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Abstract: Climate changes and the lack of running water across vast territories require the massive
use of pumping systems, often powered by solar energy sources. In this context, simple drives with
high-efficiency motors can be expected to take hold. It is important to emphasise that simplicity does
not necessarily lie in the control algorithm itself, but in the absence of complex manual calibration.
These characteristics are met by synchronous reluctance motors provided that the calibration of the
current loops is made autonomous. The goal of the present research was the development of a current
control algorithm for reluctance synchronous motors that does not require an explicit model of the
motor, and that self-calibrates in the first moments of operation without the supervision of a human
expert. The results, both simulated and experimental, confirm this ability. The proposed algorithm
adapts itself to different motor types, without the need for any initial calibration. The proposed
technique is fully within the paradigm of smarter electrical drives, which, similarly to today’s
smartphones, offer advanced performance by making any technological complexity transparent to
the user.

Keywords: model-free; predictive control; synchronous reluctance motor; pump

1. Introduction

Recent market unpredictability with regard to raw material prices is encouraging the
development of more efficient and effective solutions in every application. The first sign of
these unpredictable market fluctuations was experienced back in 2011 when the price of
permanent magnet (PM) materials suddenly and dramatically increased, reaching a 40-fold
increment in price in just six months [1]. In turn, permanent magnet synchronous motors
may be a weak point in all those applications where price is the leading market driver.
Viable alternatives to the use of permanent magnets are thus very attractive.

Electric pumps are certainly a very sensitive application where these issues can deter-
mine the availability of essential goods, such as water, for much of the human population.
At present, induction motors are very popular in pump applications due to their mechanical
robustness, their capability to work directly from the grid—though at constant speed—and
their wide availability on the market [2]. However, recently established efficiency standards
require more efficient electric motors, and the synchronous reluctance motor (SynRM) will
likely replace the induction motor, especially in variable speed applications [3]. These are
PM-free and their mechanical characteristics are comparable to those of induction motors.
Furthermore, the absence of rotor currents eases the cooling of the motor.

The benefits of applying SynRMs to centrifugal pumps were described in [4], where the
reduction in energy consumption was quantified as 36% compared to a previous solution
based on a fixed-frequency squirrel-cage induction motor. Interest regarding SynRMs is also
arising in other technological sectors such as home appliances and building applications.
A chiller application was considered in [5], comparing an induction motor with a SynRM,

Machines 2021, 9, 217. https://doi.org/10.3390/machines9100217 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-3525-4428
https://orcid.org/0000-0003-3323-245X
https://orcid.org/0000-0002-0265-8426
https://orcid.org/0000-0001-8340-661X
https://doi.org/10.3390/machines9100217
https://doi.org/10.3390/machines9100217
https://doi.org/10.3390/machines9100217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9100217
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9100217?type=check_update&version=1


Machines 2021, 9, 217 2 of 16

providing quantitative evidence that SynRM can significantly increase energy efficiency.
The slightly higher cost of a SynRM was fully recovered by energy savings.

Interesting proposals mixing photovoltaic panels and thermal generators were consid-
ered in [6]. Solar pumps are also another promising application area for the SynRM [2,7–9].

SynRMs present strong magnetic anisotropy, and are prone to the saturation of mag-
netic paths, so that the current-flux linkage relationships are nonlinear and there is a
cross-saturation between the orthogonal axes. The magnetic non-linearity heavily affects
the tuning of the current control loops [10]. An effective solution requires the complete
modelling of the SynRM [11–14], but this usually requires lab testing and is specific to the
individual motor, so it is impractical and uneconomical for solar pump applications. In a
nutshell, all the self-commissioning techniques require sophisticated procedures and their
implementation is performed by well-experienced technical personnel.

A different paradigm in comparison to the conventional PI current control of SynRMs
is represented by the predictive current control (PCC) [3,15,16]. The advantages of predic-
tive control algorithms are the fast dynamics and the possibility of including nonlinear
constraints thanks to the nonlinear characteristics of the control algorithm itself. However,
an accurate model of the motor is still required to predict the future currents’ behaviours,
which is an important drawback of all predictive control-based techniques.

The need for prior knowledge of an accurate model has recently been overcome by a
new control paradigm called model-free [17,18]. It is important to stress that the label model-
free still relies on a model for controlling the motor currents, but the current predictions no
longer need canonical voltage balance equations. This is particularly attractive for SynRM
applications, since it allows skipping the self-commissioning procedure.

The most common model-free predictive current control algorithms are of the finite-set
(FS), which only use the eight basic voltage vectors of a two-level inverter. Their advantages
are the simplicity of the prediction and avoiding the need for a modulator [19–21].

Actually, the currents’ prediction accuracies are strongly affected by the model-free
strategy. Several strategies have been proposed to date, such as totally model-free predic-
tions based on either the system’s previous input and output data [19–22], or on adaptive
models which adaptation strategies are based on the previous input and output data of the
system. For instance, the ultra-local model was proposed in [23,24] or an adaptive model
based on a recursive least square (RLS) algorithm for estimating the adaptive parameters
was proposed in [25].

The design of high-performance finite-set predictive control is described in [26]; how-
ever, the most significant problems are those of the computational effort when increasing
the horizon prediction length and the pronounced current ripple amplitude in comparison
with modulator-based controllers. The problem of the ripple can be fixed by adopting
continuous-set predictive control, which selects the optimal voltage vector among a continu-
ous set of values, i.e., all those that can be produced by a voltage inverter.

An example of continuous-set (CS) predictive control applied to SynRMs is given
in [27], with much less current ripple than a finite-set predictive controller.

In this paper, a new CS predictive control paradigm combined with model-free strate-
gies was proposed with the aim of benefiting from both the advantages of these techniques
and reduced computational effort. To the knowledge of the authors, this is a novel approach
to the MPC control structure.

When nonlinear constraints are included, finding the optimal voltage vector to apply
in the next control step is problematic, since it involves finding the minimum multivariable
function, and the computational effort can be very high [27]. The applicability of the
continuous-set predictive control algorithm on low-cost applications, such as electric
pumps, is therefore undermined by the need for expensive microprocessors.

In order to reduce the computational complexity of continuous-set predictive control,
the present paper proposes a simplification of the minimisation problem based on setting a
maximum voltage vector amplitude, so that the search will be conducted on the phase of the
voltage vector only. The low complexity search algorithm was combined with a model-free
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technique that predicts the currents variations by means of an efficient RLS algorithm [25].
The result is a very practical current control solution that can be implemented on any
industrial drive for pump applications.

In order to demonstrate the feasibility of the proposed technique, a test case was
provided and analysed, including two different industrial inverter-driven SynRMs. Both
the inverter and motors are supposed to be powered by a conventional 400 V three-phase
grid supply. However, the test case provided in this paper will simulate the case where
only a 230 V single-phase grid supply is available, which is realistic for many developing
countries where the three-phase grid is not widespread. Each test motor has been connected
to the inverter without any initial calibration, to prove the generality of the proposed
control algorithm.

This paper is structured as follows. The model-free current variations prediction and
the RLS algorithm implementations are discussed in Section 2. The core of this paper is
the new predictive control algorithm reported in Section 3, where the new optimisation
problem formulation and the computational cost-effective algorithm for finding the op-
timum voltage vectors are described. The experimental results are reported in Section 4,
and are followed by thorough discussions and considerations. Final conclusive remarks
are reported in the Conclusion in Section 5.

2. Mathematical Background

The motor voltage balance equations are written in the dq reference frame, syn-
chronously with the rotor. The d axis position in a SynRM corresponds to the position
where the reluctance value is minimum, and its angular displacement is defined as ϑme.
The dq voltage balance equations are:

udq = Ridq +

[
ld(id, iq) 0

0 lq(id, iq)

]didq

dt
+ ωme

[
0 −1
1 0

]
λdq(id, iq) (1)

where udq = [ud, uq]T and idq = [id, iq]T are the voltage and current vectors, respectively,
R is the stator resistance, ld , ∂λd(id, iq)/∂id and lq , ∂λq(id, iq)/∂iq are the d and q
axis differential inductances, λdq = [λd(iq, iq), λq(iq, iq)]T is the magnetic flux linkages
vector and ωme is the electrical speed. The current dependence (id, iq) in the differential
inductances and magnetic flux linkages is omitted in the following for the sake of brevity.
The symbol , stands for definition.

To ease the mathematical expression, only the d axis voltage balance equation is
considered at first. Actually, the q axis voltage balance equation presents the same equation
structure; thus, the same analytical results are obtained. The current dynamics can be
derived from (1) as

did
dt

= −Rid + λqωme

ld
+

ud
ld

. (2)

Observing Equation (2) and considering the discrete nature of the control system, the cur-
rent variation at each control period Tc can be expressed by the following new adaptive model:

id(k)− id(k− 1) , ∆id(k) = p1,d(k) + p2,d(k)ud(k) (3)

where p1,d(k) and p2,d(k) are coefficients that are adapted during online operations. The
adaptation strategy is crucial for the correct estimation of the current variations predictions.
A recursive least square algorithm was adopted in this work for the adaptation of the
coefficients based on previous current measurements and applied voltage vectors as in [25].
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Adaptive Model by Recursive Least Square Algorithm

For the sake of generality, both currents variations can be rearranged as follows:

∆id(k) = [1, ud(k)][p1,d, p2,d]
T = φd(k)pd(k)

∆iq(k) =
[
1, uq(k)

][
p1,q, p2,q

]T
= φq(k)pq(k)

(4)

where φd and φq are the regressors’ vectors, pd and pq are the adaptive coefficients vectors
of the d and q axes, respectively. The standard RLS algorithm, as can be seen in [28], can be
recursively solved by the following set of equations:

G(k) = Q(k− 1)ΦT(k)
(

Φ(k)Q(k− 1)ΦT(k) + f I
)−1

p̂(k) = p̂(k− 1) + G(k)(y(k)−Φ(k)p̂(k− 1))

Q(k) = f−1(Q(k− 1)−G(k)Φ(k)Q(k− 1))

(5)

where G(k) ∈ R4×4 is the gain matrix, Q(k) ∈ R4×4 is the estimated error covariance
matrix, Φ(k) ∈ R4×4 is the regressors’ matrix, f is the scalar forgetting factor, p̂ , [p̂d, p̂q]T

is the R4×1 coefficients vector and y ∈ R4×1 is the measurements vector.
In order to estimate four parameters, at least four linearly independent and uncorre-

lated measurements are necessary. However, only two measurements are available during
the current control period k, i.e., one for each of the dq axes. The additional two measure-
ments can be retrieved by using the current measurements during the previous control
period (k− 1). Therefore, the vector of measurements is defined as follows:

y(k) = [∆id(k), ∆id(k− 1), ∆iq(k), ∆iq(k− 1)]T (6)

The regressors’ vector Φ can be written in the same fashion of (6) by adopting the voltage
measurements of the actual (k) and previous (k− 1) control periods.

The future currents can be predicted based on the assumption that the coefficients p̂
are constant for at least two discrete sampling time periods Tc. As an example, the d axis
current evolution can be estimated as follows:

îd(k + 1) = id(k) + p̂1,d(k) + p̂2,d(k) · ud(k)

îd(k + 2) = îd(k + 1) + p̂1,d(k) + p̂2,d(k) · ud(k + 1)
(7)

More details about the current predictions based on the adaptive model by recursive
least squares algorithm, such as the tuning of the forgetting factor parameter f , are available
in [25]. It is worth highlighting that the voltage ud(k + 1) is an unknown value as well as
uq(k + 1). These two voltage values are the voltages that shall be applied at time instant
k + 1. An optimisation algorithm is thus developed in Section 3 to determine the optimal
voltage reference vector u∗dq(k + 1) = [u∗d(k + 1), u∗q(k + 1)]T at every control time Tc.

3. Proposed Deadbeat Predictive Current Control

In order to determine the voltage reference vector u∗dq(k + 1), the quadratic cost
function adopted in this paper is:

J =
∥∥∥i∗dq(k)− îdq(k + 2)

∥∥∥2
(8)

where only the current error must be minimised and the current vector prediction îdq(k+ 2) is
calculated as in (7). Evaluating a quadratic cost function instead of a simpler absolute tracking
error can significantly improve its performance and prevent the stability issue as mentioned
in [29]. A two-variable minimisation problem is required by (8) due to the reference voltage
vector u∗dq(k + 1), which is a 2× 1 vector. In order to always provide feasible solutions,
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a constrained minimisation problem should also be adopted. Therefore, the computational
burden required by the two-variable minimisation constrained problem algorithm would be
cumbersome to handle by reduced computational power microprocessors.

3.1. Proposed Choice of Voltage Vector Module and Design Hints

In this paper, a simplified approach for the minimisation of (8) was adopted by
introducing a constraint on the voltage vector magnitude. The voltage reference vector can
be rewritten in polar coordinates as u∗dq(k + 1) = U(k + 1)ejϕ(k+1), where U and ϕ are the
voltage reference vector magnitude and phase, respectively, in the synchronous reference
frame. The superscript ∗, which means a reference quantity, in U(k + 1) and ϕ(k + 1),
was omitted for simplicity. The magnitude U was assumed to be constant within one
control period and its value was set before the optimisation algorithm was executed. It
turned out that the requirement of obtaining a feasible solution was automatically satisfied,
provided that the voltage magnitude U is chosen within the feasible set ubus/

√
3, where

ubus is the inverter bus voltage. The feasible set graphical representation is reported in
Figure 1. The choice of a continuous set of values for u∗dq(k + 1) requires the use of a pulse
width modulator (PWM), which is an additional computational burden with respect to a
finite-set solution. Actually, PWM algorithms are very widespread and optimised since
they are even necessary in conventional linear controllers. For instance, the space vector
modulation algorithm is very popular and efficient from a computational point of view.

α

β

umin

umax = ubus√
3

ϕ

u(ω∗m) ϑme

d

q

v0

feasible area

Example of feasible
voltage vector

Figure 1. Voltage plane area. The green area represents the feasible voltage vector region limited by
the red-dot-dashed circles.

The quantity U(k + 1) can be set as subject to different design requirements. The first
trivial solution is to choose an always constant value, i.e., U = Umax , ubus/

√
3. However,

the advantages of using a voltage modulator would be wasted. When a small voltage
magnitude is required, e.g., at low speed, the choice U = Umax forces the solution of (8)
to be larger than necessary. The consequence is a large current ripple making this first
trivial choice equivalent to a finite-set solution. Following the model-free paradigm that no
motor parameters should be used to design the current control algorithm, the choice of
U(k + 1) should be made, balancing both the advantage of having a voltage modulator
and the simplicity of implementation.

As a design hint, the variation law of U(k + 1) can be selected similarly to the V/Hz
control strategy often adopted in induction motor drives. The simple consideration that
the voltage magnitude is strongly proportional to the motor speed can be used to set the
desired variation law of U(k + 1). Bearing in mind that the voltage magnitude value is
set as constant during one control period in the cost function (8), a lower case variable is
introduced to represent the variable magnitude of the voltage reference vector, i.e., u(k + 1).
Furthermore, the speed dependence of u(k + 1) was highlighted by dropping the (k + 1)
time notation and rewriting the voltage magnitude value as a function of the speed,
i.e., u(ωm). Actually, the experimental activity carried out in Section 4 has shown a
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technically sound solution, which is represented by using the speed reference quantity,
thus obtaining u(ω∗m).

The final variation law of u(ω∗m) adopted in this paper is:

u(ω∗m) = umin + kω ·ω∗m (9)

where kω = (umax − umin)/ωn. A second design hint is concerned with the selection of the
minimum value umin for the voltage module u(ω∗m). The simplest meaning of umin is that
a minimum amount of voltage is necessary at zero speed to balance the resistance voltage
drop and obtain the nominal current value. During transient operations, the derivative
terms of (1) are not zero—even at null speed. Therefore, additional voltage to the resistance
voltage drop is necessary to obtain fast current transients. A choice was made to set
umin = 40% umax. The effects of the different umin values choice is discussed in Section 4.4.

3.2. Proposed Optimisation Problem

The only variable that can be used to minimise the cost function (8) is the voltage
reference vector phase ϕ(k + 1). The cost function (8) can be rewritten with the aid of (7)
as follows:

J(ϕ(k + 1)) = [δd − p̂2,du(ω∗m) cos(ϕ(k + 1))]2 +
[
δq − p̂2,qu(ω∗m) sin(ϕ(k + 1))

]2 (10)

where δd(k) , i∗d(k)− îd(k + 1)− p1,d and δq , i∗q (k)− îq(k + 1)− p1,q. It is worth recalling
the polar representation of the voltage reference vector:

ud(k + 1) = u(ω∗m) cos(ϕ(k + 1))

uq(k + 1) = u(ω∗m) sin(ϕ(k + 1))
(11)

The feasible region where the voltage reference vector lies is sketched in Figure 1
and is highlighted in green colour. The dotted blue circumference reported in Figure 1
represents an example of a solution locus set for a given reference speed ω∗m. It is worth
remarking that no constraints are needed for solving the optimisation problem (10) since
umax ≤ ubus/

√
3 always guarantees feasible solutions.

3.3. Algorithm for Finding the Optimal Solution

The minimisation problem with the cost function (10) requires a non-linear single
variable solver. Several efficient algorithms can be adopted. The golden section search (GSS)
algorithm was adopted in this paper due to its simplicity and computational efficiency [30].
The solution of problem minimisation during each control period is given by

ϕ(k + 1) = GSS(J(ϕ(k + 1)), lb, ub, ε, iter) (12)

where the required input arguments are:

• J(ϕ(k + 1)): the function that has to be minimised (i.e., Equation (10));
• lb: lower bound of the searching interval;
• ub: upper bound of the searching interval;
• ε: termination tolerance for searching the solution;
• iter: maximum number of algorithm iterations for finding the solution.

An important aspect that must be taken into account is the non-monotonic behaviour
of the cost function. The presence of trigonometric terms cos(x) and sin(x) results in
more than one minimum over the [0, 2π] domain. Further investigations about the cost
function (10) reveal that only one minimum occurs in either one of the sub-sets [0, π]
and [π, 2π]. An example of the cost function behaviour is reported in Figure 2. In order
to avoid the convergence of the algorithm to a local minimum instead of a global one,
the search interval was split in two: the first interval was set as [0, π]; and the second one
as [π, 2π]. The minimisation algorithm (12) was executed twice—one for each searching
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interval. The two ϕ(k + 1) solutions were than compared, and the one returning the lowest
total cost value was selected.

0 π/2 π 3/2π 2π
0

2

4

6

·10−3

global minimum

local minimum

ϕ [rad]

J
(ϕ

)

Figure 2. Example of cost function (10) for different voltage phase angle values.

An important aspect regarding the implementation of model predictive control is the
computational burden required by the minimisation algorithm. The two parameters that
affect the computational requirement of the algorithm in (12) are the termination tolerance ε
and the maximum number of algorithm iterations iter. The former parameter is related to
the accuracy of the calculated voltage phase ϕ(k + 1). In other words, the termination toler-
ance is related to the difference between two iterative solutions of the algorithm (12). When
the difference is below the termination tolerance, the algorithm has found the minimum
of the function. Therefore, a technically sound value of ε is 0.01 rad, i.e., approximately
0.5°. The latter parameter iter allows to estimate the worst case conditions in terms of
computational time consumption, thus preventing overrun conditions that are extremely
dangerous for real-time applications. The value of iter depends on the microprocessor
adopted in the electrical drive. A possible solution is to estimate the computational time
required by running the algorithm (12) one time and determining the maximum number
of iterations possible on the available hardware. Finally, it is worth pointing out that both ε
and iter do not depend on the motor under test but only on the computational hardware,
in accordance with the model-free paradigm proposed in this paper.

4. Experimental Results and Discussion

The control algorithm reported in Section 3 was implemented on a fast control pro-
totyping test rig (Figure 3) dSpace MicroLabBox featuring a SynRM acting as a motor
under test and an isotropic permanent magnet synchronous motor (PMSM) acting as a
virtual load. The sampling and switching frequency were both set to 8 kHz. It is worth
highlighting that a higher switching frequency introduces only benefits in terms of current
ripple, but at the price of additional switching losses and a reduced equivalent time for the
control algorithm to be carried out.

In order to represent a realistic scenario, the bus voltage was set considering a single-
phase 230 V grid supply. However, the two motors under test of Table 1 considered in this
work were designed for three-phase grid supplied inverters. The situation could take place
in those geographical areas where the three-phase grid supply is not available. The solar
pumps represent another example where the bus voltage is lower than in the industrial
case, but the available motors windings are designed for the full bus voltage value. The
schematic of the proposed experimental setup is sketched in Figure 4. Simple PI speed
control was implemented and a traditional 45° MTPA strategy [31] was adopted since the
main focus was the current control and not the current references generation.
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SynRMPMSM

dSPACE MicroLabBox

Inverters

Figure 3. Experimental setup for the proposed paper.

Table 1. Motors under test nameplate parameters.

Parameter Symbol Unit SynRM1 SynRM2

Resistance R Ω 4.6 1.8
d axis inductance (unsat.) Ld mH 380 340
q axis inductance (unsat.) Lq mH 85 60
Nominal current In A 4 5.6
Nominal speed Ωn rpm 1500 1500
Nominal power Pn W 1600 2200
Nominal torque τn N m 10.2 14.0

Virtual load

emulator

ωm

PIωω∗
m

ωm

MTPA
i∗dq udq

i∗q,L

ω∗
m

Model-free predictive
current control

PIiq

uq,L

ubus

SynRM

PMSM

Inverter

Inverter

PIid

ud,Li∗d,L = 0

+

−

iq,L

+ −

id,L

idq

+

−

Figure 4. Scheme of the proposed control drive and test rig structure.

The only parameters that must be chosen in the proposed current control algorithm
are the forgetting factor f in (5) and umin in (9). The former parameter, f , can be set to a
constant value equal to 0.99 with little reflections on the current dynamic performance
deterioration, as can be seen in [25]. The minimum voltage umin is set to 25% of umax,
which is a fair approximation that guarantees the balance of the Joule losses at all working
points. It is worth pointing out that the umin value could be set to lower (or higher) values
provided that the motor resistance is known. However, the umin value slightly affects the
dynamic of the currents, but the current tracking is guaranteed.

4.1. Design of Experiment: The Pump Load Emulator

The behaviour of an electric pump was emulated by means of a PMSM drive coupled
to the motor under test and programmed as a virtual load. This is a very practical and
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common approach, which can be extended to represent many different loads behaviours,
e.g., [32].

The load torque τL characteristic of a pump can be approximated by the sum of two
terms. The first contribution is the friction torque τF, which includes a constant term
due to dry friction B0,F and a term proportional to the speed due to motor ventilation.
The second contribution is the pump torque τP, which depends on the pump type under
consideration. A centrifugal pump was considered in this paper, and the total load torque
τL was calculated as follows:

τF = B1ωm + B0,F

τP = B2ω2
m

τL = τF + τP = B2ω2
m + B1ωm + B0

(13)

where B0 = B0,F for the sake of brevity. The values of the parameters B0, B1 and B2 were
decided in order to guarantee that the nominal torque was produced by the motor under
test when operating at nominal speed. Bearing in mind that the nominal speed values
were reduced to meet the voltage constraint requirement set by the limited bus voltage,
the values of the parameters adopted during the experimental stage are reported in Table 2.

Table 2. Parameters of the virtual load emulator in (13).

Parameter SynRM1 SynRM2

Static friction B0 0.5542 0.5542
Ventilation friction B1 9.1× 10−3 9.1× 10−3

Pump friction B2 7.77× 10−4 11.65× 10−4

In order to evaluate the current control algorithm proposed in this paper, a simple test
was designed.

The motor under test was set in speed control mode, while the load motor was torque
controlled as sketched in Figure 4. The desired load torque τL (13) was guaranteed by
applying the following current references:

i∗d,L = 0 (14)

i∗q,L =
2
3

τL
pλmg,L

(15)

where λmg,L is the load permanent magnet flux, and p is the load pole pairs. The subscript
L denotes (also in Figure 4) load quantities.

4.2. Pump Load Emulator Results

Two different speed set points were evaluated. The speed and current measurements
as well as the references of the two motors under test are reported in Figures 5 and 6. The
comparison with the benchmark model-free finite-set predictive current control proposed
in [25] is also reported. The characteristic pump toque load behaviour is evident during
the acceleration phase in both dq axes currents, which show a parabolic curve-like charac-
teristic in Figure 5c–f for the SynRM1 motor under test. The same applies for the current
measurements of the SynRM2 motor under test reported in Figure 6.
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Figure 5. Pump load emulation results of the motor under test SynRM1. Figures (a,c,e) report the
results of model-free FS-PCC [25]; Figures (b,d,f) report the results of the proposed model-free PCC.
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Figure 6. Pump load emulation results of the motor under test SynRM2. Figures (a,c,e) report the
results of model-free FS-PCC [25]; Figures (b,d,f) report the results of the proposed model-free PCC.

The current ripple is considerably reduced for both motors under test by using the
proposed model-free predictive current control. This was obtained since the equivalent
voltage vector obtained by the predictive control proposed in Section 3 was selected
in a continuous-set domain rather than a finite-set domain as in [25]. The equivalent
switching frequency of the finite-set predictive current controller is surely lower than that
of the proposed control, which is fixed at 8 kHz. Finite-set algorithms are known for their
unpredictable switching frequency, which depends on the optimal voltage vector sequence
applied during runtime operation. From the current ripple reduction point of view in the
finite-set algorithm, the higher the control frequency, the better. However, the control time
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period is of utmost importance when the computational capacity of the microcontroller is
under consideration.

The computational burden required by the proposed method remains limited. The
benchmark finite-set algorithm requires an average turnaround time of the microcontroller
routine of 34 µs, i.e., the 27.2% of the control period Tc. The proposed model-free predictive
current control required an average turnaround time of 42 µs, i.e., the 33.6% of Tc. In other
words, the proposed model-free predictive current control algorithm requires 6.4% of Tc
more than the benchmark finite-set method.

It is worth remarking that no parameter tuning was required in the proposed current
control algorithm of Section 3 for both motors under test. This is a distinctive feature of
the proposed model-free predictive control algorithm which can be applied to different
SynRMs without the need for any knowledge of motor parameters’ values. Furthermore,
the algorithm proposed in Section 3 can also be applied to permanent magnet motors,
provided that the current ripple value remains limited.

4.3. Load Step Variations

In order to test the current reference tracking capability of the proposed model-free
predictive current control, a further test was carried out. A current step reference variation
situation is likely to occur in a pump application when a denser fluid suddenly hits the
pump. Nonetheless, the test is a canonical procedure to verify the capability of the control
algorithm under consideration and thus, general considerations can be drawn.

The motor under test was dragged by the virtual load motor at constant speed, namely
30% of the motor under test nominal speed, while only the current control was active. A
current magnitude reference equal to half the nominal value was imposed, and the results
were reported in Figure 7 for both motors under test.

On the one hand, the q axis current dynamics obtained by the proposed model-
free predictive control was almost the same as for the benchmark finite-set predictive
control, as can be seen in Figure 7c,d. The steady state behaviour shows that the proposed
model-free control algorithm yields a smaller current ripple than the benchmark finite-set
predictive controller. The results confirm the steady state behaviour of the q axis current
measurements obtained in the pump tests of Section 4.2, in particular Figure 5e compared
to Figure 5f and Figure 6e compared to Figure 6f.

On the other hand, the d axis current dynamics reported in Figure 7a,b shows that the
benchmark finite-set controller is faster than the proposed one. The reason is the smaller
available voltage of the proposed model-free controller compared to the finite-set one
of [25], since the voltage is limited by the u(ω∗m) law in (9). The effect is preponderant
on the d axis tracking performances due to the larger value of Ld compared to Lq in
SynRMs. This is the major drawback of the proposed model-free predictive control which
is counterbalanced by a better steady state behaviour compared to the finite-set predictive
control. It is worth highlighting that the proposed model-free predictive control is designed
for pump applications, who are unlikely to require very high dynamic performances from
the current controller.

A second batch of measurements with step-like variation of the current reference was
collected with the SynRM2 as the motor under test, aiming to testing the proposed current
control performances at different load and speed values. The results of the second batch
are reported in Figure 8. The current dynamics of both dq axes currents in Figure 8a,c are
very similar to the ones at the rated current in Figure 7b,d, respectively, which is at low
speed. However, the current tracking dynamics at higher speed is sensibly improved by
the proposed d axis current predictive controller, as reported in Figure 8b. The reason is
that a higher voltage value u(ω∗m) is available for the minimisation of the cost function (10),
since the reference speed is higher in (9). It is worth recalling that the load torque value in
pump applications increases with the speed. Therefore, improvement of current tracking
performances with the increase in the speed of the proposed model-free predictive control
is attractive for pump applications.
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Figure 7. Current controllers performances to rated current step reference variations at 30% ωn.
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4.4. Effects of Different umin Values

The umin value is the only parameter of the proposed current control that apparently
requires tuning. Three different d axis current measurements using different umin values
and imposing a rated current step variation at null speed are reported in Figure 9. The
current dynamics during the transient is penalised as the umin value decays; however,
the current ripple amplitude also decreases, which improves the steady state behaviour of
the current controller.

A conservative choice for the umin value was made following the model-free control
paradigm. The 25 % of umax is a reasonable choice because it provides good current
dynamics and simultaneously improves the current ripple compared to the finite-set
algorithm, as can be seen in Figures 5 and 6. It is worth pointing out that the purpose of this
paper was to propose a proof of concept about a new continuous-set model-free predictive
control and highlight the implementation aspects that determine the functioning of the
algorithm. The umin value can be set by different simple strategies that do not involve
specialised human interaction, such as the choice between two predetermined values.
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Figure 9. Current behaviours at different umin values at null speed, SynRM2.

5. Conclusions

A new continuous-set model-free predictive current control was studied in this paper,
addressing simple, low-cost electric pump applications.

As a distinguishing feature, the proposed predictive control was based on an adaptive
RLS-based model, which is linked to but not constrained by knowledge of any specific
motor parameter. This fact, combined with a simplified search strategy within a continu-
ous set of voltage vectors, resulted in efficient, low-cost, and low-ripple current control.
The proposed current control skips any initial motor calibration, allowing an immediate
operational startup with a generic electric pump based on the SynRM. In addition to this,
there are many other applications where this control can be applied with higher benefits if
compared with the traditional linear controller.

The validity of the proposed control was proven by several tests on an experimental
test rig featuring two different SynRMs and the results were thoroughly discussed.

Simple and automatic initial self-tuning has the invaluable advantage of not requiring
the presence of expert personnel either at the first start-up or in case of the replacement of
a faulty motor.

In conclusion, the proposed strategy makes use of complex technology to achieve
similar or better results than PI control and finite set model-free predictive control with the
specific goal of making the complexity transparent to the end user, as an established trend
in any smart home device.
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