# Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}, and associated condition monitoring systems have a key role in their availability, ultimately, driving the reduction of the cost of energy.

## 2. Fault Detection and Condition Monitoring

## 3. Wind Turbine Condition Monitoring Methods

## 4. Direct Drive PMSGs for Wind Turbines

_{d}, i

_{q}) and flux linkages (ψ

_{d}, ψ

_{q}) generate harmonics in electromagnetic torque:

## 5. Analysis of PMSG Faults

- Stator insulation faults resulting in open-circuit or short-circuit faults;
- Abnormal connection of the stator windings;
- Static and/or dynamic airgap eccentricity due to damaged support structures (bearing, shaft, stator support structures);
- Demagnetization of permanent magnets.

- Increased discharged activity (partial discharges);
- Stray flux or leakage currents;
- Unbalanced/asymmetric terminal voltages and currents;
- Harmonics in electrical power;
- Increased torque pulsations;
- Increased noise and vibration;
- Increased losses and reduction in efficiency, and decrease of average torque;
- Excessive heating;
- Smoke.

## 6. Offline Testing of PMSGs

#### 6.1. Insulation Resistance and Polarization Index

#### 6.2. DC and AC Hipot Test

#### 6.3. Capacitance

#### 6.4. Dissipation Factor

#### 6.5. Offline Partial Discharge

#### 6.6. Surge Voltage Test

#### 6.7. Thermal Imaging

#### 6.8. Converter Offline Tests

## 7. Online Fault Detection for PMSGs

#### 7.1. Stator Current Signature Analysis

#### 7.2. Unbalanced Current, Voltage, and Power Signals

#### 7.3. Model-Based Approaches

#### 7.4. Signal Injection

#### 7.5. Flux Monitoring

#### 7.6. Innovative Approaches

## 8. Condition Monitoring of PMSGs

## 9. Experience with Stator Winding Failure

## 10. Fault-Tolerant PMSGs

## 11. Conclusions and Research Challenges

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Taherian-Fard, E.; Sahebi, R.; Niknam, T.; Izadian, A.; Shasadeghi, M. Wind Turbine Drivetrain Technologies. IEEE Trans. Ind. Appl.
**2020**, 56, 1729–1741. [Google Scholar] [CrossRef] - Shourangiz-Haghighi, A.; Diazd, M.; Zhang, Y.; Li, J.; Yuan, Y.; Faraji, R.; Ding, L.; Guerrero, J.M. Developing More Efficient Wind Turbines: A Survey of Control Challenges and Opportunities. IEEE Ind. Electron. Mag.
**2020**, 14, 53–64. [Google Scholar] [CrossRef] - Esch, J. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc. IEEE
**2015**, 103, 736–739. [Google Scholar] [CrossRef] - Blaabjerg, F.; Ma, K. Future on Power Electronics for Wind Turbine Systems. IEEE J. Emerg. Sel. Top. Power Electron.
**2013**, 1, 139–152. [Google Scholar] [CrossRef] - Polinder, H.; Ferreira, J.A.; Jensen, B.B.; Abrahamsen, A.B.; Atallah, K.; McMahon, R.A. Trends in Wind Turbine Generator Systems. IEEE J. Emerg. Sel. Top. Power Electron.
**2013**, 1, 174–185. [Google Scholar] [CrossRef] - Costa, Á.M.; Orosa, J.A.; Vergara, D.; Fernández-Arias, P. New Tendencies in Wind Energy Operation and Maintenance. Appl. Sci.
**2021**, 11, 1386. [Google Scholar] [CrossRef] - Tavner, P.; Ran, L.; Penman, J.; Sedding, H. Condition Monitoring of Rotating Electrical Machines; IET, Energy Engineering: London, UK, 2008. [Google Scholar]
- Cardoso, A.J.M. Diagnosis and Fault Tolerance of Electrical Machines, Power Electronics and Drives; IET, Energy Engineering: London, UK, 2018. [Google Scholar]
- Horenbeek, A.V.; Ostaeyen, J.V.; Duflou, J.R.; Pintelon, L. Quantifying the added value of an imperfectly performing condition monitoring system—Application to a wind turbine gearbox. Reliab. Eng. Syst. Saf.
**2013**, 111, 45–57. [Google Scholar] [CrossRef] - Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Slaoui-Hasnaoui, F.; Tameghe, T.; Ekemb, G. Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges. Energies
**2014**, 7, 2595–2630. [Google Scholar] [CrossRef][Green Version] - Maldonado-Correa, J.; Martín-Martínez, S.; Artigao, E.; Gómez-Lázaro, E. Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review. Energies
**2020**, 13, 3132. [Google Scholar] [CrossRef] - Tautz-Weinert, J.; Watson, S.J. Using SCADA data for wind turbine condition monitoring—A review. IET Renew. Power Gener.
**2017**, 11, 382–394. [Google Scholar] [CrossRef][Green Version] - Castellani, F.; Astolfi, D.; Natili, F. SCADA Data Analysis Methods for Diagnosis of Electrical Faults to Wind Turbine Generators. Appl. Sci.
**2021**, 11, 3307. [Google Scholar] [CrossRef] - Zhao, Y.; Li, D.; Dong, A.; Kang, D.; Lv, Q.; Shang, L. Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data. Energies
**2017**, 10, 1210. [Google Scholar] [CrossRef][Green Version] - Márquez, F.P.G.; Tobias, A.M.; Pinar Pérez, J.M.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energy
**2012**, 46, 169–178. [Google Scholar] [CrossRef] - Chen, B.; Zappalá, D.; Crabtree, C.J.; Tavner, P.J. Survey of Commercially Available SCADA Data Analysis Tools for Wind Turbine Health Monitoring. Available online: http://dro.dur.ac.uk/12563/ (accessed on 29 September 2021).
- Predict the Future with Vibration Diagnostics—Siemens Gamesa. Available online: https://www.siemensgamesa.com/-/media/siemensgamesa/downloads/en/products-and-services/services/diagnostics/siemens-gamesa-service-diagnostic-services-vibration-diagnostics-brochure.pdf (accessed on 29 September 2021).
- Liu, Y.; Wu, Z.; Wang, X. Research on Fault Diagnosis of Wind Turbine Based on SCADA Data. IEEE Access
**2020**, 8, 185557–185569. [Google Scholar] [CrossRef] - C006432_004—Siemens SWT3.6. Available online: https://30npnb10r4n0173ti73ov30l-wpengine.netdna-ssl.com/wp-content/uploads/2016/05/Siemens-SWT3_6-Application-Guide.pdf (accessed on 29 September 2021).
- Soua, S.; Van Lieshout, P.; Perera, A.; Gan, T.-H.; Bridge, B. Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring. Renew. Energy
**2013**, 51, 175–181. [Google Scholar] [CrossRef][Green Version] - Yang, W.; Tavner, P.J.; Crabtree, C.J.; Wilkinson, M. Cost-Effective Condition Monitoring for Wind Turbines. IEEE Trans. Ind. Electron.
**2010**, 57, 263–271. [Google Scholar] [CrossRef][Green Version] - Immovilli, F.; Bellini, A.; Rubini, R.; Tassoni, C. Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals: A Critical Comparison. IEEE Trans. Ind. Appl.
**2010**, 46, 1350–1359. [Google Scholar] [CrossRef] - Cheng, F.; Qu, L.; Qiao, W. Fault Prognosis and Remaining Useful Life Prediction of Wind Turbine Gearboxes Using Current Signal Analysis. IEEE Trans. Sustain. Energy
**2018**, 9, 157–167. [Google Scholar] [CrossRef] - Jin, X.; Qiao, W.; Peng, Y.; Cheng, F.; Qu, L. Quantitative Evaluation of Wind Turbine Faults Under Variable Operational Conditions. IEEE Trans. Ind. Appl.
**2016**, 52, 2061–2069. [Google Scholar] [CrossRef] - Balakrishna, P.; Khan, U. An Autonomous Electrical Signature Analysis-Based Method for Faults Monitoring in Industrial Motors. IEEE Trans. Instrum. Meas.
**2021**, 70, 1–8. [Google Scholar] [CrossRef] - Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy
**2019**, 133, 620–635. [Google Scholar] [CrossRef] - Nyanteh, Y.; Edrington, C.; Srivastava, S.; Cartes, D. Application of Artificial Intelligence to Real-Time Fault Detection in Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Appl.
**2013**, 49, 1205–1214. [Google Scholar] [CrossRef] - Lee, H.; Jeong, H.; Koo, G.; Ban, J.; Kim, S.W. Attention Recurrent Neural Network-Based Severity Estimation Method for Interturn Short-Circuit Fault in Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron.
**2021**, 68, 3445–3453. [Google Scholar] [CrossRef] - Haddad, R.Z.; Strangas, E.G. On the Accuracy of Fault Detection and Separation in Permanent Magnet Synchronous Machines Using MCSA/MVSA and LDA. IEEE Trans. Energy Convers.
**2016**, 31, 924–934. [Google Scholar] [CrossRef] - Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.K.; Orchard, M.E.; Saif, M. Critical Wind Turbine Components Prognostics: A Comprehensive Review. IEEE Trans. Instrum. Meas.
**2020**, 69, 9306–9328. [Google Scholar] [CrossRef] - Leite, G.N.P.; Araújo, A.M.; Rosas, P.A.C. Prognostic techniques applied to maintenance of wind turbines: A concise and specific review. Renew. Sustain. Energy Rev.
**2018**, 81, 1917–1925. [Google Scholar] [CrossRef] - Yaramasu, V.; Wu, B. Model Predictive Control of Wind Energy Conversion Systems; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Jahns, T.M.; Soong, W.L. Pulsating torque minimization techniques for permanent magnet AC motor drives-a review. IEEE Trans. Ind. Electron.
**1996**, 43, 321–330. [Google Scholar] [CrossRef] - Leboeuf, N.; Guan, X.; Li, C.; Mou, Q. Effects of Imperfect Manufacturing Process on Electromagnetic Performance and Online Interturn Fault Detection in PMSMs. IEEE Trans. Ind. Electron.
**2015**, 62, 3388–3398. [Google Scholar] - Wang, J.; Atallah, K.; Howe, D. Optimal torque control of fault-tolerant permanent magnet brushless machines. IEEE Trans. Magn.
**2003**, 39, 2962–2964. [Google Scholar] [CrossRef] - Springob, L.; Holtz, J. High-bandwidth current control for torque-ripple compensation in PM synchronous machines. IEEE Trans. Ind. Electron.
**1998**, 45, 713–721. [Google Scholar] [CrossRef] - Mattavelli, P. Synchronous-frame harmonic control for high-performance AC power supplies. IEEE Trans. Ind. Appl.
**2001**, 37, 864–872. [Google Scholar] [CrossRef] - Hu, Y.; Zhu, Z.; Liu, K. Current Control for Dual Three-Phase Permanent Magnet Synchronous Motors Accounting for Current Unbalance and Harmonics. IEEE J. Emerg. Sel. Top. Power Electron.
**2014**, 2, 272–284. [Google Scholar] - Geyer, T. Model Predictive Control of High-Power Converters and Industrial Drives; Wiley: Chichester, UK, 2017. [Google Scholar]
- Muetze, A.; Strangas, E.G. The Useful Life of Inverter-Based Drive Bearings: Methods and Research Directions from Localized Maintenace to Prognosis. IEEE Ind. Appl. Mag.
**2016**, 22, 63–73. [Google Scholar] [CrossRef] - Spinato, F.; Tavner, P.J.; van Bussel, G.J.W.; Koutoulakos, E. Reliability of wind turbine subassemblies. IET Renew. Power Gener.
**2009**, 3, 387–401. [Google Scholar] [CrossRef][Green Version] - Carroll, J.; McDonald, A.; McMillan, D. Reliability Comparison of Wind Turbines with DFIG and PMG Drive Trains. IEEE Trans. Energy Convers.
**2015**, 30, 663–670. [Google Scholar] [CrossRef][Green Version] - Qiao, W.; Lu, D. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part I: Components and Subsystems. IEEE Trans. Ind. Electron.
**2015**, 62, 6536–6545. [Google Scholar] [CrossRef] - Alewine, K.; Chen, W. A review of electrical winding failures in wind turbine generators. IEEE Electr. Insul. Mag.
**2012**, 28, 8–13. [Google Scholar] [CrossRef] - Malliou, C.; Karlis, A.D.; Danikas, M.G.; Lloyd, B. A Short Review on the Offshore Wind Turbine Generator Windings’ Insulation and the Effect of Water Droplets and Salinity. IEEE Trans. Ind. Appl.
**2016**, 52, 4610–4618. [Google Scholar] [CrossRef] - Cintron-Rivera, J.G.; Foster, S.N.; Strangas, E.G. Mitigation of turn-to-turn faults in fault tolerant permanent magnet synchronous motors. IEEE Trans. Energy Convers.
**2015**, 30, 465–475. [Google Scholar] [CrossRef] - Chen, L.; Wang, J.; Sun, Z. Electromagnetic-thermal coupled modelling and analysis of inter-turn short-circuit faults of a permanent magnet alternator. J. Eng.
**2019**, 2019, 4426–4431. [Google Scholar] [CrossRef] - Zhao, J.; Guan, X.; Li, C.; Mou, Q.; Chen, Z. Comprehensive Evaluation of Inter-Turn Short Circuit Faults in PMSM Used for Electric Vehicles. IEEE Trans. Intell. Transp. Syst.
**2021**, 22, 611–621. [Google Scholar] [CrossRef] - Gandhi, A.; Corrigan, T.; Parsa, L. Recent Advances in Modeling and Online Detection of Stator Interturn Faults in Electrical Motors. IEEE Trans. Ind. Electron.
**2011**, 58, 1564–1575. [Google Scholar] [CrossRef] - Usman, A.; Joshi, B.M.; Rajpurohit, B.S. Review of fault modeling methods for permanent magnet synchronous motors and their comparison. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece,, 29 August–1 September 2017; pp. 141–146. [Google Scholar]
- Kim, T.; Lee, H.; Kwak, S. The Internal Fault Analysis of Brushless DC Motors Based on the Winding Function Theory. IEEE Trans. Magn.
**2009**, 45, 2090–2096. [Google Scholar] - Dai, M.; Keyhani, A.; Sebastian, T. Fault analysis of a PM brushless DC Motor using finite element method. IEEE Trans. Energy Convers.
**2005**, 20, 1–6. [Google Scholar] [CrossRef] - Vaseghi, B.; Takorabet, N.; Meibody-Tabar, F. Fault Analysis and Parameter Identification of Permanent-Magnet Motors by the Finite-Element Method. IEEE Trans. Magn.
**2009**, 45, 3290–3295. [Google Scholar] [CrossRef] - Sun, Z.; Wang, J.; Howe, D.; Jewell, G. Analytical Prediction of the Short-Circuit Current in Fault-Tolerant Permanent-Magnet Machines. IEEE Trans. Ind. Electron.
**2008**, 55, 4210–4217. [Google Scholar] - Arumugam, P.; Hamiti, T.; Gerada, C. Modeling of Different Winding Configurations for Fault-Tolerant Permanent Magnet Machines to Restrain Interturn Short-Circuit Current. IEEE Trans. Energy Convers.
**2012**, 27, 351–361. [Google Scholar] [CrossRef] - Romeral, L.; Urresty, J.C.; Ruiz, J.R.; Espinosa, A.G. Modeling of Surface-Mounted Permanent Magnet Synchronous Motors with Stator Winding Interturn Faults. IEEE Trans. Ind. Electron.
**2011**, 58, 1576–1585. [Google Scholar] [CrossRef] - Jeong, I.; Hyon, B.J.; Nam, K. Dynamic Modeling and Control for SPMSMs With Internal Turn Short Fault. IEEE Trans. Power Electron.
**2013**, 28, 3495–3508. [Google Scholar] [CrossRef] - Forstner, G.; Kugi, A.; Kemmetmüller, W. A Magnetic Equivalent Circuit Based Modeling Framework for Electric Motors Applied to a PMSM with Winding Short Circuit. IEEE Trans. Power Electron.
**2020**, 35, 12285–12295. [Google Scholar] [CrossRef] - Qi, Y.; Bostanci, E.; Gurusamy, V.; Akin, B. A Comprehensive Analysis of Short-Circuit Current Behavior in PMSM Interturn Short-Circuit Faults. IEEE Trans. Power Electron.
**2018**, 33, 10784–10793. [Google Scholar] [CrossRef] - Hong, J.; Hyun, D.; Lee, S.B.; Yoo, J.; Lee, K. Automated Monitoring of Magnet Quality for Permanent-Magnet Synchronous Motors at Standstill. IEEE Trans. Ind. Appl.
**2010**, 46, 1397–1405. [Google Scholar] [CrossRef] - Hong, J.; Lee, S.B.; Kral, C.; Haumer, A. Detection and Classification of Rotor Demagnetization and Eccentricity Faults for PM Synchronous Motors. IEEE Trans. Ind. Appl.
**2012**, 48, 923–932. [Google Scholar] [CrossRef] - Stone, G.; Boulter, E.; Culbert, I.; Dhirani, H. Electrical Insulation for Rotating Machines—Design, Evaluation, Aging, Testing, and Repair; Wiley-IEEE Press: Piscataway, NJ, USA, 2014. [Google Scholar]
- IEEE Recommended Practice for Testing Insulation Resistance of Electric Machinery. IEEE Std 43–2013; Revision of IEEE Std 43–2000. 2012, Volume 6, pp. 1–37. Available online: https://ieeexplore.ieee.org/document/6754111 (accessed on 29 September 2021).
- IEEE Guide for the Measurement of Partial Discharges in AC Electric Machinery. IEEE Std 1434–2014; Revision of IEEE Std 1434–2000. 2014, Volume 4, pp. 1–89. Available online: https://ieeexplore.ieee.org/document/6973042 (accessed on 29 September 2021).
- IEEE Guide for Testing Turn Insulation of Form-Wound Stator Coils for Alternating-Current Electric Machines. IEEE Std 522–2004; Revision of IEEE Std 522–1992. 2004, pp. 1–28. Available online: https://ieeexplore.ieee.org/document/1322822 (accessed on 29 September 2021).
- Stone, G.C. Recent important changes in IEEE motor and generator winding insulation diagnostic testing standards. IEEE Trans. Ind. Appl.
**2005**, 41, 91–100. [Google Scholar] [CrossRef] - Stranges, M.K.W.; Haq, S.U.; Vouk, A.O. Monitoring Stator Insulation in Critical Motors: Choosing Diagnostic Tests. IEEE Ind. Appl. Mag.
**2014**, 20, 50–55. [Google Scholar] [CrossRef] - Kim, H.; Lee, S.B.; Kral, C.; Haumer, A. Experience with Stator Insulation Testing and Turn/Phase Insulation Failures in the Power Generation Industry. IEEE Trans. Ind. Appl.
**2018**, 54, 2225–2236. [Google Scholar] [CrossRef] - Yang, J.; Lee, S.B.; Kral, C.; Haumer, A. Experimental evaluation of using the surge PD test as a predictive maintenance tool for monitoring turn insulation quality in random wound AC motor stator windings. IEEE Trans. Dielectr. Electr. Insul.
**2012**, 19, 53–60. [Google Scholar] [CrossRef] - Qi, Y.; Zafarani, M.; Akin, B.; Fedigan, S.E. Analysis and Detection of Inter-Turn Short-Circuit Fault Through Extended Self-Commissioning. IEEE Trans. Ind. Appl.
**2017**, 53, 2730–2739. [Google Scholar] [CrossRef] - Hong, J.; Lee, S.B.; Kral, C.; Haumer, A. Detection of Airgap Eccentricity for Permanent Magnet Synchronous Motors Based on the d-Axis Inductance. IEEE Trans. Power Electron.
**2012**, 27, 2605–2612. [Google Scholar] [CrossRef] - Aggarwal, A.; Kral, C.; Haumer, A. Off-Line Detection of Static Eccentricity of PMSM Robust to Machine Operating Temperature and Rotor Position Misalignment Using Incremental Inductance Approach. IEEE Trans. Transp. Electrif.
**2021**, 7, 161–168. [Google Scholar] [CrossRef] - Deng, H. Method to Detect or Monitor the Demagnetization of a. Magnet. Patent U.S. 2017/0030984 A1, 2 February 2017. [Google Scholar]
- Nandi, S.; Toliyat, H.A.; Li, X. Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Trans. Energy Convers.
**2005**, 20, 719–729. [Google Scholar] [CrossRef] - Grubic, S.; Aller, J.M.; Lu, B.; Habetler, T.G. A Survey on Testing and Monitoring Methods for Stator Insulation Systems of Low-Voltage Induction Machines Focusing on Turn Insulation Problems. IEEE Trans. Ind. Electron.
**2008**, 55, 4127–4136. [Google Scholar] [CrossRef][Green Version] - Henao, H.; Lee, S.B.; Kral, C.; Haumer, A. Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Ind. Electron. Mag.
**2014**, 8, 31–42. [Google Scholar] [CrossRef] - Riera-Guasp, M.; Lee, S.B.; Kral, C.; Haumer, A. Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Trans. Ind. Electron.
**2015**, 62, 1746–1759. [Google Scholar] [CrossRef] - Zafarani, M.; Bostanci, E.; Qi, Y.; Goktas, T.; Akin, B. Interturn Short-Circuit Faults in Permanent Magnet Synchronous Machines: An Extended Review and Comprehensive Analysis. IEEE J. Emerg. Sel. Top. Power Electron.
**2018**, 6. [Google Scholar] [CrossRef] - Ullah, Z.; Hur, J. A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in PM Type Machines. Energies
**2018**, 11, 3309. [Google Scholar] [CrossRef][Green Version] - Lee, S.B.; Lee, S.B.; Kral, C.; Haumer, A. Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE Ind. Electron. Mag.
**2020**, 14, 158–167. [Google Scholar] [CrossRef] - Wu, Q.; Nandi, S. Fast Single-Turn Sensitive Stator Interturn Fault Detection of Induction Machines Based on Positive- and Negative-Sequence Third Harmonic Components of Line Currents. IEEE Trans. Ind. Appl.
**2010**, 46. [Google Scholar] [CrossRef] - Ebrahimi, B.M.; Faiz, J. Configuration Impacts on Eccentricity Fault Detection in Permanent Magnet Synchronous Motors. IEEE Trans. Magn.
**2012**, 48, 903–906. [Google Scholar] [CrossRef] - Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron.
**2009**, 56, 4727–4739. [Google Scholar] [CrossRef] - Wang, C.; Prieto, M.D.; Romeral, L.; Chen, Z.; Blaabjerg, F.; Liu, X. Detection of Partial Demagnetization Fault in PMSMs Operating Under Nonstationary Conditions. IEEE Trans. Magn.
**2016**, 52, 1–4. [Google Scholar] [CrossRef][Green Version] - Cardoso, A.J.M.; Cruz, S.M.A.; Fonseca, D.S.B. Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park’s vector approach. IEEE Trans. Energy Convers.
**1999**, 14, 595–598. [Google Scholar] [CrossRef] - Cruz, S.M.A.; Cardoso, A.J.M. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach. IEEE Trans. Ind. Appl.
**2001**, 37, 1227–1233. [Google Scholar] [CrossRef] - Cruz, S.M.A.; Cardoso, A.J.M. Multiple reference frames theory: A new method for the diagnosis of stator faults in three-phase induction motors. IEEE Trans. Energy Convers.
**2005**, 20, 611–619. [Google Scholar] [CrossRef] - Kim, K. Simple Online Fault Detecting Scheme for Short-Circuited Turn in a PMSM Through Current Harmonic Monitoring. IEEE Trans. Ind. Electron.
**2011**, 58, 2565–2568. [Google Scholar] [CrossRef] - Hang, J.; Ding, S.; Zhang, J.; Cheng, M.; Chen, W.; Wang, Q. Detection of Interturn Short-Circuit Fault for PMSM with Simple Fault Indicator. IEEE Trans. Energy Convers.
**2016**, 31, 1697–1699. [Google Scholar] [CrossRef] - Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B.; Meibody-Tabar, F. Synchronous Demodulation of Control Voltages for Stator Interturn Fault Detection in PMSM. IEEE Trans. Power Electron.
**2013**, 28, 5647–5654. [Google Scholar] [CrossRef] - Meinguet, F.; Semail, E.; Kestelyn, X.; Mollet, Y.; Gyselinck, J. ’Change-detection algorithm for short-circuit fault detection in closed-loop AC drives. IET Electr. Power Appl.
**2014**, 8, 165–177. [Google Scholar] [CrossRef][Green Version] - Immovilli, F.; Lee, S.B.; Kral, C.; Haumer, A. Evaluation of Combined Reference Frame Transformation for Interturn Fault Detection in Permanent-Magnet Multiphase Machines. IEEE Trans. Ind. Electron.
**2015**, 62, 1912–1920. [Google Scholar] [CrossRef] - Haddad, R.Z.; Lopez, C.A.; Foster, S.N.; Strangas, E.G. A Voltage-Based Approach for Fault Detection and Separation in Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Appl.
**2011**, 53, 5305–5314. [Google Scholar] [CrossRef] - Hang, J.; Zhang, J.; Cheng, M.; Huang, J. Online Interturn Fault Diagnosis of Permanent Magnet Synchronous Machine Using Zero-Sequence Components. IEEE Trans. Power Electron.
**2015**, 30, 6731–6741. [Google Scholar] [CrossRef] - Urresty, J.; Riba, J.; Romeral, L. Diagnosis of Interturn Faults in PMSMs Operating Under Nonstationary Conditions by Applying Order Tracking Filtering. IEEE Trans. Power Electron.
**2013**, 28, 507–515. [Google Scholar] [CrossRef] - Zhang, Y.; Liu, G.; Zhao, W.; Zhou, H.; Chen, Q.; Wei, M. Online Diagnosis of Slight Interturn Short-Circuit Fault for a Low-Speed Permanent Magnet Synchronous Motor. IEEE Trans. Transp. Electrif.
**2021**, 7, 104–113. [Google Scholar] [CrossRef] - Drif, M.; Cardoso, A.J.M. Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses. IEEE Trans. Ind. Inform.
**2014**, 10, 1348–1360. [Google Scholar] [CrossRef] - Gritli, Y.; Tani, A.; Rossi, C.; Casadei, D. Cosed-loop control impact on condition monitoring of high-resistance connections in PMSM based on power signature analysis. In Proceedings of the IECON 2016 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016. [Google Scholar]
- Wang, B.; Wang, J.; Griffo, A.; Sen, B. Stator Turn Fault Detection by Second Harmonic in Instantaneous Power for a Triple-Redundant Fault-Tolerant PM Drive. IEEE Trans. Ind. Electron.
**2018**, 65, 7279–7289. [Google Scholar] [CrossRef][Green Version] - Bellini, A.; Filippetti, F.; Franceschini, G.; Tassoni, C. Closed-loop control impact on the diagnosis of induction motors faults. IEEE Trans. Ind. Appl.
**2000**, 36, 1318–1329. [Google Scholar] [CrossRef] - Cruz, S.M.A.; Cardoso, A.J.M. Diagnosis of stator inter-turn short circuits in DTC induction motor drives. IEEE Trans. Ind. Appl.
**2004**, 40, 1349–1360. [Google Scholar] [CrossRef] - Hang, J.; Zhang, J.; Xia, M.; Ding, S.; Hua, W. Interturn Fault Diagnosis for Model-Predictive-Controlled-PMSM Based on Cost Function and Wavelet Transform. IEEE Trans. Power Electron.
**2020**, 35, 6405–6418. [Google Scholar] [CrossRef] - Huang, S.; Aggarwal, A.; Strangas, E.G.; Li, K.; Niu, F.; Huang, X. Robust Stator Winding Fault Detection in PMSMs With Respect to Current Controller Bandwidth. IEEE Trans. Power Electron.
**2021**, 36, 5032–5042. [Google Scholar] [CrossRef] - Zafarani, M.; Goktas, T.; Akin, B.; Fedigan, S.E. Modeling and Dynamic Behavior Analysis of Magnet Defect Signatures in Permanent Magnet Synchronous Motors. IEEE Trans. Ind. Appl.
**2016**, 52, 3753–3762. [Google Scholar] [CrossRef] - Yun, J.; Cho, J.; Lee, S.B.; Yoo, J. Online Detection of High-Resistance Connections in the Incoming Electrical Circuit for Induction Motors. IEEE Trans. Ind. Appl.
**2009**, 45, 694–702. [Google Scholar] [CrossRef] - Yun, J.; Lee, K.; Lee, K.; Lee, S.B.; Yoo, J. Detection and Classification of Stator Turn Faults and High-Resistance Electrical Connections for Induction Machines. IEEE Trans. Ind. Appl.
**2009**, 45, 666–675. [Google Scholar] [CrossRef] - Zarri, L.; Lee, S.B.; Kral, C.; Haumer, A. Detection and Localization of Stator Resistance Dissymmetry Based on Multiple Reference Frame Controllers in Multiphase Induction Motor Drives. IEEE Trans. Ind. Electron.
**2013**, 60, 3506–3518. [Google Scholar] [CrossRef] - Mengoni, M.; Lee, S.B.; Kral, C.; Haumer, A. Online Detection of High-Resistance Connections in Multiphase Induction Machines. IEEE Trans. Power Electron.
**2015**, 30, 4505–4513. [Google Scholar] [CrossRef] - Mengoni, M.; Zarri, L.; Gritli, Y.; Tani, A.; Filippetti, F.; Lee, S.B. Online Detection of High-Resistance Connections with Negative-Sequence Regulators in Three-Phase Induction Motor Drives. IEEE Trans. Ind. Appl.
**2015**, 51, 1579–1586. [Google Scholar] [CrossRef] - Sarikhani, A.; Mohammed, O.A. Inter-Turn Fault Detection in PM Synchronous Machines by Physics-Based Back Electromotive Force Estimation. IEEE Trans. Ind. Electron.
**2013**, 60, 3472–3484. [Google Scholar] [CrossRef] - Mazzoletti, M.A.; Bossio, G.R.; de Angelo, C.H.; Espinoza-Trejo, D.R. A Model-Based Strategy for Interturn Short-Circuit Fault Diagnosis in PMSM. IEEE Trans. Ind. Electron.
**2017**, 64, 7218–7228. [Google Scholar] [CrossRef] - Jeong, H.; Moon, S.; Kim, S.W. An Early Stage Interturn Fault Diagnosis of PMSMs by Using Negative-Sequence Components. IEEE Trans. Ind. Electron.
**2017**, 64, 5701–5708. [Google Scholar] [CrossRef] - Hu, R.; Wang, J.; Mills, A.R.; Chong, E.; Sun, Z. Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines. IEEE Trans. Ind. Electron.
**2021**, 68, 59–69. [Google Scholar] [CrossRef] - Milanfar, P.; Lang, J.H. Monitoring the thermal condition of permanent-magnet synchronous motors. IEEE Trans. Aerosp. Electron. Syst.
**1996**, 32, 1421–1429. [Google Scholar] [CrossRef] - Xiao, S.; Griffo, A. PWM-Based Flux Linkage and Rotor Temperature Estimations for Permanent Magnet Synchronous Machines. IEEE Trans. Power Electron.
**2020**, 35, 6061–6069. [Google Scholar] [CrossRef] - de la Barrera, P.M.; Bossio, G.R.; Leidhold, R. Online Voltage Sensorless High-Resistance Connection Diagnosis in Induction Motor Drives. IEEE Trans. Ind. Electron.
**2015**, 62, 4374–4384. [Google Scholar] [CrossRef] - Sun, J.; Li, C.; Zheng, Z.; Wang, K.; Li, Y. Online Estimation of Per-phase Stator Resistance Based on DC-Signal Injection for Condition Monitoring in Multiphase Drives. IEEE Trans. Ind. Electronics
**2021**. [Google Scholar] [CrossRef] - Briz, F.; Degner, M.W.; Zamarron, A.; Guerrero, J.M. Online stator winding fault diagnosis in inverter-fed AC machines using high-frequency signal injection. IEEE Trans. Ind. Appl.
**2003**, 39, 1109–1117. [Google Scholar] [CrossRef] - Wang, B.; Luo, L.; Fu, W.; Hua, W.; Wang, G.; Wang, Z. Study on the PWM Ripple Current Based Turn Fault Detection for Interior PM Machine. IEEE Trans. Transp. Electrif.
**2021**, 7, 1537–1547. [Google Scholar] [CrossRef] - Zhang, J.; Xu, Z.; Wang, J.; Zhao, J.; Din, Z.; Cheng, M. Detection and Discrimination of Incipient Stator Faults for Inverter-Fed Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron.
**2021**, 68, 7505–7515. [Google Scholar] [CrossRef] - Hu, R.; Wang, J.; Mills, A.R.; Chong, E.; Sun, Z. High-Frequency Voltage Injection Based Stator Interturn Fault Detection in Permanent Magnet Machines. IEEE Trans. Power Electron.
**2021**, 36, 785–794. [Google Scholar] [CrossRef] - Sasic, M.; Campbell, S.R.; Lloyd, B. Flux Monitoring Improvement. IEEE Ind. Appl. Mag.
**2011**, 17, 66–69. [Google Scholar] [CrossRef] - Da, Y.; Shi, X.; Krishnamurthy, M. A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using Electromagnetic Signature Analysis. IEEE Trans. Power Electron.
**2013**, 28, 4104–4112. [Google Scholar] [CrossRef] - Mohammed, A.; Melecio, J.I.; Djurović, S. Electrical Machine Permanent Magnets Health Monitoring and Diagnosis Using an Air-Gap Magnetic Sensor. IEEE Sens. J.
**2020**, 20, 5251–5259. [Google Scholar] [CrossRef] - Irhoumah, M.; Pusca, R.; Lefevre, E.; Mercier, D.; Romary, R.; Demian, C. Information Fusion with Belief Functions for Detection of Interturn Short-Circuit Faults in Electrical Machines Using External Flux Sensors. IEEE Trans. Ind. Electron.
**2018**, 65, 2642–2652. [Google Scholar] [CrossRef] - Irhoumah, M.; Lee, S.B.; Kral, C.; Haumer, A. Detection of the Stator Winding Inter-Turn Faults in Asynchronous and Synchronous Machines Through the Correlation Between Harmonics of the Voltage of Two Magnetic Flux Sensors. IEEE Trans. Ind. Appl.
**2019**, 55, 2682–2689. [Google Scholar] [CrossRef] - Gurusamy, V.; Bostanci, E.; Li, C.; Qi, Y.; Akin, B. A Stray Magnetic Flux-Based Robust Diagnosis Method for Detection and Location of Interturn Short Circuit Fault in PMSM. IEEE Trans. Instrum. Meas.
**2021**, 70, 1–11. [Google Scholar] [CrossRef] - Gyftakis, K.N.; Cardoso, A.J.M. Reliable Detection of Stator Interturn Faults of Very Low Severity Level in Induction Motors. IEEE Trans. Ind. Electron.
**2021**, 68, 3475–3484. [Google Scholar] [CrossRef] - Grassetti, R.; Ottoboni, R.; Rossi, M.; Toscani, S. Low cost arc fault detection in aerospace applications. IEEE Instrum. Meas. Mag.
**2013**, 16, 37–42. [Google Scholar] [CrossRef] - de Pelegrin, J.; Dreyer, U.J.; Martelli, C.; da Silva, J.C.C. Optical Fiber Sensor Encapsulated in Carbon Fiber Reinforced Polymer for Fault Detection in Rotating Electrical Machines. IEEE Sens. J.
**2020**, 20, 11364–11371. [Google Scholar] [CrossRef] - Mohammed, A.; Melecio, J.I.; Djurović, S. Stator Winding Fault Thermal Signature Monitoring and Analysis by In Situ FBG Sensors. IEEE Trans. Ind. Electron.
**2019**, 66, 8082–8092. [Google Scholar] [CrossRef] - Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Online stator end winding thermography using infrared sensor array. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2454–2459. [Google Scholar]
- Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Stator End-Winding Thermal and Magnetic Sensor Arrays for Online Stator Inter-Turn Fault Detection. IEEE Sens. J.
**2021**, 21, 5312–5321. [Google Scholar] [CrossRef] - Stone, G.C.; Warren, V. Effect of manufacturer, winding age and insulation type on stator winding partial discharge levels. IEEE Electr. Insul. Mag.
**2004**, 20, 13–17. [Google Scholar] [CrossRef] - Stone, G.C. A perspective on online partial discharge monitoring for assessment of the condition of rotating machine stator winding insulation. IEEE Electr. Insul. Mag.
**2012**, 28, 8–13. [Google Scholar] [CrossRef] - Lu, S.; Chai, H.; Sahoo, A.; Phung, B.T. Condition Monitoring Based on Partial Discharge Diagnostics Using Machine Learning Methods: A Comprehensive State-of-the-Art Review. IEEE Trans. Dielectr. Electr. Insul.
**2020**, 27, 1861–1888. [Google Scholar] [CrossRef] - Lee, S.B.; Yang, J.; Younsi, K.; Bharadwaj, R.M. An online groundwall and phase-to-phase insulation quality assessment technique for AC-machine stator windings. IEEE Trans. Ind. Appl.
**2006**, 42, 946–957. [Google Scholar] - Lee, S.B.; Younsi, K.; Kliman, G.B. An online technique for monitoring the insulation condition of AC machine stator windings. IEEE Trans. Energy Convers.
**2005**, 20, 737–745. [Google Scholar] [CrossRef] - Younsi, K.; Lee, S.B.; Kral, C.; Haumer, A. On-line capacitance and dissipation factor monitoring of AC stator insulation. IEEE Trans. Dielectr. Electr. Insul.
**2010**, 17, 1441–1452. [Google Scholar] [CrossRef] - Zhang, P.; Younsi, K.; Neti, P. A Novel Online Stator Ground-Wall Insulation Monitoring Scheme for Inverter-Fed AC Motors. IEEE Trans. Ind. Appl.
**2015**, 51, 2201–2207. [Google Scholar] [CrossRef] - Tsyokhla, I.; Griffo, A.; Wang, J. Online Condition Monitoring for Diagnosis and Prognosis of Insulation Degradation of Inverter-Fed Machines. IEEE Trans. Ind. Electron.
**2019**, 66, 8126–8135. [Google Scholar] [CrossRef][Green Version] - Tsyokhla, I.; Griffo, A.; Wang, J. Detection of humidity ingress using online common-mode insulation impedance-monitoring system. J. Eng.
**2019**, 2019, 4411–4414. [Google Scholar] [CrossRef] - Tsyokhla, I.; Griffo, A.; Wang, J. On-Line Motor Insulation Capacitance Monitoring Using Low-Cost Sensors. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 6996–7003. [Google Scholar]
- Alvarez-Gonzalez, F.; Hewitt, D.; Griffo, A.; Wang, J. Challenges of Common Mode Current and Voltage Acquisition for Stator Winding Insulation Health Monitoring. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 4452–4459. [Google Scholar]
- Zheng, D.; Zhang, P. An Online Groundwall and Phase-to-Phase Stator Insulation Monitoring Method for Inverter-Fed Machine. IEEE Trans. Ind. Electron.
**2021**, 68, 5303–5313. [Google Scholar] [CrossRef] - El-Refaie, A.M. Fault-tolerant permanent magnet machines: A review. IET Electr. Power Appl.
**2011**, 5, 59–74. [Google Scholar] [CrossRef] - Arumugam, P.; Hamiti, T.; Gerada, C. Turn–turn short circuit fault management in permanent magnet machines. IET Electr. Power Appl.
**2015**, 9, 634–641. [Google Scholar] [CrossRef] - Dusek, J.; Arumugam, P.; Brunson, C.; Amankwah, E.K.; Hamiti, T.; Gerada, C. Impact of Slot/Pole Combination on Inter-Turn Short-Circuit Current in Fault-Tolerant Permanent Magnet Machines. IEEE Trans. Magn.
**2016**, 52, 1–9. [Google Scholar] [CrossRef] - Merkhouf, A.; Bernier, S.; Cave, J.; Kokoko, O.; Pedneault-Desroches, J.; Millet, C. Operational Limits of a Large Hydro Generator with Bypassed Coils and Circuits. In Proceedings of the 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019. [Google Scholar]

Stator | Rotor | Support Structures | Cooling | Instrumentation |
---|---|---|---|---|

Winding insulation (groundwall, interturn) End windings Core Wedges | Permanent magnets | Bearings Shaft Stator support structure Rotor house | Heat exchangers Pipework Fans Motors | Sensors Acquisition systems Controllers |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Freire, N.M.A.; Cardoso, A.J.M. Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines. *Machines* **2021**, *9*, 260.
https://doi.org/10.3390/machines9110260

**AMA Style**

Freire NMA, Cardoso AJM. Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines. *Machines*. 2021; 9(11):260.
https://doi.org/10.3390/machines9110260

**Chicago/Turabian Style**

Freire, Nuno M. A., and Antonio J. Marques Cardoso. 2021. "Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines" *Machines* 9, no. 11: 260.
https://doi.org/10.3390/machines9110260