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Abstract: Three-phase induction motors (IMs) are the main workhorse in industry due to their many
advantages as compared to other types of industrial motors. However, the efficiency and lifetime
of IMs can be considerably affected by some operating conditions, in particular those related to
unbalanced supply voltages (USV), which is quite a common condition in industrial plants. Therefore,
early detection and a precise severity estimation of the USV for all working conditions can prevent
major breakdowns and increase reliability and safety of industrial facilities. This paper proposes
a reliable method allowing for a precise and online detection of the USV condition, by monitoring
a pertinent indicator calculated using the voltage symmetrical components. The effectiveness of
the proposed method is validated experimentally for several different working conditions, and a
comparison with other indicators available in the literature is also performed.

Keywords: three-phase IMs; unbalanced supply voltage (USV); voltage negative factor (VNF);
fortescue transform (FT); short time least square Prony’s method (STLSP)

1. Introduction

Nowadays, more than 85% of electric motors used in industry are three-phase in-
duction motors (IMs) [1–4]. They are widely used due to their reliability, convenience
of design, high performance, and overloaded capacity, for different applications such as
manufacturing, processing, power systems, transportation, etc. However, IMs are usually
working under severe mechanical and electrical operating conditions that make them
vulnerable to numerous stators and/or rotor faults. Furthermore, unbalanced supply volt-
ages (USV), which is a quite common electrical problem in industrial plants, can seriously
affect the IMs more than any other electrical equipment. Indeed, even if the USV is small,
large, unbalanced currents flow due to the relatively small negative sequence impedance.
These large currents lead to diverse heating problems that cause more losses, vibrations,
acoustic noises, and decrease in torque, which can eventually shorten the lifespan of the
IMs. Due to the various damages that an USV can produce in IMs, different standards have
defined the maximum limits allowed for this phenomenon, including NEMA [5], IEEE,
and IEC standards each one with different considerations [6–8]. The occurrence of USV
in an industrial power system is due to a multiplicity of causes, the most common are [9]:
faulty operation of power factor correction equipment, unequally distributed single-phase
loads on the same power system, and an open-circuit on the primary distribution system.
The study of USV was the topic of many research papers, where their main subject was the
study of the USV’s causes and its effects on the electrical machines in order to determine its
permissible levels. For instance, the first factor dedicated to quantifying either the voltage
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or current unbalances was proposed by Fortescue in [10]. This factor was defined as the
ratio of negative and positive components. After that, many other factors were proposed
to measure the USV; the more relevant are: the voltage unbalance factor (VUF) adopted by
IEC standard [11], the percent voltage unbalance (PVU) defined by NEMA standard [5] and
the complex voltage unbalance factor (CVUF) [12–14]. The PVU is defined as the maximum
deviation of the RMS line voltage from the average of the three RMS line voltages. It is a
convenient factor to be used in field measurements since its calculation includes just the
RMS or the magnitudes of the three-phase voltages. However, the VUF and CVUF are
calculated as the ratio of the line voltage positive and negative sequences. Their computa-
tion requires both the magnitudes and phases of the three-phase voltages, which is quite
difficult in practice. On the other hand, the VUF provides better physical interpretation
of the cause of voltage unbalance, and it is more useful in the prediction and analysis of
the USV effects on electrical machines. A deep literature review shows that most of the
published papers were focused on the study of the USV effects on the IMs performance in
terms of speed, torque, current losses, power factor, and efficiency [13,15–19]. However,
the online detection of the USV is not very much reported. In [20], a method based on the
Goertzel algorithm was used to extract some spectral components from the Park’s vector
and the motor vibration to detect an incipient USV. In [21], a technique called symbolic
dynamic filtering (SDF) was proposed for the early detection of stator voltage unbalance in
three-phase induction motors. The algorithm involves wavelet transform of stator current
signals and subsequent analysis based on D-Markov machine construction. In [22], it
was demonstrated that supplying an IM with unbalanced voltages generates mechanical
vibrations. Thus, an ILFE fiber-optic sensor was proposed and designed to detect these
vibrations in the range DC-500 Hz. The authors of [22] stated that the obtained signal can
be considered as a good USV indicator. A protection model based on the thermal impact
analysis of voltage unbalance is developed in [23] with the aim of protecting the motor
against USV problems.

Therefore, one of the aims of this paper is to fill this gap by proposing a low-cost
implementation algorithm that can be used online in order to detect and quantify, at an
incipient stage of development, any level of unbalance in the voltages supplying an IM.
In this paper, the idea of network decomposition [1] is used. But instead of providing
different representations for three, two- and single-phase equipment, Fortescue coordinates
are applied for all calculated unbalanced networks. On the other hand, a modified version
of Prony’s method is proposed for IMs unbalanced voltage fault detection, by estimating
and tracking the symmetrical components’ characteristic frequency and its corresponding
amplitude, from the stator current and voltage signals [24,25]. The proposed technique can
provide a linear time–frequency and amplitude representation of the fault characteristic
component with high-frequency resolution and adjustable time resolution. The proposed
method is demonstrated to be robust and independent of load variations or the occurrence
of any other motor faults. The paper contains three main sections. The second part
describes the STLSP technique that was used to extract and monitor the amplitude of the
most significant harmonics associated with an unbalanced voltage supply condition. The
third section reports on the experimental results for both healthy and defective conditions,
as well as the validation of a real-time diagnostic technique for detecting unbalanced
supply voltages in induction motors. In addition, a comparative study is carried out based
on four criteria: sensitivity to low USV occurrence, sensitivity to the severity of the USV,
robustness to load variations, and robustness to other comparable faults. The final part of
the paper is dedicated to the general conclusions.

2. The Proposed USV Detection Method

The aim here is to obtain a reliable and quantifiable indicator allowing for an online
and fast detection of USV, and that leads to a rapid action in order to protect three-phase
induction motors. The proposed idea is inspired in the study of the voltage unbalance in
the power network analysis. Indeed, the Voltage Unbalance Factor (VUF) is defined as the
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ratio between the negative and positive symmetrical components of voltages [1,2]. Since it
is obtained starting from the negative sequence, let us call it negative voltage unbalance
factor (NVF):

NVF = VUF =

∣∣∣∣V−V+

∣∣∣∣ (1)

The voltage symmetrical components are calculated using the well-known Fortescue
transform (FT). Therefore, the application of the FT on three-phase unbalanced supply
voltages (Va, Vb, Vc) of an induction motor leads to three symmetrical components: positive
(V+ or Direct), negative (V− or Inverse) and zero (Vo or Homopolar). These symmetrical
components can be obtained as expressed in the following matrix form: V+

V−
Vo

 =
1
3

 1 a a2

1 a2 a
1 1 1

 Va
Vb
Vc

 (2)

where: a = ej 2π
3 ,

For balanced supply voltages, only the positive symmetrical component exists, the
other components (negative and zero) remain null. However, when USV occurs, the
negative symmetrical components appear. Thus, the level of USV can be evaluated using
the factor VUF defined in (1). Furthermore, Figure 1 shows a graphical representation of
VUF in both balanced and unbalanced cases [26]. The numerator of the under-balanced
VUF definition in Equation (1) becomes almost zero. In another sense, the component
of the negative-sequence phase is an indication of the unbalance rate. When at least one
phase or magnitude of voltage is out of balance, then an unbalance occurs, and because the
line impedance is kept balanced, the voltage imbalance is caused by the current (power)
imbalance. Because it is nearly impossible for the positive sequence voltage to become
zero, the voltage produces an imbalance if the negative sequence voltage is not zero.

Figure 1. A graphical interpretation of VUF for balanced and unbalanced cases.

As stated before, the occurrence of USV in induction motors produces an unbalance in
the line currents which is reflected also by an unbalance in the stator winding impedances.
For that reason, the proposed idea consists of computing the symmetrical components
related to the line stator currents and the stator winding impedances. Consequently, it is
possible to define the negative current factor (NCF) and the negative impedance factor
(NIF) as follows:

NCF =

∣∣∣∣ I−
I+

∣∣∣∣ (3)

NIF =

∣∣∣∣Z−Z+

∣∣∣∣ (4)
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The key point of the proposed idea is to estimate and track only the fundamental
harmonics related to the voltages and currents to compute the required symmetrical
components, which will be then used to calculate the different factors. Therefore, the
proposed method can be described by the following steps (Figure 2):

Figure 2. Illustrative scheme of the online implementation of the proposed technique.

Step 01: Acquisition of the three-phase currents and voltages (Va, Vb, Vc, Ia, Ib, Ic);
Step 02: Extraction of the fundamental harmonics (magnitudes and phase angles) re-

lated to the three-phase voltages and currents
(

Va.1 f s, Vb.1 f s, Vc.1 f s, Ia.1 f s, Ib.1 f s, Ic.1 f s

)
.

This can be performed thanks to the short time least square Prony’s (STLSP) method which
is a high-resolution signal processing technique that has the ability to estimate and track
accurately all the attributes (frequency, amplitude, phase, and damping factor) of any har-
monics from a short data record signal. This allows the consideration of the non-stationary
aspect of the problem [24]. To reduce the impact of some influential features, and thus
obtaining improved results, a preprocessing of the acquired signals is necessary. In fact,
data acquisition parameters, filtering, DC components removal, and dawn sampling are
the main involved tasks [24,25].

(a) Firstly, using the available data samples, the Prony method constructs an homoge-
nous linear difference equation with constant coefficients (with a0 = 1). Then, the unknown
parameters ak that fit the observed data are selected to minimize the linear prediction total
squared error. This can be done by using the least square method. x[P] · · · x[1]

...
. . .

...
x[N − 1] · · · x[N − P]


 a1

...
aP

 = −

 x(P + 1)
...

x(N)

 (5)

(b) The obtained parameters ak are used to form a characteristic polynomial with roots
zk:

F(z) =
P

∑
k=0

akzP−k (6)

(c) The obtained roots zk are used to write the N equations of the model:
1 1 · · · 1
z1 z2 · · · zP
...

...
...

...
zN−1

1 zN−1
2 · · · zN−1

P


 h1

...
hP

 =

 x(1)
...

x(N)

 (7)
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(d) Finally, from steps (b) and (c), it will be possible to deduce the amplitude, frequency,
phase angle, and damping factor using the following expressions:

fk =
1

2πTs
tan−1

[
Im(zk)
Re(zk)

]
, Ak = |hk|

φk = tan−1
[

Im(hk)
Re(hk)

]
, αk =

ln|zk |
Ts

 (8)

Step 03: Calculation of the symmetrical components related to the supply voltages
and stator currents (V+

1 f s, V−1 f s, V0
1 f s, I+1 f s, I−1 f s, I0

1 f s).
Step 04: Calculation of the symmetrical components related the stator winding

impedances: {
Z+

1 f s =
V+

1 f s

I+1 f s
, Z−1 f s =

V−1 f s

I−1 f s
, Z0

1 f s =
V0

1 f s

I0
1 f s

}
(9)

Step 05: Generation of the three-unbalance factors NVF, NCF, and NIF using Equa-
tions (1), (3), and (4), respectively.

3. Experimental Validation

In this section, the bahvior of each unbalance factor will be analyzed under USV,
alongside the different working conditions. The aim is to test and compare between
these factors in order to select the best one that allows a reliable detection of the USV.
The comparative study is evaluated under different machine operating conditions. The
experimental setup used for this goal consists mainly of a three-phase 400 V-50 Hz power
supply, and a four pole Y-connected squirrel-cage induction motor (Table 1). Current
transducers (hall-effect), a data acquisition system and a remote station for producing
voltage unbalance was also used (Figure 3).

Figure 3. Experimental setup.
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Table 1. Induction motor technical parameters.

General

Power [kW] 2.2
Speed [r/min] 1435

Frequency [Hz] 50
Torque [N·m] 14.6

Voltage [V] 400, Star Connection
Current [A] 4.56, Star Connection

Number of Poles 4
Cooling Closed Motor with external ventilation-IC 411

In order to implement the proposed method online, the algorithm used for generating
the three unbalance factors was first developed using Matlab code, and then it was inserted
into the Lab-VIEW software via the Matlab script mode. The other steps of the proposed
method, such as filtering, down-sampling, and offset removing, were performed directly
using Lab-VIEW palettes. The IM voltage and current signal measurements were performed
through the use of Tektronix P5200A differential voltage probes and Tektronix TCPA300
amplifier + Tektronix TCP312 current probes, and the corresponding signals were acquired
through the use of a NI USB-6366 series data acquisition card with a sampling frequency
of 20 kHz. These steps were carried out continuously, which permits to follow, in real
time, the evolution of the target indicators as well as the different motor quantities such as:
voltages, currents, impedances, and the symmetrical components.

The comparative study is performed based on four criteria: sensitivity to the occur-
rence of low USV, sensitivity to the USV’s severity, robustness against load variations, and
robustness against other similar faults.

3.1. Sensitivity to the Occurrence of Low USV

The induction motor was initially supplied with balanced voltages and after 1s, a
very low voltage unbalance of 1% is introduced using a programmable power supply.
Figure 4 shows the time evolution of the three-phase voltages and currents when a USV
of 1% was introduced suddenly in one phase. Obviously, the effects of the unbalanced
condition cannot be observed clearly. However, and thanks to the implemented algorithm,
the three-phase impedances are online estimated and visualized (Figure 5). It has to be
noticed that these impedances are calculated starting from the fundamental harmonics of
the three-phase stator voltages and currents. As can be clearly seen, the curves depicted in
Figure 5 provide a good physical interpretation of the USV’s effect on the stator winding
impedances.

Figure 4. IM currents and voltages time waveforms for a small USV (1%) at no load.
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Figure 5. IM estimated Za,b,c for a small USV (1%) at no load.

Figure 6 illustrates the time evolution of the three factors NVF, NCF, and NIF, while
Table 2 shows the magnitudes of these factors and the rate of their changes after the
USV occurrence. As can be clearly seen, the three factors present stable values when the
motor operates under balanced voltages, but after the occurrence of a low severity USV
(1%), a significant increase of 252% and 576% is observed on NVF and NCF, respectively.
Meanwhile, the NIF was decreased by 47%. These results confirm that the presence of USV
produces three voltage symmetrical sequences, of which the most damaging is the negative
one. Therefore, a small negative sequence of voltage causes a large negative sequence of
currents, resulting in large currents unbalance. This explains why the NCF has increased
more than the NVF.

Figure 6. The estimated unbalance factors with an USV of 1.45%.

Table 2. Effect of the USV on the defined unbalance factors.

n = 100 Samples Unbalance Supply Voltage Severity (%)

Unbalance Factors 0% 1% Rate of Variation (%)

NVF 0.002863 0.0101 +252%

NCF 0.006534 0.04419 +576%

NIF 0.4343 0.2292 −47.22%

These qualitative and quantitative results demonstrate, on the one hand, the im-
plementation success of the proposed algorithm and, on the other hand, they show the
superiority of both NCF and NVF as compared to the NIF in terms of sensitivity to the
occurrence of a low severity USV.
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3.2. Sensitivity to the USV’s Severity

In this section, several tests are carried out in order to study the behavior of the three
factors under successive increases on the USV’s severity. First, the test was started with a
motor under balanced supply at no load. After a few seconds and using a programmable
power supply, three different levels of USV (1%, 1.8%, and 2.56%) according to NEMA
definition, were introduced successively. The curves depicted in Figure 7 show clearly
that the proposed algorithm has the ability to compute and track successfully the time
evolution of the studied factors.

Figure 7. Time evolution of the defined factors for different USV’s levels at no load.

In addition, Table 3 illustrates quantitatively the changes (in percentage) observed on
these factors after each increase on the USV’s severity. It can be noticed that NIF is almost
insensitive to the USV occurrence, and thus it cannot be considered as a reliable indicator
for the unbalance voltage problems. However, both NVF and NCF rise significantly as a
function of the USV severity, but NCF looks to be even more sensitive, as illustrated in
Table 3.

Table 3. Values of the three factors for different USV’s levels.

Monitoring Factors
Factor’s Magnitudes for

Balanced Voltages
(p.u.)

Rate of Variations for Different Severities of USV

USV of 1% USV of 1.8% USV of 2.56%

NVF 0.003632 +200% +402% +608%

NCF 0.009469 +377% +786% +1190%

NIF 0.3834 −37.8% −43.9% −45%

3.3. Robustness against Load Variations

The previous tests were performed with constant mechanical load. But in practice,
the motor load can change gradually or by step variations at any time, which can affect
directly the motor currents and consequently the fault indicators used by the condition
monitoring systems. Thus, a reliable fault indicator must prove its insensitivity to the load
changes. For that reason, several experimental tests were performed in order to study the
behavior of the defined factors when a series of step load variations are applied suddenly.
Figure 8 shows that the application of step load variations has an important influence on
the time waveforms of the motor currents, thus producing non-stationary signals with
high distortion. Fortunately, the implemented algorithm uses the STLSP method which
has proved its suitability for such a situation [25] since it requires only a few numbers of
samples to compute and track the NVF, NCF, and NIF. The curves representing the time
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evolution of these factors are depicted in Figure 9. As it can be clearly seen, the changes on
the motor load have no effect on all of the three factors, which confirm their robustness
against load variations.

Figure 8. IM voltage and current waveforms for a balanced supply condition, under different step
load variations.

Figure 9. The studied factors for a balanced supply condition, under different step load variations.

3.4. Robustness against Similar Faults

The reliability of any fault indicator must also be measured by its robustness against
the occurrence of other faults having similar symptoms. Indeed, the occurrence of inter-
turn short-circuit faults (ITSCF) in induction motors produces a kind of unbalance on the
supply voltages, stator currents, and the stator winding impedances. As a result, this
fault produces effects similar to those produced by the USV. Therefore, it is important to
study the behavior of NVF and NCF under the occurrence of ITSCF. For that reason, the
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stator winding of the used IM was modified by adding some tapings connected to the
stator coils. The other ends of these external wires are connected to the motor terminal box
and, therefore, allowing for the creation of ITSCF with different numbers of shorted turns
(Figure 10).

Figure 10. Induction motor used for the ITSCF tests.

First, the motor was initially started at no load under healthy state conditions, and
after a few seconds, nine turns of the phase “a” were short-circuited. During this operation,
the three-phase currents and voltages were sampled and online treated by the proposed
algorithm. The curves representing the time evolution of the studied factors are depicted
in Figure 11, while Table 4 shows their rate of change due to this winding fault. As can be
clearly seen, the NCF which was more sensitive to the USV is also sensitive to the ITSCF.
Indeed, the NCF has increased considerably by 255% after the short-circuit of 9 turns.
Consequently, the NCF cannot be considered as USV indicator because it behaves similarly
for both ITSCF and USV, which can lead to a misdiagnostic.

Figure 11. The defined factors for both healthy conditions and nine turns in short-circuit.

Table 4. Effect of the ITSCF on the defined unbalance factors.

Inter-Turn Short-Circuit Fault

Unbalance Factors Healthy 9 Turns Rate of Variation (%)

NVF 0.00288 0.002929 +3.5%

NCF 0.00654 0.02324 +255%

NIF 0.445 0.1276 −71.3%

The NIF has decreased by 71% due to the ITSCF, and the same reaction was observed
in the case of USV occurrence. However, the NVF which was sensitive to the USV is
now completely insensitive to the ITSCF. These results prove the superiority of the NVF
compared to both NCF and NIF.
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In order to confirm the effectiveness of the NVF in terms of the reliability of the
detection of an incipient USV under even more complicated operating conditions, five
successive experimental scenarios were considered:

(1) Start the motor in a healthy state, with balanced supply voltages, at no load;
(2) Increase the motor load by 20% (the motor always in healthy state);
(3) Introduce an ITSCF of 18 turns in the phase “a”, under 20% of load, with balanced

supply voltages;
(4) Increase the motor load to 40% (the motor remains with ITSCF and balanced supply

voltages);
(5) Introduce an USV of 1.8% in the presence of ITSCF.

During these tests only the three-phase voltages are sampled and treated by the
proposed algorithm. This permits an online calculation and a continuous displaying of
the NVF as shown in Figure 12. As can be clearly seen, the NVF remains almost constant
through the first four tests, and then it increases rapidly and significantly just after the
occurrence of the USV. This confirms that the NVF is the best indicator for the USV problems
in terms of reliability and sensitivity of detection, robustness against load variations or
ITSCF, as well as to its simplicity of calculation since it requires only the acquisition of the
three-phase voltages which are always available. As a result, the condition monitoring
systems based on the NVF are easy to be implemented experimentally and can work
successfully in real time.

Hence, it is believed that the proposed method would also be suitable for other types
of electric motors (e.g., multi-phase induction machines, permanent-magnet machines, and
reluctance machines); ongoing research efforts are focused on these subjects.

Figure 12. Time evolution of the NVF under different operating conditions.

4. Conclusions

In this paper, an online algorithm based on the STLSP method was proposed in
order to generate a pertinent indicator that allows a rapid and a reliable detection of an
incipient USV for the applications that use induction motors. To achieve this aim, three
potential indicators (NVF, NCF and NIF) were considered. To select the best one, an
experimental comparative study was performed based on four criteria: sensitivity to the
occurrence of low USV, sensitivity to the USV’s severity, robustness against load variations,
and robustness against other similar faults. The proposed algorithm was successfully
implemented under the LabVIEW environment. Furthermore, its capabilities for the
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online calculation and the continuous displaying of the different indicators was effectively
demonstrated. Several experimental tests and different scenarios under various operating
conditions were carried out on a 2.2 kW induction motor. The obtained results show
that neither load variations nor ITSCF occurrence have any significant effect on the NVF.
Indeed, it was demonstrated that NVF is only sensitive to the USV problems, which prove
its effectiveness and superiority compared to the other indicators (NCF and NIF).

Author Contributions: Conceptualization, K.L., M.S., A.A. and A.J.M.C.; methodology, K.L., M.S.
and A.J.M.C.; software, K.L., M.S. and A.A.; validation, K.L., M.S. and A.A.; formal analysis, K.L.,
M.S. and A.A.; investigation, K.L.; resources, A.J.M.C.; data curation, K.L. and M.S.; writing—original
draft preparation, K.L. and M.S.; writing—review and editing, A.J.M.C.; visualization, K.L. and M.S.;
supervision, A.J.M.C.; project administration, A.J.M.C.; funding acquisition, A.J.M.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Regional Development Fund (ERDF) through
the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under
Project POCI-01-0145-FEDER-029494, and by National Funds through the FCT—Portuguese Foun-
dation for Science and Technology, under Projects PTDC/EEI-EEE/29494/2017, UIDB/04131/2020,
and UIDP/04131/2020.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cummings, P.B.; Dunki-Jacobs, J.R.; Kerr, R.H. Protection of induction motors against unbalanced voltage operation. IEEE Trans.

Ind. Appl. 1985, IA-21, 778–792. [CrossRef]
2. Bento, F.J.F.; Adouni, A.; Muxiri, A.C.P.; Fonseca, D.S.B.; Cardoso, A.J.M. On the Risk of Failure to Prevent Induction Motors

Permanent Damage, Due to the Short Available Time-to-Diagnosis of Inter-Turn Short-Circuit Faults. IET Electr. Power Appl. 2021,
15, 51–62. [CrossRef]

3. Adouni, A.; Marques Cardoso, J.A. Thermal Analysis of Low-Power Three-Phase Induction Motors Operating under Voltage
Unbalance and Inter-Turn Short Circuit Faults. Machines 2021, 9, 2. [CrossRef]

4. Kurt, M.S.; Balci, M.E.; Aleem, S.H.E.A. Algorithm for estimating derating of induction motors supplied with under/over
unbalanced voltages using response surface methodology. J. Eng. 2017, 2017, 627–633. [CrossRef]

5. Motors and Generators, NEMA MG1. 2014. Available online: https://www.techstreet.com/standards/nema-mg-1-2014
?product_id=1888468 (accessed on 23 August 2021).

6. Smith, J.C.; Hensley, G.; Ray, L. 1159-1995-IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE: New York, NY,
USA. 1995. Available online: https://ieeexplore.ieee.org/document/8796486 (accessed on 23 August 2021).

7. IEEE Standard. IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE Std, ICS Code: 29.240.01—Power Transmis-
sion and Distribution Networks in General; IEEE Standard: New York, NY, USA, 2012; pp. 1159–2009.

8. Machines—Part Rotating Electrical. 26: Effects of Unbalanced Voltages on the Performance of Three-Phase Induction Motors. IEC
2002, 60, 26–34.

9. Lashkari, N.; Poshtan, J.; Azgomi, H.F. Simulative and experimental investigation on stator winding turn and unbalanced supply
voltage fault diagnosis in induction motors using artificial neural networks. ISA Trans. 2015, 59, 334–342. [CrossRef] [PubMed]

10. Fortescue, C.L. Method of symmetrical co-ordinates applied to the solution of polyphase networks. Trans. Am. Inst. Electr. Eng.
1918, 37, 1027–1140. [CrossRef]

11. IEC 60034-1. Rotating Electrical Machines Part 1: Rating and Performance; International Electrotechnical Commission (IEC): Geneva,
Switzerland, 2004.

12. Wang, Y.J. Analysis of effects of three-phase voltage unbalance on induction motors with emphasis on the angle of the complex
voltage unbalance factor. IEEE Trans. Energy Convers. 2001, 16, 270–275. [CrossRef]

13. Faiz, J.; Ebrahimpour, H.; Pillay, P. Influence of unbalanced voltage on the steady-state performance of a three-phase squirrel-cage
induction motor. IEEE Trans. Energy Convers. 2004, 19, 657–662. [CrossRef]

14. Mantilla, L.F. An analytical and graphical study of the symmetrical components in an induction motor supply in relation to the
voltage unbalance parameters. Electr. Eng. 2007, 89, 535–545. [CrossRef]

15. Anwari, M.; Hiendro, A. New unbalance factor for estimating performance of a three-phase induction motor with under-and
overvoltage unbalance. IEEE Trans. Energy Convers. 2010, 25, 619–625. [CrossRef]

16. Rengifo, J.; Salazar, H.; Bueno, A.; Aller, J.M. Experimental evaluation of the voltage unbalance in the efficiency of induction
motors. In Proceedings of the 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota,
Colombia, 31 May–2 June 2017; pp. 1–6.

http://doi.org/10.1109/TIA.1985.349499
http://doi.org/10.1049/elp2.12008
http://doi.org/10.3390/machines9010002
http://doi.org/10.1049/joe.2017.0025
https://www.techstreet.com/standards/nema-mg-1-2014?product_id=1888468
https://www.techstreet.com/standards/nema-mg-1-2014?product_id=1888468
https://ieeexplore.ieee.org/document/8796486
http://doi.org/10.1016/j.isatra.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26412499
http://doi.org/10.1109/T-AIEE.1918.4765570
http://doi.org/10.1109/60.937207
http://doi.org/10.1109/TEC.2004.837283
http://doi.org/10.1007/s00202-006-0038-y
http://doi.org/10.1109/TEC.2010.2051548


Machines 2021, 9, 203 13 of 13

17. Tabora, J.M.; Tostes, M.E.D.L.; de Matos, E.O.; Bezerra, U.H.; Soares, T.M.; de Albuquerque, B.S. Assessing Voltage Unbalance
Conditions in IE2, IE3 and IE4 Classes Induction Motors. IEEE Access 2020, 8, 186725–186739. [CrossRef]

18. Dekhandji, F.Z.; Refoufi, L.; Bentarzi, H. Quantitative assessment of three phase supply voltage unbalance effects on induction
motors. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 393–406. [CrossRef]

19. Agamloh, E.B.; Peele, S.; Grappe, J. Operation of variable frequency drive motor systems with source voltage unbalance. In
Proceedings of the 2017 Annual Pulp, Paper and Forest Industries Technical Conference (PPFIC), Tacoma, WA, USA, 18–23 June
2017; pp. 1–9.

20. Moussa, M.A.; Maouche, Y.; Louze, L.; Khezzar, A. A practical implementation of online computational tool for unbalanced
voltage supply detection in induction motor. In Proceedings of the 2014 IEEE International Conference on Power and Energy
(PECon), Kuching, Malaysia, 1–3 December 2014; pp. 93–98.

21. Samsi, R.; Ray, A.; Mayer, J. Early detection of stator voltage imbalance in three-phase induction motors. Electr. Power Syst. Res.
2009, 79, 239–245. [CrossRef]

22. Corres, J.M.; Bravo, J.; Arregui, F.J.; Matias, I.R. Unbalance and harmonics detection in induction motors using an optical fiber
sensor. IEEE Sens. J. 2006, 6, 605–612. [CrossRef]

23. Gonzalez-Cordoba, J.L.; Osornio-Rios, R.A.; Granados-Lieberman, D.; Romero-Troncoso, R.D.; Valtierra-Rodriguez, M. Thermal-
impact-based protection of induction motors under voltage unbalance conditions. IEEE Trans. Energy Convers. 2018, 334,
1748–1756. [CrossRef]

24. Sahraoui, M.; Cardoso, A.J.M.; Ghoggal, A. The use of a modified prony method to track the broken rotor bar characteristic
frequencies and amplitudes in three-phase induction motors. IEEE Trans. Ind. Appl. 2014, 51, 2136–2147. [CrossRef]

25. Yahia, K.; Sahraoui, M.; Cardoso, A.J.M.; Ghoggal, A. The use of a modified Prony’s method to detect the airgap-eccentricity
occurrence in induction motors. IEEE Trans. Ind. Appl. 2016, 52, 3869–3877. [CrossRef]

26. Shigenobu, R.; Nakadomari, A.; Hong, Y.-Y.; Mandal, P.; Takahashi, H.; Senjyu, T. Optimization of Voltage Unbalance Compensa-
tion by Smart Inverter. Energies 2020, 13, 4623. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3029794
http://doi.org/10.1007/s13198-015-0401-3
http://doi.org/10.1016/j.epsr.2008.06.004
http://doi.org/10.1109/JSEN.2006.874441
http://doi.org/10.1109/TEC.2018.2834487
http://doi.org/10.1109/TIA.2014.2375384
http://doi.org/10.1109/TIA.2016.2582146
http://doi.org/10.3390/en13184623

	Introduction 
	The Proposed USV Detection Method 
	Experimental Validation 
	Sensitivity to the Occurrence of Low USV 
	Sensitivity to the USV’s Severity 
	Robustness against Load Variations 
	Robustness against Similar Faults 

	Conclusions 
	References

