Zhiqin Qian, Anil Borugadda, Wei Sun and Wenjun Zhang
Machines 2022, 10(3), 216; https://doi.org/10.3390/machines10030216 - 19 Mar 2022
Cited by 4 | Viewed by 3128
Abstract
Spherical parallel robots (SPR) are widely used in industries and robotic rehabilitation. Designing such systems for better balance properties is still a challenge. This paper presents a work to minimize the shaking moment for a fully force-balanced SPR by combining the counterweight (CW) [...] Read more.
Spherical parallel robots (SPR) are widely used in industries and robotic rehabilitation. Designing such systems for better balance properties is still a challenge. This paper presents a work to minimize the shaking moment for a fully force-balanced SPR by combining the counterweight (CW) and adjusting the kinematic parameters (AKP). An approximate model of the shaking moment of the SPR is proposed for computational efficiency (specifically allowing for a gradient-based optimization algorithm available in MATLAB) yet without the loss of much accuracy. The effectiveness of the proposed approach has been confirmed based on simulation, especially with the software system SPACAR due to its high reliability and easy availability. Specifically, the simulation result shows that compared with the unbalanced SPR, the shaking moment of the balanced SPR can decrease by more than 90%. It is worth mentioning that the AKP approach is an excellent example of mechatronics by combining the capability of re-planning the joint motion from the end-effector motion and adjusting the kinematic parameters to redistribute the mass of the whole robot for canceling the shaking force and shaking moment—inertia-induced force and moment to the ground. In short, the main contributions of this paper are: (1) a combined CW and AKP approach to the partial moment balancing of the SPR enhanced with a simplified mathematical model of the shaking moment of the SPR, and (2) a new design of the SPR which can be fully force balanced yet partially moment balanced. A note is taken that the simplified model is under the condition that the parameters of the link have certain geometric relations, which is a limitation of our approach. Full article
(This article belongs to the Special Issue Advances in Applied Mechatronics)
Show Figures

Figure 1

134 pages, 7014 KB  
Review
A Comprehensive Survey on Fault Tolerance in Multiphase AC Drives, Part 1: General Overview Considering Multiple Fault Types
by Alejandro G. Yepes, Oscar Lopez, Ignacio Gonzalez-Prieto, Mario J. Duran and Jesus Doval-Gandoy
Machines 2022, 10(3), 208; https://doi.org/10.3390/machines10030208 - 14 Mar 2022
Cited by 106 | Viewed by 11307
Abstract
Multiphase drives offer enhanced fault-tolerant capabilities compared with conventional three-phase ones. Their phase redundancy makes them able to continue running in the event of faults (e.g., open/short-circuits) in certain phases. Moreover, their greater number of degrees of freedom permits improving diagnosis and performance, [...] Read more.
Multiphase drives offer enhanced fault-tolerant capabilities compared with conventional three-phase ones. Their phase redundancy makes them able to continue running in the event of faults (e.g., open/short-circuits) in certain phases. Moreover, their greater number of degrees of freedom permits improving diagnosis and performance, not only under faults affecting individual phases, but also under those affecting the machine/drive as a whole. That is the case of failures in the dc link, resolver/encoder, control unit, cooling system, etc. Accordingly, multiphase drives are becoming remarkable contenders for applications where high reliability is required, such as electric vehicles and standalone/off-shore generation. Actually, the literature on the subject has grown exponentially in recent years. Various review papers have been published, but none of them currently cover the state-of-the-art in a comprehensive and up-to-date fashion. This two-part paper presents an overview concerning fault tolerance in multiphase drives. Hundreds of citations are classified and critically discussed. Although the emphasis is put on fault tolerance, fault detection/diagnosis is also considered to some extent, because of its importance in fault-tolerant drives. The most important recent advances, emerging trends and open challenges are also identified. Part 1 provides a comprehensive survey considering numerous kinds of faults, whereas Part 2 is focused on phase/switch open-circuit failures. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

14 pages, 5204 KB  
Article
Optimization Design and Performance Analysis of a Reverse-Salient Permanent Magnet Synchronous Motor
by Xiaokun Zhao, Baoquan Kou, Changchuang Huang and Lu Zhang
Machines 2022, 10(3), 204; https://doi.org/10.3390/machines10030204 - 11 Mar 2022
Cited by 15 | Viewed by 10673
Abstract
The reverse-salient permanent magnet synchronous motor (RSPMSM) is a competitive candidate for electric vehicles due to its high torque density and high efficiency. This paper proposes an optimized RSPMSM by adopting a segmented permanent magnet structure. First, the structure, electromagnetic torque, and current [...] Read more.
The reverse-salient permanent magnet synchronous motor (RSPMSM) is a competitive candidate for electric vehicles due to its high torque density and high efficiency. This paper proposes an optimized RSPMSM by adopting a segmented permanent magnet structure. First, the structure, electromagnetic torque, and current control laws of the RSPMSM are introduced in detail. Second, the optimization design method of the RSPMSM is proposed by taking the torque and constant-power speed range as optimized objectives, with the saliency ratio as a constraint. The optimized model of the RSPMSM is determined using the genetic algorithm (GA). Further performance analysis and comparisons are made between the initial motor and the optimized motor. Finally, a prototype is manufactured, and the performance of the RSPMSM is verified through the finite element method (FEM) and experiments. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

25 pages, 75333 KB  
Article
Personalized Artificial Tibia Bone Structure Design and Processing Based on Laser Powder Bed Fusion
by Nan Yang, Youping Gong, Honghao Chen, Wenxin Li, Chuanping Zhou, Rougang Zhou and Huifeng Shao
Machines 2022, 10(3), 205; https://doi.org/10.3390/machines10030205 - 11 Mar 2022
Cited by 5 | Viewed by 3396
Abstract
Bone defects caused by bone diseases and bone trauma need to be implanted or replaced by surgery. Therefore, it is of great significance to design and prepare a tibial implant with good biocompatibility and excellent comprehensive mechanical properties. In this paper, with 316L [...] Read more.
Bone defects caused by bone diseases and bone trauma need to be implanted or replaced by surgery. Therefore, it is of great significance to design and prepare a tibial implant with good biocompatibility and excellent comprehensive mechanical properties. In this paper, with 316L stainless steel powder as the main material, a personalized artificial tibia design and processing method based on laser powder bed fusion is proposed. Firstly, the personalized model of the damaged part of the patient is reconstructed. Then, the porous structure of human tibia is manufactured by selective laser melting technology. To research the factors affecting the quality of selective laser melting porous structure, a laser heat source model, heat transfer model and molten pool model of laser powder bed fusion process were constructed; then, by changing the laser process parameters (laser power, laser beam diameter, scanning speed, powder layer thickness, etc.) to conduct multiple sets of simulation experiments, it is obtained that when the “laser power is 180 W, the laser scanning speed is 1000 mm/s, the laser beam diameter is 80 μm, the powder layer thickness is 50 μm”, the porous stainless steel parts with better quality can be obtained. Finally, the porous structure was fabricated by selective laser processing, and its properties were tested and analyzed. The experimental results show that the cell side length of cube is 1.2 mm, the elastic modulus of octahedral porous structure with pillar diameter of 0.35 mm is about 17.88 GPa, which match well with tibial bone tissue. Full article
(This article belongs to the Special Issue 3D/4D Bioprinting)
Show Figures

Figure 1

12 pages, 4493 KB  
Article
Influence of Uneven Lighting on Quantitative Indicators of Surface Defects
by Ihor Konovalenko, Pavlo Maruschak, Halyna Kozbur, Janette Brezinová, Jakub Brezina, Bohdan Nazarevich and Yaroslav Shkira
Machines 2022, 10(3), 194; https://doi.org/10.3390/machines10030194 - 7 Mar 2022
Cited by 43 | Viewed by 3956
Abstract
The impact of the illumination level on the quantitative indicators of mechanical damage of the rolled strip is investigated. To do so, a physical model experiment was conducted in the laboratory. The obtained images of defects at light levels in the range of [...] Read more.
The impact of the illumination level on the quantitative indicators of mechanical damage of the rolled strip is investigated. To do so, a physical model experiment was conducted in the laboratory. The obtained images of defects at light levels in the range of 2–800 lx were recognized by a neural network model based on the U-net architecture with a decoder based on ResNet152. Two levels of illumination were identified, at which the total area of recognized defects increased: 50 lx and 300 lx. A quantitative assessment of the overall accuracy of defect recognition was conducted on the basis of comparison with data from images marked by an expert. The best recognition result (with Dice similarity coefficient DSC = 0.89) was obtained for the illumination of 300 lx. At lower light levels (less than 200 lx), some of the damage remained unrecognized. At high light levels (higher than 500 lx), a decrease in DSC was observed, mainly due to the fact that the surface objects are better visible and the recognized fragments become wider. In addition, more false-positives fragments were recognized. The obtained results are valuable for further adjustment of industrial systems for diagnosing technological defects on rolled metal strips. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

11 pages, 4157 KB  
Article
Experimental Research on the Coupling Relationship between Fishtail Stiffness and Undulatory Frequency
by Yuanhao Zhang, Rongjie Kang, Donato Romano, Paolo Dario and Zhibin Song
Machines 2022, 10(3), 182; https://doi.org/10.3390/machines10030182 - 3 Mar 2022
Cited by 6 | Viewed by 2765
Abstract
Fish can swim in a variety of states. For example, they look flexible and perform low-frequency undulatory locomotion when cruising, but they seem very powerful and stiff and perform high-frequency undulatory when hunting. In the process of changing the motion state, the stiffness [...] Read more.
Fish can swim in a variety of states. For example, they look flexible and perform low-frequency undulatory locomotion when cruising, but they seem very powerful and stiff and perform high-frequency undulatory when hunting. In the process of changing the motion state, the stiffness of the fish body affects the swimming performance of the fish. In this article, we imitated the change of stiffness by superimposing rubber sheets and used experimental methods to test its swimming performance under different swing frequencies. A series of rubber fish tails were made according to the analysis of the swimming movement of real fish, providing different stiffness values and changing the curves of the body. In the prototype experiments, the base of the fish tail was fixed to a platform via a force sensor, which can oscillate at various speeds, so that the fish tail was able to swing and the thrust could be tested at different frequencies. According to the experimental results, we found that with the change of the swing frequency, there were different optimal stiffnesses that could make the thrust reach the maximum value, and with the increase of stiffness, the envelope interval of the swing curve gradually widened, the amplitude increased, and the hysteresis of the tail fin relative to the end decreased. Full article
(This article belongs to the Special Issue Advances in Underwater Robot Technology)
Show Figures

Figure 1

18 pages, 5377 KB  
Article
A Comparative Study to Predict Bearing Degradation Using Discrete Wavelet Transform (DWT), Tabular Generative Adversarial Networks (TGAN) and Machine Learning Models
by Keval Bhavsar, Vinay Vakharia, Rakesh Chaudhari, Jay Vora, Danil Yurievich Pimenov and Khaled Giasin
Machines 2022, 10(3), 176; https://doi.org/10.3390/machines10030176 - 26 Feb 2022
Cited by 41 | Viewed by 5903
Abstract
Prognostics and health management (PHM) is a framework to identify damage prior to its occurrence which leads to the reduction of both maintenance costs and safety hazards. Based on the data collected in condition monitoring, the degradation of the part is predicted. Studies [...] Read more.
Prognostics and health management (PHM) is a framework to identify damage prior to its occurrence which leads to the reduction of both maintenance costs and safety hazards. Based on the data collected in condition monitoring, the degradation of the part is predicted. Studies show that most failures are caused by faults in rolling element bearing, which highlights that a bearing is one of the most important mechanical components of any machine. Thus, it becomes important to monitor bearing degradation to make sure that it is utilized properly. Generally, machine learning (ML) or deep learning (DL) techniques are utilized to predict bearing degradation using a data-driven approach, where signals are captured from the machine. There should be a large amount of data to apply either ML or DL techniques, but it is difficult to collect that amount of data directly from any machine. In this study, health assessment is carried out using the correlation coefficient to divide the bearing life into two degradation stages. The raw signal is processed using discrete wavelet transform (DWT), where mutual information (MI) is used to rank and select the base wavelet, after which tabular generative adversarial networks (TGAN) are used to generate the artificial coefficients. Statistical features are calculated from the real data (DWT coefficients) and the artificial data (generated from TGAN). The constructed feature vector is then used as an input to train machine learning models, namely ensemble bagged tree (EBT) and Gaussian process regression with the squared exponential kernel function (SEGPR), to estimate bearing degradation conditions. Both the machine learning models were validated on the publicly available experimental data of FEMTO bearing. Obtained results showed that the developed EBT and SEGPR models accurately predicted the bearing degradation conditions with the average lowest RMSE value of 0.0045 and MAE value of 0.0037. Full article
(This article belongs to the Special Issue Advances in Bearing Modeling, Fault Diagnosis, RUL Prediction)
Show Figures

Figure 1

15 pages, 4928 KB  
Article
3D Reconstruction of High Reflective Welding Surface Based on Binocular Structured Light Stereo Vision
by Baizhen Li, Zhijie Xu, Feng Gao, Yanlong Cao and Quancheng Dong
Machines 2022, 10(2), 159; https://doi.org/10.3390/machines10020159 - 20 Feb 2022
Cited by 41 | Viewed by 5816
Abstract
The inspection of welding surface quality is an important task for welding work. With the development of product quality inspection technology, automated and machine vision-based inspection have been applied to more industrial application fields because of its non-contact, convenience, and high efficiency. However, [...] Read more.
The inspection of welding surface quality is an important task for welding work. With the development of product quality inspection technology, automated and machine vision-based inspection have been applied to more industrial application fields because of its non-contact, convenience, and high efficiency. However, challenging material and optical phenomena such as high reflective surface areas often present on welding seams tend to produce artifacts such as holes in the reconstructed model using current visual sensors, hence leading to insufficiency or even errors in the inspection result. This paper presents a 3D reconstruction technique for highly reflective welding surfaces based on binocular style structured light stereo vision. The method starts from capturing a fully lit image for identifying highly reflective regions on a welding surface using conventional computer vision models, including gray-scale, binarization, dilation, and erosion. Then, fringe projection profilometry is used to generate point clouds on the interested area. The mapping and alignment from 2D image to 3D point cloud is then established to highlight features that are vital for eliminating “holes”—large featureless areas—caused by high reflections such as the specular mirroring effect. A two-way slicing method is proposed to operate on the refined point cloud, following the concept of dimensionality reduction to project the sliced point cloud onto different image planes before a Smoothing Spline model is applied to fit the discrete point formed by projection. The 3D coordinate values of points in the “hole” region are estimated according to the fitted curves and appended to the original point cloud using iterative algorithms. Experiment results verify that the proposed method can accurately reconstruct a wide range of welding surfaces with significantly improved precision. Full article
(This article belongs to the Special Issue Precision Measurement and Machines)
Show Figures

Figure 1

15 pages, 2484 KB  
Article
Predicting the Electrical Impedance of Rolling Bearings Using Machine Learning Methods
by Eckhard Kirchner, Christoph Bienefeld, Tobias Schirra and Alexander Moltschanov
Machines 2022, 10(2), 156; https://doi.org/10.3390/machines10020156 - 18 Feb 2022
Cited by 5 | Viewed by 2903
Abstract
The present paper describes a measurement setup and a related prediction of the electrical impedance of rolling bearings using machine learning algorithms. The impedance of the rolling bearing is expected to be key in determining the state of health of the bearing, which [...] Read more.
The present paper describes a measurement setup and a related prediction of the electrical impedance of rolling bearings using machine learning algorithms. The impedance of the rolling bearing is expected to be key in determining the state of health of the bearing, which is an essential component in almost all machines. In previous publications, the determination of the impedance of rolling bearings has already been advanced using analytical methods. Despite the improvements in accuracy achieved within the calculations, there are still discrepancies between the calculated and the measured impedance, leading to an approximately constant off-set value. This discrepancy motivates the machine learning approach introduced in this paper. It is shown that with the help of the data-driven methods the difference between analytical prediction and measurement is reduced to the order of up to 2% across the operational range analyzed so far. To introduce the context of the research shown, first the underlying physics of bearing impedance is presented. Subsequently different machine learning approaches are highlighted and compared with each other in terms of their prediction quality in the results part of this paper. As a further aspect, in addition to the prediction of the bearing impedance, it is investigated whether the rotational speed present at the bearing can be predicted from the frequency spectrum of the impedance using order analysis methods which is independent from the force prediction accuracy. The background to this is that, if the prediction quality is sufficiently high, the additional use of speed sensors could be omitted in future investigations. Full article
Show Figures

Graphical abstract

20 pages, 17410 KB  
Article
Stability Analysis of Vaneless Space in High-Head Pump-Turbine under Turbine Mode: Computational Fluid Dynamics Simulation and Particle Imaging Velocimetry Measurement
by Wanquan Deng, Lianchen Xu, Zhen Li, Wen Tang, Xiaolong Wang, Linmin Shang, Demin Liu and Xiaobing Liu
Machines 2022, 10(2), 143; https://doi.org/10.3390/machines10020143 - 16 Feb 2022
Cited by 26 | Viewed by 3311
Abstract
When the Francis-type reversible pump-turbine runs under partial load, the pressure pulsation amplitude and frequency in vaneless space are high, posing a serious threat to the stability of unit operation. Water presents weak compressibility in a high-head pump-turbine, thereby affecting the amplitude–frequency characteristics [...] Read more.
When the Francis-type reversible pump-turbine runs under partial load, the pressure pulsation amplitude and frequency in vaneless space are high, posing a serious threat to the stability of unit operation. Water presents weak compressibility in a high-head pump-turbine, thereby affecting the amplitude–frequency characteristics of pressure pulsation. This study used numerical simulations in a model and prototype pump-turbine and particle image velocimetry (PIV) in a model pump-turbine to examine the internal flow field and pressure pulsation characteristics and determine the effect of the flow in the vaneless space on the amplitude–frequency characteristics of the pressure pulsation. The pressure pulsation amplitude–frequency characteristics were verified through prototype tests. The effects of the weak compressibility of the water on the propagation law of pressure pulsation throughout the flow passage of the prototype and model pump-turbine were roughly similar but exhibited certain differences. Considering the weak compressibility of water, the pressure pulsation fluctuations in each flow passage of the prototype and model pump-turbine exhibit varying degrees of improvement, which is more obvious at the prototype scale. Therefore, the pressure wave disturbance caused by the weak compressibility of the water has different effects on the prototype scale and model scale of the high-head Francis pump-turbine. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

15 pages, 4135 KB  
Article
Fundamental Design and Modelling of the Superconducting Magnet for the High-Speed Maglev: Mechanics, Electromagnetics, and Loss Analysis during Instability
by Zhihao Wu, Jianxun Jin, Boyang Shen, Luning Hao, Youguang Guo and Jianguo Zhu
Machines 2022, 10(2), 113; https://doi.org/10.3390/machines10020113 - 3 Feb 2022
Cited by 11 | Viewed by 4834
Abstract
The high-temperature superconductor (HTS) has been recognised as one of the most up-and-coming materials thanks to its superior electromagnetic performance (e.g., zero resistance). For a high-speed maglev, the HTS magnet can be the most crucial component because it is in charge of both [...] Read more.
The high-temperature superconductor (HTS) has been recognised as one of the most up-and-coming materials thanks to its superior electromagnetic performance (e.g., zero resistance). For a high-speed maglev, the HTS magnet can be the most crucial component because it is in charge of both the levitation and the propulsion of the maglev. Therefore, a fundamental study of HTS magnets for maglev is crucial. This article presents the fundamental design and modelling of the superconducting magnet for a high-speed maglev, including mechanics, electromagnetics, and loss analysis during instability. First, the measurements of the superconducting wire were performed. The HTS magnet was primarily designed and modelled to fulfil the basic electromagnetic requirements (e.g., magnetic field) in order to drive the maglev at a high speed. The modelling was verified by experimental tests on a scale-down HTS magnet. A more professional model using the H-formulation based on the finite element method (FEM) was built to further investigate some deeper physical phenomenon of the HTS magnet (e.g., current density and loss behaviours), particularly in situations where the high-speed maglev is in the normal steady state or encountering instability. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

15 pages, 3926 KB  
Article
Study on Mechanism of Roundness Improvement by the Internal Magnetic Abrasive Finishing Process Using Magnetic Machining Tool
by Jiangnan Liu and Yanhua Zou
Machines 2022, 10(2), 112; https://doi.org/10.3390/machines10020112 - 2 Feb 2022
Cited by 9 | Viewed by 2580
Abstract
An internal magnetic abrasive finishing process using a magnetic machining tool was proposed for finishing the internal surface of the thick tubes. It has been proved that this process is effective for finishing thick tubes, and it can improve the roundness while improving [...] Read more.
An internal magnetic abrasive finishing process using a magnetic machining tool was proposed for finishing the internal surface of the thick tubes. It has been proved that this process is effective for finishing thick tubes, and it can improve the roundness while improving the roughness. However, the mechanism of improving the roundness is not clear, so it is necessary to study it theoretically. In this research, firstly, the roundness curve expression was derived using the principle of roundness measurement by the assumed center method, and the expression of roundness curve expanded by Fourier series was obtained. The influencing factors of roundness improvement were then analyzed. Secondly, the experiments were carried out on SUS304 stainless steel tubes. By confirming the mechanism analysis results and the experimental results, it was concluded that the internal magnetic abrasive finishing process using the magnetic machining tool was effective for improving the roundness of the thick tubes whose thickness is from 10 mm to 30 mm. As the thickness of the tube increased, the improvement in roundness decreased. Full article
(This article belongs to the Special Issue High Precision Abrasive Machining: Machines, Processes and Systems)
Show Figures

Figure 1

15 pages, 8002 KB  
Article
A Hybrid Mechanism-Based Robot for End-Traction Lower Limb Rehabilitation: Design, Analysis and Experimental Evaluation
by Lipeng Wang, Junjie Tian, Jiazheng Du, Siyuan Zheng, Jianye Niu, Zhengyan Zhang and Jiang Wu
Machines 2022, 10(2), 99; https://doi.org/10.3390/machines10020099 - 27 Jan 2022
Cited by 13 | Viewed by 4030
Abstract
Conventional lower-limb rehabilitation robots cannot provide in-time rehabilitation training for stroke patients in the acute stage due to their large size and mass as well as their complex wearing process. Aiming to solve the problems, first, a novel hybrid end-traction lower-limb rehabilitation robot [...] Read more.
Conventional lower-limb rehabilitation robots cannot provide in-time rehabilitation training for stroke patients in the acute stage due to their large size and mass as well as their complex wearing process. Aiming to solve the problems, first, a novel hybrid end-traction lower-limb rehabilitation robot (HE-LRR) was designed as the lower-limb rehabilitation requirement of patients in the acute stage, in this paper. The usage of (2-UPS + U)&(R + RPS)&(2-RR) hybrid mechanism and a mirror motion actuator had the advantages of compact structure, large working space and short wearing time to the HE-LRR. Then, the mobility of the HE-LRR was calculated and the motion property was analyzed based on screw theory. Meanwhile, the trajectory planning of the HE-LRR was carried out based on MOTOmed® motion training. Finally, the motion capture and surface electromyography (sEMG) signal acquisition experiments in the MOTOmed motion training were performed. The foot trajectory experimental effect and the lower-limb muscle groups activation rules were studied ulteriorly. The experimental results showed that the HE-LRR achieved good kinematic accuracy and lower limb muscle groups training effect, illustrating that the HE-LRR possessed good application prospects for the lower-limb rehabilitation of patients in the acute stage. This research could also provide a theoretical basis for improving the standardization and compliance of lower-limb robot rehabilitation training. Full article
(This article belongs to the Special Issue Smart Machines: Applications and Advances in Human Motion Analysis)
Show Figures

Figure 1

37 pages, 1941 KB  
Review
Motion Planning for Mobile Manipulators—A Systematic Review
by Thushara Sandakalum and Marcelo H. Ang, Jr.
Machines 2022, 10(2), 97; https://doi.org/10.3390/machines10020097 - 27 Jan 2022
Cited by 103 | Viewed by 20019
Abstract
One of the fundamental fields of research is motion planning. Mobile manipulators present a unique set of challenges for the planning algorithms, as they are usually kinematically redundant and dynamically complex owing to the different dynamic behavior of the mobile base and the [...] Read more.
One of the fundamental fields of research is motion planning. Mobile manipulators present a unique set of challenges for the planning algorithms, as they are usually kinematically redundant and dynamically complex owing to the different dynamic behavior of the mobile base and the manipulator. The purpose of this article is to systematically review the different planning algorithms specifically used for mobile manipulator motion planning. Depending on how the two subsystems are treated during planning, sampling-based, optimization-based, search-based, and other planning algorithms are grouped into two broad categories. Then, planning algorithms are dissected and discussed based on common components. The problem of dealing with the kinematic redundancy in calculating the goal configuration is also analyzed. While planning separately for the mobile base and the manipulator provides convenience, the results are sub-optimal. Coordinating between the mobile base and manipulator while utilizing their unique capabilities provides better solution paths. Based on the analysis, challenges faced by the current planning algorithms and future research directions are presented. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

14 pages, 4754 KB  
Article
A Novel Fault Diagnosis Method Based on the KELM Optimized by Whale Optimization Algorithm
by Ruijun Liang, Yao Chen and Rupeng Zhu
Machines 2022, 10(2), 93; https://doi.org/10.3390/machines10020093 - 25 Jan 2022
Cited by 26 | Viewed by 3213
Abstract
To solve the problem that fault features are difficult to extract and the time-frequency features cannot fully represent the state information, a novel method is proposed in this paper based on the whale optimization algorithm (WOA) and the kernel extreme learning machine (KELM). [...] Read more.
To solve the problem that fault features are difficult to extract and the time-frequency features cannot fully represent the state information, a novel method is proposed in this paper based on the whale optimization algorithm (WOA) and the kernel extreme learning machine (KELM). First, the vibration signals are processed by the ensemble empirical mode decomposition and sample entropy to obtain the feature vectors. Based on this, a KELM model for fault diagnosis is established. Then, the penalty factor and the kernel parameters in the KELM are optimized by WOA to improve the stability and classification accuracy. Taking faults of a ball-screw pair on a linear feed table as a case, the experimental results indicate that the proposed method can effectively extract the fault features of the ball-screw pair, and it can achieve higher classification accuracy, faster convergence speed, and greater convergence precision than the existing fault diagnosis methods. Full article
Show Figures

Figure 1

22 pages, 36854 KB  
Article
The Effect of Rotating Speeds on the Cavitation Characteristics in Hydraulic Torque Converter
by Meng Guo, Cheng Liu, Qingdong Yan, Wei Wei and Boo Cheong Khoo
Machines 2022, 10(2), 80; https://doi.org/10.3390/machines10020080 - 23 Jan 2022
Cited by 17 | Viewed by 5347
Abstract
Hydraulic torque converter is a kind of high speed rotating machine using viscosity hydraulic oil as working medium, and its internal flow field is very complex. Thereby cavitation can occur easily in the working process, resulting in severe degradation of torque converter performance, [...] Read more.
Hydraulic torque converter is a kind of high speed rotating machine using viscosity hydraulic oil as working medium, and its internal flow field is very complex. Thereby cavitation can occur easily in the working process, resulting in severe degradation of torque converter performance, noise, vibration and even failure. In order to reveal the effect of rotating speeds on the cavitation characteristics, a full flow passage geometry and a computational fluid dynamics (CFD) model with cavitation were developed to analyze the flow behavior in the torque converter. The results show that cavitation occurs when the speed difference between pump and turbine exceeds 1400 rpm for the basic model torque converter, which could be used as a useful indicator for the occurrence and degree of severity of flow cavitation. The increase of pump rotating speed or the decrease of speed ratio will intensify cavitation, which reduces the hydraulic transmission capacity and efficiency by over 20%, and seriously alters the shape, size, vapor volume fraction and region of cavitation bubbles. In extreme cases, more than 80% of the area on the suction side of the stator blade could be covered by cavitation bubbles. Moreover, the increase of pump rotating speed also changes the critical cavitation number and extends the cavitation range towards high speed ratio conditions not previously affected. These findings can provide guidance on how to choose the operating conditions of the hydraulic torque converter and how to improve its hydrodynamic performance and stability. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

16 pages, 4515 KB  
Article
Assist-As-Needed Control Strategy of Bilateral Upper Limb Rehabilitation Robot Based on GMM
by Maoqin Li, Jiaji Zhang, Guokun Zuo, Guang Feng and Xueliang Zhang
Machines 2022, 10(2), 76; https://doi.org/10.3390/machines10020076 - 21 Jan 2022
Cited by 27 | Viewed by 4743
Abstract
Robotic-assisted rehabilitation therapy has been shown to be effective in improving upper limb motor function and the daily behavior of patients with motor dysfunction. At present, the majority of upper limb rehabilitation robots can only move in the two-dimensional plane, and cannot adjust [...] Read more.
Robotic-assisted rehabilitation therapy has been shown to be effective in improving upper limb motor function and the daily behavior of patients with motor dysfunction. At present, the majority of upper limb rehabilitation robots can only move in the two-dimensional plane, and cannot adjust the assistance mode in real-time according to the patient’s rehabilitation needs. In this paper, according to the shortcomings of the current rehabilitation robot only moving in the two-dimensional plane, a type of bilateral mirror upper limb rehabilitation robot structure with the healthy side assisting the affected side is proposed. This can move in three-dimensional space. Additionally, an assist-as-needed (AAN) control strategy for upper limb rehabilitation training is proposed based on the bilateral upper limb rehabilitation robot. The control strategy adopts Gaussian Mixture Model (GMM) and impedance controller to maximize the patient’s rehabilitation effect. In the task’s design, there is no need to rely on the assistance of the therapist, only the patients who completed the task independently. GMM guides the rehabilitation robot to provide different assistance for the patients at different task stages and induces the patients to complete the rehabilitation training independently by judging the extent to which the patients can complete the task. Furthermore, in this paper, the effectiveness of the proposed control strategy was verified by three volunteers participating in a two-dimensional task. The experimental results show that the proposed AAN control strategy can effectively provide appropriate assistance according to the classification stage of the interaction between the patients and the rehabilitation robot, and thus, patients can better achieve the rehabilitation effect during the rehabilitation task as much as possible. Full article
(This article belongs to the Topic Motion Planning and Control for Robotics)
Show Figures

Figure 1

53 pages, 6453 KB  
Review
Marine Systems and Equipment Prognostics and Health Management: A Systematic Review from Health Condition Monitoring to Maintenance Strategy
by Peng Zhang, Zeyu Gao, Lele Cao, Fangyang Dong, Yongjiu Zou, Kai Wang, Yuewen Zhang and Peiting Sun
Machines 2022, 10(2), 72; https://doi.org/10.3390/machines10020072 - 19 Jan 2022
Cited by 63 | Viewed by 14923
Abstract
Prognostics and health management (PHM) is an essential means to optimize resource allocation and improve the intelligent operation and maintenance (O&M) efficiency of marine systems and equipment (MSAE). PHM generally consists of four technical processes, namely health condition motoring (HCM), fault diagnosis (FD), [...] Read more.
Prognostics and health management (PHM) is an essential means to optimize resource allocation and improve the intelligent operation and maintenance (O&M) efficiency of marine systems and equipment (MSAE). PHM generally consists of four technical processes, namely health condition motoring (HCM), fault diagnosis (FD), health prognosis (HP), and maintenance decision (MD). In recent years, a large amount of research has been implemented in each process. However, there is not any systematic review that covers the technical framework comprehensively. This article presents a review of the framework of PHM in the marine field to fill the gap. First, the essential HCM methods, which are widely observed in the academic literature, are introduced systematically. Then, the commonly used FD approaches and their applications in MSAE are summarized, and the implementation process of intelligent methods is systematically introduced. After that, the technologies of HP have been reviewed, including the construction of health indicator (HI), health stage (HS) division, and popular remaining useful life (RUL) prediction approaches. Afterwards, the evolution of maintenance strategy in the maritime field is reviewed. Finally, the challenges of implementing PHM for intelligent ships are put forward. Full article
Show Figures

Figure 1

21 pages, 9622 KB  
Article
A Calculation Method for Tooth Wear Depth Based on the Finite Element Method That Considers the Dynamic Mesh Force
by Zao He, Yumei Hu, Xingyuan Zheng and Yuanyuan Yu
Machines 2022, 10(2), 69; https://doi.org/10.3390/machines10020069 - 18 Jan 2022
Cited by 20 | Viewed by 4668
Abstract
Gear wear is a progressive material removal process that gradually changes the tooth profile shape and dynamic mesh force, where the dynamic mesh force affects the tooth surface wear. To describe this process, a spur gear dynamic model that includes the mesh stiffness [...] Read more.
Gear wear is a progressive material removal process that gradually changes the tooth profile shape and dynamic mesh force, where the dynamic mesh force affects the tooth surface wear. To describe this process, a spur gear dynamic model that includes the mesh stiffness and unloaded static transmission error (STE) of the worn tooth profile is proposed for calculating the dynamic mesh force. Then, based on the finite element method (FEM), a dynamic contact analysis model that considers the dynamic mesh force is proposed for calculating the time-varying contact stress and relative sliding distance of the tooth surface mesh point. Finally, combined with the Archard wear model, a tooth wear depth calculation method that considers the worn tooth profile and the dynamic mesh force is proposed. In addition, the wear depth and dynamic characteristics under different wear times are studied. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

16 pages, 9947 KB  
Article
Design of a 3D-Printed Hand Exoskeleton Based on Force-Myography Control for Assistance and Rehabilitation
by Daniele Esposito, Jessica Centracchio, Emilio Andreozzi, Sergio Savino, Gaetano D. Gargiulo, Ganesh R. Naik and Paolo Bifulco
Machines 2022, 10(1), 57; https://doi.org/10.3390/machines10010057 - 13 Jan 2022
Cited by 48 | Viewed by 12460
Abstract
Voluntary hand movements are usually impaired after a cerebral stroke, affecting millions of people per year worldwide. Recently, the use of hand exoskeletons for assistance and motor rehabilitation has become increasingly widespread. This study presents a novel hand exoskeleton, designed to be low [...] Read more.
Voluntary hand movements are usually impaired after a cerebral stroke, affecting millions of people per year worldwide. Recently, the use of hand exoskeletons for assistance and motor rehabilitation has become increasingly widespread. This study presents a novel hand exoskeleton, designed to be low cost, wearable, easily adaptable and suitable for home use. Most of the components of the exoskeleton are 3D printed, allowing for easy replication, customization and maintenance at a low cost. A strongly underactuated mechanical system allows one to synergically move the four fingers by means of a single actuator through a rigid transmission, while the thumb is kept in an adduction or abduction position. The exoskeleton’s ability to extend a typical hypertonic paretic hand of stroke patients was firstly tested using the SimScape Multibody simulation environment; this helped in the choice of a proper electric actuator. Force-myography was used instead of the standard electromyography to voluntarily control the exoskeleton with more simplicity. The user can activate the flexion/extension of the exoskeleton by a weak contraction of two antagonist muscles. A symmetrical master–slave motion strategy (i.e., the paretic hand motion is activated by the healthy hand) is also available for patients with severe muscle atrophy. An inexpensive microcontroller board was used to implement the electronic control of the exoskeleton and provide feedback to the user. The entire exoskeleton including batteries can be worn on the patient’s arm. The ability to provide a fluid and safe grip, like that of a healthy hand, was verified through kinematic analyses obtained by processing high-framerate videos. The trajectories described by the phalanges of the natural and the exoskeleton finger were compared by means of cross-correlation coefficients; a similarity of about 80% was found. The time required for both closing and opening of the hand exoskeleton was about 0.9 s. A rigid cylindric handlebar containing a load cell measured an average power grasp force of 94.61 N, enough to assist the user in performing most of the activities of daily living. The exoskeleton can be used as an aid and to promote motor function recovery during patient’s neurorehabilitation therapy. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

28 pages, 6057 KB  
Article
Identification of Vehicle System Dynamics from the Aspect of Interaction between the Steering and the Suspension Systems
by Danijela Miloradović, Jovanka Lukić, Jasna Glišović and Nenad Miloradović
Machines 2022, 10(1), 46; https://doi.org/10.3390/machines10010046 - 8 Jan 2022
Cited by 2 | Viewed by 3492
Abstract
Steering and suspension systems of a motor vehicle have very important mutual connections that have direct influence on a vehicle’s steerability, stability, comfort and life expectancy. These mechanical and functional couplings cause an intensive interaction between the two mentioned vehicle systems on a [...] Read more.
Steering and suspension systems of a motor vehicle have very important mutual connections that have direct influence on a vehicle’s steerability, stability, comfort and life expectancy. These mechanical and functional couplings cause an intensive interaction between the two mentioned vehicle systems on a geometrical, kinematical and dynamical level. This article presents a study on nonparametric identification of dynamic interaction between the steering and the suspension system of a passenger vehicle. A specific methodology for experimental research in on-road conditions was designed that was in line with the research objectives and the applied measuring system. Experimental data were acquired for a curvilinear drive, with different constant driving speeds and on different roads. A multiple input/multiple output model for identification of the vehicle dynamics system from the aspect of interaction between the steering and the suspension system was developed. The analysis of experimental data was realized with the selection of a corresponding identification model, decoupling of model inputs and conditioned spectral analysis. The results of the conditioned spectral analysis of experimentally obtained data records indicate the level of interaction between the observed input and output parameters of the steering and the suspension systems to be in the frequency range below 30 Hz. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

20 pages, 5846 KB  
Article
Analysis, Design and Experimental Research of a Novel Bilateral Patient Transfer Robot
by Lingfeng Sang, Hongbo Wang and Yu Tian
Machines 2022, 10(1), 33; https://doi.org/10.3390/machines10010033 - 4 Jan 2022
Cited by 5 | Viewed by 3405
Abstract
Patient transfer has always been a difficult problem in the hospital. For medical staff, there are problems including high risk of infection, heavy physical labor and low efficiency of transfer; for patients, there are problems including poor comfort and secondary injury. In this [...] Read more.
Patient transfer has always been a difficult problem in the hospital. For medical staff, there are problems including high risk of infection, heavy physical labor and low efficiency of transfer; for patients, there are problems including poor comfort and secondary injury. In this paper, a novel bilateral patient transfer robot is investigated and designed. The following tasks are conducted: (1) Based on the process of patient transfer, a transfer model, which consists of two degrees of freedom, is proposed, and the working principle of bilateral patient transfer robot is obtained and analyzed in detail. (2) Force analysis of the patient transfer robot is conducted. The corresponding relationship between the patient comfort and the insertion angle is proposed, and the optimal sizes of mechanical structure are obtained. (3) Based on the theoretical analysis, the mechanical structure and the control system of the robot are designed, and the prototype is manufactured. (4) Experimental research is conducted. The results show that the prototype can complete the required motion performance with a carrying capacity up to 150 kg and patient comfort is excellent. The results of this paper prove that this kind of patient transfer robot has good performance, it can also reduce the burden on medical staff. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 5882 KB  
Article
Fatigue Analysis of Dozer Push Arms under Tilt Bulldozing Conditions
by Longye Pan, Xianglong Guan, Xingwei Luan, Yajun Huang, Ruwei Zhang, Jin-Hwan Choi and Xiangqian Zhu
Machines 2022, 10(1), 38; https://doi.org/10.3390/machines10010038 - 4 Jan 2022
Cited by 4 | Viewed by 7740
Abstract
Tilt bulldozing generates unbalanced loads on two push arms, which leads to the service lives of the two push arms being different. Because the push arms rotate in triaxial directions during tilt bulldozing, it is difficult to accurately analyze the fatigue life of [...] Read more.
Tilt bulldozing generates unbalanced loads on two push arms, which leads to the service lives of the two push arms being different. Because the push arms rotate in triaxial directions during tilt bulldozing, it is difficult to accurately analyze the fatigue life of the push arm with one specific boundary condition and loading history. Therefore, a fatigue analysis of the push arms under tilt bulldozing conditions is proposed based on co-simulation of RecurDyn-EDEM-AMESim in this paper. The control of tilt bulldozing conditions is realized automatically according to the tilt angle and blade depth. The dynamic loads of the push arms are accurately calculated in this virtual model. Subsequently, the stress–time histories are obtained to investigate the fatigue lives of push arms. Both the overall damage and the initiation positions of the cracks are predicted herein. It is determined that the fatigue lives of the right and left push arms are 7,317.84 h and 39,381.89 h, respectively. Thus, the life of the push arm on the blade’s tilted side is reduced by 81.42% compared to the other side. Additionally, experimental tests are conducted to verify the accuracy of the virtual model. Analysis results indicate that the strains of the push arms according to the virtual simulation are close to those measured in the experiments. Full article
(This article belongs to the Special Issue Dynamics and Diagnostics of Heavy-Duty Industrial Machines)
Show Figures

Figure 1

25 pages, 1333 KB  
Review
A Review of Thermal Monitoring Techniques for Radial Permanent Magnet Machines
by Tianze Meng and Pinjia Zhang
Machines 2022, 10(1), 18; https://doi.org/10.3390/machines10010018 - 24 Dec 2021
Cited by 23 | Viewed by 5958
Abstract
Permanent magnet machines are widely applied in motor drive systems. Therefore, condition monitoring of permanent magnet machines has great significance to assist maintenance. High temperatures are accountable for lots of typical malfunctions and faults, such as demagnetization of the permanent magnet (PM) and [...] Read more.
Permanent magnet machines are widely applied in motor drive systems. Therefore, condition monitoring of permanent magnet machines has great significance to assist maintenance. High temperatures are accountable for lots of typical malfunctions and faults, such as demagnetization of the permanent magnet (PM) and inter-turn short circuit of stator windings. Therefore, temperature monitoring of the PM and stator windings is essential for reliable operation. In this paper, an overview introducing and evaluating existing thermal monitoring methods is presented. First, the mechanism of thermal-caused failures for the PM and stator windings is introduced. Then, the design procedure and principles of existing temperature monitoring methods are introduced and summarized. Next, the evaluations and recommendations of application feasibility are demonstrated. Finally, the potential future challenges and opportunities for temperature monitoring of the PM and stator windings are discussed. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

19 pages, 5953 KB  
Article
Robust Lane Detection and Tracking Algorithm for Steering Assist Systems
by Mihail-Alexandru Andrei, Costin-Anton Boiangiu, Nicolae Tarbă and Mihai-Lucian Voncilă
Machines 2022, 10(1), 10; https://doi.org/10.3390/machines10010010 - 23 Dec 2021
Cited by 24 | Viewed by 5776
Abstract
Modern vehicles rely on a multitude of sensors and cameras to both understand the environment around them and assist the driver in different situations. Lane detection is an overall process as it can be used in safety systems such as the lane departure [...] Read more.
Modern vehicles rely on a multitude of sensors and cameras to both understand the environment around them and assist the driver in different situations. Lane detection is an overall process as it can be used in safety systems such as the lane departure warning system (LDWS). Lane detection may be used in steering assist systems, especially useful at night in the absence of light sources. Although developing such a system can be done simply by using global positioning system (GPS) maps, it is dependent on an internet connection or GPS signal, elements that may be absent in some locations. Because of this, such systems should also rely on computer vision algorithms. In this paper, we improve upon an existing lane detection method, by changing two distinct features, which in turn leads to better optimization and false lane marker rejection. We propose using a probabilistic Hough transform, instead of a regular one, as well as using a parallelogram region of interest (ROI), instead of a trapezoidal one. By using these two methods we obtain an increase in overall runtime of approximately 30%, as well as an increase in accuracy of up to 3%, compared to the original method. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 4607 KB  
Article
Optimizing the Sharpening Process of Hybrid-Bonded Diamond Grinding Wheels by Means of a Process Model
by Eckart Uhlmann and Arunan Muthulingam
Machines 2022, 10(1), 8; https://doi.org/10.3390/machines10010008 - 22 Dec 2021
Cited by 2 | Viewed by 3642
Abstract
The grinding wheel topography influences the cutting performance and thus the economic efficiency of a grinding process. In contrary to conventional grinding wheels, super abrasive grinding wheels should undergo an additional sharpening process after the initial profiling process to obtain a suitable microstructure [...] Read more.
The grinding wheel topography influences the cutting performance and thus the economic efficiency of a grinding process. In contrary to conventional grinding wheels, super abrasive grinding wheels should undergo an additional sharpening process after the initial profiling process to obtain a suitable microstructure of the grinding wheel. Due to the lack of scientific knowledge, the sharpening process is mostly performed manually in industrial practice. A CNC-controlled sharpening process can not only improve the reproducibility of grinding processes but also decrease the secondary processing time and thereby increase the economic efficiency significantly. To optimize the sharpening process, experimental investigations were carried out to identify the significant sharpening parameters influencing the grinding wheel topography. The sharpening block width lSb, the grain size of the sharpening block dkSb and the area-related material removal in sharpening V’’Sb were identified as the most significant parameters. Additional experiments were performed to further quantify the influence of the significant sharpening parameters. Based on that, a process model was developed to predict the required sharpening parameters for certain target topographies. By using the process model, constant work results and improved process reliability can be obtained. Full article
Show Figures

Figure 1

21 pages, 6560 KB  
Article
Study on Improvement of Lightning Damage Detection Model for Wind Turbine Blade
by Takuto Matsui, Kazuo Yamamoto and Jun Ogata
Machines 2022, 10(1), 9; https://doi.org/10.3390/machines10010009 - 22 Dec 2021
Cited by 12 | Viewed by 4181
Abstract
There have been many reports of damage to wind turbine blades caused by lightning strikes in Japan. In some of these cases, the blades struck by lightning continue to rotate, causing more serious secondary damage. To prevent such accidents, it is a requirement [...] Read more.
There have been many reports of damage to wind turbine blades caused by lightning strikes in Japan. In some of these cases, the blades struck by lightning continue to rotate, causing more serious secondary damage. To prevent such accidents, it is a requirement that a lightning detection system is installed on the wind turbine in areas where winter lightning occurs in Japan. This immediately stops the wind turbine if the system detects a lightning strike. Normally, these wind turbines are restarted after confirming soundness of the blade through visual inspection. However, it is often difficult to confirm the soundness of the blade visually for reasons such as bad weather. This process prolongs the time taken to restart, and it is one of the causes that reduces the availability of the wind turbines. In this research, we constructed a damage detection model for wind turbine blades using machine learning based on SCADA system data and, thereby, considered whether the technology automatically confirms the soundness of wind turbine blades. Full article
(This article belongs to the Special Issue Advances in Wind and Solar Energy Generation)
Show Figures

Figure 1

21 pages, 10106 KB  
Article
Adjustable Speed Control and Damping Analysis of Torsional Vibrations in VSD Compressor Systems
by Mattia Rossi, Maria Stefania Carmeli and Marco Mauri
Machines 2021, 9(12), 374; https://doi.org/10.3390/machines9120374 - 20 Dec 2021
Cited by 6 | Viewed by 3808
Abstract
This paper proposes a model-based two-degree-of-freedom (2DOF) speed control for a medium voltage (MV) variable speed drive (VSD) connected to a centrifugal compressor (CC) train. Torsional mode excitations in the drive shaft due to converter switching behaviour are considered. An effective description of [...] Read more.
This paper proposes a model-based two-degree-of-freedom (2DOF) speed control for a medium voltage (MV) variable speed drive (VSD) connected to a centrifugal compressor (CC) train. Torsional mode excitations in the drive shaft due to converter switching behaviour are considered. An effective description of the harmonics transfer is proposed. The tuning strategy aims to optimize the tracking behaviour of the step and ramp command, taking care of critical speed excitations. The stability of the closed-loop dynamics against time delay and drive parameter variations are studied by means of Nyquist diagrams and time-domain simulations. A descriptive method for the process damping behaviour is proposed. The control strategy is evaluated through simulations as well as an experimental setup, based on a hardware in the loop (HIL) in a master–slave configuration. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

54 pages, 1710 KB  
Review
A Systematic Literature Review of Cutting Tool Wear Monitoring in Turning by Using Artificial Intelligence Techniques
by Lorenzo Colantonio, Lucas Equeter, Pierre Dehombreux and François Ducobu
Machines 2021, 9(12), 351; https://doi.org/10.3390/machines9120351 - 10 Dec 2021
Cited by 58 | Viewed by 10782
Abstract
In turning operations, the wear of cutting tools is inevitable. As workpieces produced with worn tools may fail to meet specifications, the machining industries focus on replacement policies that mitigate the risk of losses due to scrap. Several strategies, from empiric laws to [...] Read more.
In turning operations, the wear of cutting tools is inevitable. As workpieces produced with worn tools may fail to meet specifications, the machining industries focus on replacement policies that mitigate the risk of losses due to scrap. Several strategies, from empiric laws to more advanced statistical models, have been proposed in the literature. More recently, many monitoring systems based on Artificial Intelligence (AI) techniques have been developed. Due to the scope of different artificial intelligence approaches, having a holistic view of the state of the art on this subject is complex, in part due to a lack of recent comprehensive reviews. This literature review therefore presents 20 years of literature on this subject obtained following a Systematic Literature Review (SLR) methodology. This SLR aims to answer the following research question: “How is the AI used in the framework of monitoring/predicting the condition of tools in stable turning condition?” To answer this research question, the “Scopus” database was consulted in order to gather relevant publications published between 1 January 2000 and 1 January 2021. The systematic approach yielded 8426 articles among which 102 correspond to the inclusion and exclusion criteria which limit the application of AI to stable turning operation and online prediction. A bibliometric analysis performed on these articles highlighted the growing interest of this subject in the recent years. A more in-depth analysis of the articles is also presented, mainly focusing on six AI techniques that are highly represented in the literature: Artificial Neural Network (ANN), fuzzy logic, Support Vector Machine (SVM), Self-Organizing Map (SOM), Hidden Markov Model (HMM), and Convolutional Neural Network (CNN). For each technique, the trends in the inputs, pre-processing techniques, and outputs of the AI are presented. The trends highlight the early and continuous importance of ANN, and the emerging interest of CNN for tool condition monitoring. The lack of common benchmark database for evaluating models performance does not allow clear comparisons of technique performance. Full article
(This article belongs to the Special Issue Advances in Tool Life Prediction in Machining)
Show Figures

Figure 1

26 pages, 7851 KB  
Article
Modeling, Design, and Implementation of an Underactuated Gripper with Capability of Grasping Thin Objects
by Long Kang, Sang-Hwa Kim and Byung-Ju Yi
Machines 2021, 9(12), 347; https://doi.org/10.3390/machines9120347 - 9 Dec 2021
Cited by 9 | Viewed by 8528
Abstract
Underactuated robotic grippers have the advantage of lower cost, simpler control, and higher safety over the fully actuated grippers. In this study, an underactuated robotic finger is presented. The design issues that should be considered for stable grasping are discussed in detail. This [...] Read more.
Underactuated robotic grippers have the advantage of lower cost, simpler control, and higher safety over the fully actuated grippers. In this study, an underactuated robotic finger is presented. The design issues that should be considered for stable grasping are discussed in detail. This robotic finger is applied to design a two-fingered underactuated gripper. Firstly, a new three-DOF linkage-driven robotic finger that combines a five-bar mechanism and a double parallelogram is presented. This special architecture allows us to put all of the required actuators into the palm. By adding a torsion spring and a mechanical stopper at a passive joint, this underactuated finger mechanism can be used to perform parallel grasping, shape-adaptive grasping, and environmental contact-based grasp. Secondly, the dynamic model of this robotic finger is developed to investigate how to select an appropriate torsion spring. The dynamic simulation is performed with a multi-body dynamic simulator to verify our proposed approach. Moreover, static grasp models of both two-point and three-point contact grasps are investigated. Finally, different types of grasping modes are verified experimentally with a two-fingered underactuated robotic gripper. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

14 pages, 6355 KB  
Article
Torque Ripple Reduction of Switched Reluctance Motor with Non-Uniform Air-Gap and a Rotor Hole
by Grace Firsta Lukman and Jin-Woo Ahn
Machines 2021, 9(12), 348; https://doi.org/10.3390/machines9120348 - 9 Dec 2021
Cited by 18 | Viewed by 6121
Abstract
A switched reluctance motor has a very simple structure which becomes its key signature and leads to various advantages. However, because of its double saliency and switching principle, the motor is also known to have a relatively high torque ripple, and this hinders [...] Read more.
A switched reluctance motor has a very simple structure which becomes its key signature and leads to various advantages. However, because of its double saliency and switching principle, the motor is also known to have a relatively high torque ripple, and this hinders its use as a high-performance drive. In this paper, a method to reduce torque ripple while maintaining average torque is introduced. Two elements are used to achieve this, namely, a non-uniform air-gap on the rotor-pole face and one hole in each non-uniform region, which maintains the saturation level of the air-gap. This approach preserves the mechanical simplicity of the motor and is easy to implement. Simulations and experiments were performed to verify the effectiveness of the proposed design. Full article
(This article belongs to the Special Issue Design and Control of Electrical Machines)
Show Figures

Figure 1

17 pages, 3638 KB  
Article
Experimentally Validated Extension of the Operating Range of an Electrically Driven Turbocharger for Fuel Cell Applications
by Markus Schoedel, Marco Menze and Joerg R. Seume
Machines 2021, 9(12), 331; https://doi.org/10.3390/machines9120331 - 2 Dec 2021
Cited by 7 | Viewed by 3770
Abstract
From an aerodynamic point of view, the electric turbocharger for the air supply of an automotive fuel cell faces difficult requirements: it must not only control the pressure level of the fuel cell, but it also has to operate with very high efficiency [...] Read more.
From an aerodynamic point of view, the electric turbocharger for the air supply of an automotive fuel cell faces difficult requirements: it must not only control the pressure level of the fuel cell, but it also has to operate with very high efficiency over a wide range. This paper explores features for the compressor and the turbine of an existing electric turbocharger, which are intended to meet the specific requirements of a fuel cell in an experimentally validated numerical study. Adjustable diffuser or nozzle vanes in the compressor and turbine achieve wider operating ranges but compromise efficiency, especially because of the necessary gaps between vanes and end walls. For the turbine, there are additional efficiency losses since the pivoting of the nozzle vanes leads to incidence and thus to flow separation at the leading edge of the nozzle vanes and the rotor blades. An increase in the mass flow and a slight efficiency improvement of the turbine with the low solidity nozzle vanes counteracts these losses. For the compressor, a reduction in the diffuser height and its influence over the operating range and power consumption yields an increase in surge margin as well as in maximum efficiency. Full article
(This article belongs to the Special Issue High Speed Air Compressor for a Fuel Cell System for Use in a Vehicle)
Show Figures

Figure 1

16 pages, 6758 KB  
Article
Formation Control of Dual Auto Guided Vehicles Based on Compensation Method in 5G Networks
by Liuquan Wang, Qiang Liu, Chenxin Zang, Sanying Zhu, Chaoyang Gan and Yanqiang Liu
Machines 2021, 9(12), 318; https://doi.org/10.3390/machines9120318 - 26 Nov 2021
Cited by 8 | Viewed by 3496
Abstract
With commercial application of 5G networks, many researchers have started paying attention to real-time control in 5G networks. This paper focuses on dual auto guided vehicles collaborative transport scenarios and designs a formation control system in current commercial 5G networks. Firstly, the structure [...] Read more.
With commercial application of 5G networks, many researchers have started paying attention to real-time control in 5G networks. This paper focuses on dual auto guided vehicles collaborative transport scenarios and designs a formation control system in current commercial 5G networks. Firstly, the structure of the 5G network researched in this paper is introduced. Then the round-trip time of 5G networks is measured and analyzed. The result shows that although the 5G round-trip time has randomness, it is mainly concentrated in 19 ± 3 ms, and the jitter mainly in 0 ± 3 ms. The Kalman filter is applied to estimate the transmission delay and experiment result shows the effectiveness of the estimation. Furthermore, the total delay including transmission delay and execution delay in control system is discussed. After establishing the AGV kinematic and formation model, complete control system based on compensation method is proposed. Finally, an experiment is carried out. Compared to the result without formation control, maximum distance error is reduced by 82.61% on average, while maximum angle error 45.91% on average. The result shows the effectiveness of the control system in formation maintaining in 5G network. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

15 pages, 5862 KB  
Article
Test Evaluation Method for Lane Keeping Assistance System Using Dual Cameras
by Si-Ho Lee and Seon-Bong Lee
Machines 2021, 9(12), 310; https://doi.org/10.3390/machines9120310 - 25 Nov 2021
Cited by 1 | Viewed by 3762
Abstract
Recently, the number of vehicles equipped with the Lane Keeping Assistance System (LKAS) is increasing. Therefore, safety evaluation to validate the LKAS has become more important. However, the actual vehicle test for safety evaluation has disadvantages such as the need for professional manpower, [...] Read more.
Recently, the number of vehicles equipped with the Lane Keeping Assistance System (LKAS) is increasing. Therefore, safety evaluation to validate the LKAS has become more important. However, the actual vehicle test for safety evaluation has disadvantages such as the need for professional manpower, the use of expensive equipment, and environmental constraints. Therefore, we attempted to solve this problem using the dual cameras system with only inexpensive and accessible cameras. The optimal position of the dual cameras, image and focal length correction, and lane detection methods proposed in previous studies were used, and a theoretical equation for calculating the distance from the front wheel of the vehicle to the driving lane was proposed. For the actual vehicle testing, LKAS safety evaluation scenarios proposed in previous studies were used. According to the test results, the maximum error was 0.17 m, which indicated the reliability of the method because all errors in the tested scenarios exhibited similar trends and values. Therefore, through the use of the proposed theoretical equations in conjunction with inexpensive cameras, it is possible to reduce time, cost, and environmental problems in the development, vehicle application, and safety evaluation of LKAS components. Full article
Show Figures

Figure 1

16 pages, 7450 KB  
Article
Obtainment of Residual Stress Distribution from Surface Deformation under Continuity Constraints for Thinned Silicon Wafers
by Haijun Liu, Tao Yang, Jiang Han, Xiaoqing Tian, Shan Chen and Lei Lu
Machines 2021, 9(11), 284; https://doi.org/10.3390/machines9110284 - 11 Nov 2021
Cited by 5 | Viewed by 3618
Abstract
Precision machining (e.g., fine grinding, polishing) induced residual stress is very small and often not constant across the wafer and it is difficult to be directly obtained by stress testing equipment or Stoney equation. The residual stress could be obtained theoretically based on [...] Read more.
Precision machining (e.g., fine grinding, polishing) induced residual stress is very small and often not constant across the wafer and it is difficult to be directly obtained by stress testing equipment or Stoney equation. The residual stress could be obtained theoretically based on the principle of superposition in which the entire wafer deformation is taken as the sum of all deformations induced by the residual stresses of different positions on the wafer surface. However, the solved residual stress is affected greatly by deformation measurement errors and fluctuates greatly across the wafer surface. To solve the problem, a regularization method with continuity constraints was proposed in this study. The mechanisms for the discontinuity of the residual stress distribution and the sensitivity of calculation results to the measurement errors were studied. The influences of the number of subareas of the silicon wafer were investigated and the continuity constraint term was constructed based on the positional relationship of different subareas. Stable and continuous residual stress distribution was successfully obtained after using the proposed regularization method. The method may also be applied to estimate the residual stress from surface deformation for thin substrate plates of other materials. Full article
(This article belongs to the Section Material Processing Technology)
Show Figures

Figure 1

17 pages, 6493 KB  
Article
A Particle Swarm Optimisation with Linearly Decreasing Weight for Real-Time Traffic Signal Control
by Yanjun Shi, Yuhan Qi, Lingling Lv and Donglin Liang
Machines 2021, 9(11), 280; https://doi.org/10.3390/machines9110280 - 10 Nov 2021
Cited by 9 | Viewed by 3256
Abstract
Nowadays, traffic congestion has become a significant challenge in urban areas and densely populated cities. Real-time traffic signal control is an effective method to reduce traffic jams. This paper proposes a particle swarm optimisation with linearly decreasing weight (LDW-PSO) to tackle the signal [...] Read more.
Nowadays, traffic congestion has become a significant challenge in urban areas and densely populated cities. Real-time traffic signal control is an effective method to reduce traffic jams. This paper proposes a particle swarm optimisation with linearly decreasing weight (LDW-PSO) to tackle the signal intersection control problem, where a finite-interval model and an objective function are built to minimise spoilage time. The performance was evaluated in real-time simulation imitating a crowded intersection in Dalian city (in China) via the SUMO traffic simulator. The simulation results showed that the LDW-PSO outperformed the classical algorithms in this research, where queue length can be reduced by up to 20.4% and average waiting time can be reduced by up to 17.9%. Full article
Show Figures

Figure 1

19 pages, 1719 KB  
Article
Transformation towards a Smart Maintenance Factory: The Case of a Vessel Maintenance Depot
by Gwang Seok Kim and Young Hoon Lee
Machines 2021, 9(11), 267; https://doi.org/10.3390/machines9110267 - 2 Nov 2021
Cited by 5 | Viewed by 4207
Abstract
The conceptualization and framework of smart factories have been intensively studied in previous studies, and the extension to various business areas has been suggested as a future research direction. This paper proposes a method for extending the smart factory concept in the ship [...] Read more.
The conceptualization and framework of smart factories have been intensively studied in previous studies, and the extension to various business areas has been suggested as a future research direction. This paper proposes a method for extending the smart factory concept in the ship building phase to the ship servicing phase through actual examples. In order to expand the study, we identified the differences between manufacturing and maintenance. We proposed a smart transformation procedure, framework, and architecture of a smart maintenance factory. The transformation was a large-scale operation for the entire factory beyond simply applying a single process or specific technology. The transformations were presented through a vessel maintenance depot case and the effects of improvements were discussed. Full article
(This article belongs to the Special Issue Smart Manufacturing)
Show Figures

Figure 1

26 pages, 1015 KB  
Review
Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines
by Nuno M. A. Freire and Antonio J. Marques Cardoso
Machines 2021, 9(11), 260; https://doi.org/10.3390/machines9110260 - 30 Oct 2021
Cited by 20 | Viewed by 6047
Abstract
Research on fault detection (FD) and condition monitoring (CM) of rotating electrical generators for modern wind turbines has addressed a wide variety of technologies. Among these, permanent magnet synchronous generators (PMSGs) and the analysis of their electromagnetic signatures in the presence of faults [...] Read more.
Research on fault detection (FD) and condition monitoring (CM) of rotating electrical generators for modern wind turbines has addressed a wide variety of technologies. Among these, permanent magnet synchronous generators (PMSGs) and the analysis of their electromagnetic signatures in the presence of faults deserve emphasis in this paper. PMSGs are prominent in the offshore wind industry, and methods for FD and CM of PMSGs based on electromagnetic measurements are extensively discussed in academia. This paper is a concise review of FD and CM in wind turbines and PMSGs. Terminology and fundamentals of PMSG’s operation are introduced first, aiming to offer an easy read and good reference to a broad audience of engineers and data scientists. Experience and research challenges with stator winding failures are also discussed. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

16 pages, 8962 KB  
Article
Development of an End-Toothed Disc-Based Quick-Change Fixture for Ultra-Precision Diamond Cutting
by Xuesen Zhao, Xiangwu Cui, Zhenjiang Hu, Qiang Zhang and Tao Sun
Machines 2021, 9(11), 257; https://doi.org/10.3390/machines9110257 - 29 Oct 2021
Cited by 1 | Viewed by 3537
Abstract
With its standardized and unified interface, the quick-change fixture is an important part for maintaining high efficiency without compensation of precision in the metal-turning process because it can conveniently realize high-precision repeated clamping and multi-station conversion without complex positioning and adjustment steps. However, [...] Read more.
With its standardized and unified interface, the quick-change fixture is an important part for maintaining high efficiency without compensation of precision in the metal-turning process because it can conveniently realize high-precision repeated clamping and multi-station conversion without complex positioning and adjustment steps. However, the existing quick-change fixture products and related research cannot fully meet the needs of repeatability and applicability raised from ultra-precision, single-point diamond turning with ultra-high accuracy and ultra-small depth of cut. In this paper, we develop a quick-change fixture for ultra-precision diamond turning, in which the end-toothed disc acts as the positioning element. Specifically, the main parameters of two key components of the end-toothed disc and slotted disc spring are calculated analytically to ensure the positioning accuracy of the designed fixture used in the rotation condition, which is further ensured by controlling the machining tolerance of the tooth profile of the end-toothed disc. Additionally, finite element simulations are performed to investigate the static and modal states of the quick-change fixture, which demonstrate a maximum deformation of about 0.9 μm and a minimum natural frequency of 5655.9 Hz for the designed fixture. Two high-precision sensors are used to detect the radial jump and end run-out values after repeated clamping actions, which are employed to verify the repetitive positioning accuracy of the fixture. Subsequent finite-element simulation of the clamping of small-diameter copper bar, as well as the diamond turning experiment, jointly demonstrate that the designed fixture can achieve a precision of 1 μm. Current work provides an effective quick-change fixture to reduce the deformation of a weak-stiffness workpiece caused by clamping deformation in ultra-precision diamond cutting. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

21 pages, 4299 KB  
Article
Wind Turbine Bearing Temperature Forecasting Using a New Data-Driven Ensemble Approach
by Guangxi Yan, Chengqing Yu and Yu Bai
Machines 2021, 9(11), 248; https://doi.org/10.3390/machines9110248 - 24 Oct 2021
Cited by 24 | Viewed by 4310
Abstract
The bearing temperature forecasting provide can provide early detection of the gearbox operating status of wind turbines. To achieve high precision and reliable performance in bearing temperature forecasting, a novel hybrid model is proposed in the paper, which is composed of three phases. [...] Read more.
The bearing temperature forecasting provide can provide early detection of the gearbox operating status of wind turbines. To achieve high precision and reliable performance in bearing temperature forecasting, a novel hybrid model is proposed in the paper, which is composed of three phases. Firstly, the variational mode decomposition (VMD) method is employed to decompose raw bearing temperature data into several sub-series with different frequencies. Then, the SAE-GMDH method is utilized as the predictor in the subseries. The stacked autoencoder (SAE) is for the low-latitude features of raw data, while the group method of data handling (GMDH) is applied for the sub-series forecasting. Finally, the imperialist competitive algorithm (ICA) optimizes the weights for subseries and combines them to achieve the final forecasting results. By analytical investigation and comparing the final prediction results in all experiments, it can be summarized that (1) the proposed model has achieved excellent prediction outcome by integrating optimization algorithms with predictors; (2) the experiment results proved that the proposed model outperformed other selective models, with higher accuracies in all datasets, including three state-of-the-art models. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

18 pages, 579 KB  
Review
A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing
by Kai-Leung Yung, Yuk-Ming Tang, Wai-Hung Ip and Wei-Ting Kuo
Machines 2021, 9(10), 244; https://doi.org/10.3390/machines9100244 - 19 Oct 2021
Cited by 20 | Viewed by 4487
Abstract
The design and development of space instruments are considered to be distinct from that of other products. It is because the key considerations are vastly different from those that govern the use of products on planet earth. The service life of a space [...] Read more.
The design and development of space instruments are considered to be distinct from that of other products. It is because the key considerations are vastly different from those that govern the use of products on planet earth. The service life of a space instrument, its use in extreme space environments, size, weight, cost, and the complexity of maintenance must all be considered. As a result, more innovative ideas and resource support are required to assist mankind in space exploration. This article reviews the impact of product design and innovation on the development of space instruments. Using a systematic literature search review and classification, we have identified over 129 papers and finally selected 48 major articles dealing with space instrument product innovation design. According to the studies, it is revealed that product design and functional performance is the main research focuses on the studied articles. The studies also highlighted various factors that affect space instrument manufacturing or fabrication, and that innovativeness is also the key in the design of space instruments. Lastly, the product design is important to affect the reliability of the space instrument. This review study provides important information and key considerations for the development of smart manufacturing technologies for space instruments in the future. Full article
(This article belongs to the Special Issue Smart Manufacturing)
Show Figures

Figure 1

16 pages, 7926 KB  
Article
A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene
by Huikai Liu, Gaorui Liu, Yue Zhang, Linjian Lei, Hui Xie, Yan Li and Shengli Sun
Machines 2021, 9(10), 230; https://doi.org/10.3390/machines9100230 - 8 Oct 2021
Cited by 5 | Viewed by 3649
Abstract
This paper addresses the problem of instance-level 6DoF pose estimation from a single RGBD image in an indoor scene. Many recent works have shown that a two-stage network, which first detects the keypoints and then regresses the keypoints for 6d pose estimation, achieves [...] Read more.
This paper addresses the problem of instance-level 6DoF pose estimation from a single RGBD image in an indoor scene. Many recent works have shown that a two-stage network, which first detects the keypoints and then regresses the keypoints for 6d pose estimation, achieves remarkable performance. However, the previous methods concern little about channel-wise attention and the keypoints are not selected by comprehensive use of RGBD information, which limits the performance of the network. To enhance RGB feature representation ability, a modular Split-Attention block that enables attention across feature-map groups is proposed. In addition, by combining the Oriented FAST and Rotated BRIEF (ORB) keypoints and the Farthest Point Sample (FPS) algorithm, a simple but effective keypoint selection method named ORB-FPS is presented to avoid the keypoints appear on the non-salient regions. The proposed algorithm is tested on the Linemod and the YCB-Video dataset, the experimental results demonstrate that our method outperforms the current approaches, achieves ADD(S) accuracy of 94.5% on the Linemod dataset and 91.4% on the YCB-Video dataset. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 2040 KB  
Article
Model-Free Predictive Current Control of Synchronous Reluctance Motor Drives for Pump Applications
by Ismaele Diego De Martin, Dario Pasqualotto, Fabio Tinazzi and Mauro Zigliotto
Machines 2021, 9(10), 217; https://doi.org/10.3390/machines9100217 - 28 Sep 2021
Cited by 15 | Viewed by 4011
Abstract
Climate changes and the lack of running water across vast territories require the massive use of pumping systems, often powered by solar energy sources. In this context, simple drives with high-efficiency motors can be expected to take hold. It is important to emphasise [...] Read more.
Climate changes and the lack of running water across vast territories require the massive use of pumping systems, often powered by solar energy sources. In this context, simple drives with high-efficiency motors can be expected to take hold. It is important to emphasise that simplicity does not necessarily lie in the control algorithm itself, but in the absence of complex manual calibration. These characteristics are met by synchronous reluctance motors provided that the calibration of the current loops is made autonomous. The goal of the present research was the development of a current control algorithm for reluctance synchronous motors that does not require an explicit model of the motor, and that self-calibrates in the first moments of operation without the supervision of a human expert. The results, both simulated and experimental, confirm this ability. The proposed algorithm adapts itself to different motor types, without the need for any initial calibration. The proposed technique is fully within the paradigm of smarter electrical drives, which, similarly to today’s smartphones, offer advanced performance by making any technological complexity transparent to the user. Full article
(This article belongs to the Special Issue Machines Predictive Control)
Show Figures

Figure 1

12 pages, 3119 KB  
Communication
Continuous Control of an Underground Loader Using Deep Reinforcement Learning
by Sofi Backman, Daniel Lindmark, Kenneth Bodin, Martin Servin, Joakim Mörk and Håkan Löfgren
Machines 2021, 9(10), 216; https://doi.org/10.3390/machines9100216 - 27 Sep 2021
Cited by 36 | Viewed by 5841
Abstract
The reinforcement learning control of an underground loader was investigated in a simulated environment by using a multi-agent deep neural network approach. At the start of each loading cycle, one agent selects the dig position from a depth camera image of a pile [...] Read more.
The reinforcement learning control of an underground loader was investigated in a simulated environment by using a multi-agent deep neural network approach. At the start of each loading cycle, one agent selects the dig position from a depth camera image of a pile of fragmented rock. A second agent is responsible for continuous control of the vehicle, with the goal of filling the bucket at the selected loading point while avoiding collisions, getting stuck, or losing ground traction. This relies on motion and force sensors, as well as on a camera and lidar. Using a soft actor–critic algorithm, the agents learn policies for efficient bucket filling over many subsequent loading cycles, with a clear ability to adapt to the changing environment. The best results—on average, 75% of the max capacity—were obtained when including a penalty for energy usage in the reward. Full article
(This article belongs to the Special Issue Design and Control of Advanced Mechatronics Systems)
Show Figures

Figure 1

13 pages, 4787 KB  
Article
Three-Phase Induction Motors Online Protection against Unbalanced Supply Voltages
by Khaled Laadjal, Mohamed Sahraoui, Abdeldjalil Alloui and Antonio J. Marques Cardoso
Machines 2021, 9(9), 203; https://doi.org/10.3390/machines9090203 - 20 Sep 2021
Cited by 22 | Viewed by 5375
Abstract
Three-phase induction motors (IMs) are the main workhorse in industry due to their many advantages as compared to other types of industrial motors. However, the efficiency and lifetime of IMs can be considerably affected by some operating conditions, in particular those related to [...] Read more.
Three-phase induction motors (IMs) are the main workhorse in industry due to their many advantages as compared to other types of industrial motors. However, the efficiency and lifetime of IMs can be considerably affected by some operating conditions, in particular those related to unbalanced supply voltages (USV), which is quite a common condition in industrial plants. Therefore, early detection and a precise severity estimation of the USV for all working conditions can prevent major breakdowns and increase reliability and safety of industrial facilities. This paper proposes a reliable method allowing for a precise and online detection of the USV condition, by monitoring a pertinent indicator calculated using the voltage symmetrical components. The effectiveness of the proposed method is validated experimentally for several different working conditions, and a comparison with other indicators available in the literature is also performed. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Machines)
Show Figures

Figure 1

35 pages, 771 KB  
Review
A Survey on Fault Diagnosis and Fault-Tolerant Control Methods for Unmanned Aerial Vehicles
by George K. Fourlas and George C. Karras
Machines 2021, 9(9), 197; https://doi.org/10.3390/machines9090197 - 13 Sep 2021
Cited by 130 | Viewed by 14241
Abstract
The continuous evolution of modern technology has led to the creation of increasingly complex and advanced systems. This has been also reflected in the technology of Unmanned Aerial Vehicles (UAVs), where the growing demand for more reliable performance necessitates the development of sophisticated [...] Read more.
The continuous evolution of modern technology has led to the creation of increasingly complex and advanced systems. This has been also reflected in the technology of Unmanned Aerial Vehicles (UAVs), where the growing demand for more reliable performance necessitates the development of sophisticated techniques that provide fault diagnosis and fault tolerance in a timely and accurate manner. Typically, a UAV consists of three types of subsystems: actuators, main structure and sensors. Therefore, a fault-monitoring system must be specifically designed to supervise and debug each of these subsystems, so that any faults can be addressed before they lead to disastrous consequences. In this survey article, we provide a detailed overview of recent advances and studies regarding fault diagnosis, Fault-Tolerant Control (FTC) and anomaly detection for UAVs. Concerning fault diagnosis, our interest is mainly focused on sensors and actuators, as these subsystems are mostly prone to faults, while their healthy operation usually ensures the smooth and reliable performance of the aerial vehicle. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop