Next Issue
Volume 12, May
Previous Issue
Volume 12, March
 
 

Diversity, Volume 12, Issue 4 (April 2020) – 46 articles

Cover Story (view full-size image): The submerged evergreen aquatic plant Myriophyllum heterophyllum is among the worst invasive species in Europe, and in parts of North America. It is causing severe problems especially in navigation channels, but also in lentic systems. While much is known about its congener, M. spicatum, which is highly invasive in North America, a comprehensive overview on Myriophyllum heterophyllum was so far lacking. Our review provides an update on the current distribution and a discussion of characteristic identification criteria. We outline its ecology, specifically resource requirements and biotic interactions with other plants, herbivores, and pathogens, as well as the spread potential of the species. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Attraction and Avoidance between Predators and Prey at Wildlife Crossings on Roads
Diversity 2020, 12(4), 166; https://doi.org/10.3390/d12040166 - 24 Apr 2020
Cited by 8 | Viewed by 1437
Abstract
Wildlife passages are currently built at roads and railway lines to re-establish connectivity. However, little is known about whether predator-prey interactions may reduce the effectiveness of the crossing structures. We evaluated the co-occurrence patterns of predator-prey species-pairs at 113 crossing structures, noting their [...] Read more.
Wildlife passages are currently built at roads and railway lines to re-establish connectivity. However, little is known about whether predator-prey interactions may reduce the effectiveness of the crossing structures. We evaluated the co-occurrence patterns of predator-prey species-pairs at 113 crossing structures, noting their coincidence at the same structure and/or on the same day. We built occupancy models using presence-absence matrices for three prey and five predator types obtained during 2076 passage-days of monitoring. The results indicate that predators and prey do not use passages independently. Attraction or segregation effects occurred in 20% of predator-prey species-pairs and were detected in 67% of cases with respect to same-day use. Our results show that both predator and prey species used the same structures to cross fenced roads. However, the spatial and daily patterns of crossing suggest that there were predators that attended crossings to search for prey and that prey species avoided using crossings in the presence of predators. Our results support two recommendations to avoid crossing structures losing effectiveness or becoming prey traps: (i) increase the number of wider structures to reduce the risks of predator-prey encounters and (ii) include inside them structural heterogeneity and refuges, to reduce the likelihood for predator-prey interactions. Full article
Article
Switching LPS to LED Streetlight May Dramatically Reduce Activity and Foraging of Bats
Diversity 2020, 12(4), 165; https://doi.org/10.3390/d12040165 - 24 Apr 2020
Cited by 12 | Viewed by 3560
Abstract
Artificial light at night is considered a major threat to biodiversity, especially for nocturnal species, as it reduces habitat availability, quality, and functionality. Since the recent evolution in light technologies in improving luminous efficacy, developed countries are experiencing a renewal of their lighting [...] Read more.
Artificial light at night is considered a major threat to biodiversity, especially for nocturnal species, as it reduces habitat availability, quality, and functionality. Since the recent evolution in light technologies in improving luminous efficacy, developed countries are experiencing a renewal of their lighting equipment that reaches its end-of-life, from conventional lighting technologies to light emitting diodes (LEDs). Despite potential cascading impacts of such a shift on nocturnal fauna, few studies have so far dealt with the impact of the renewal of street lighting by new technologies. Specifically, only one study, by Rowse et al.2016, examined the effects of switching from widely used low pressure sodium (LPS) lamps to LEDs, using bats as biological models. This study was based on a before-after-control-impact paired design (BACIP) at 12 pairs in the UK, each including one control and one experimental streetlight. If Rowse et al. 2016 showed no effect of switching to LEDs streetlights on bat activity, the effects of respective changes in light intensity and spectrum were not disentangled when testing switch effects. Here, we conduct a retrospective analysis of their data to include these covariates in statistical models with the aim of disentangling the relative effects of these light characteristics. Our re-analysis clearly indicates that the switches in spectrum and in intensity with replacement of LPS with LED lamps have significant additive and interactive effects, on bat activity. We also show that bat activity and buzz ratio decrease with increasing LED intensity while an opposite effect is observed with LPS lamps. Hence, the loss or the gain in bat activity when lamp types, i.e., spectrum, are switched strongly depends on the initial and new lamp intensities. Our results stress the need to consider simultaneously the effects of changes in the different lights characteristics when street lighting changes. Because switches from LPS to LED lamps can lead to an increase in light intensity, such technological changes may involve a reduction of bat activity in numerous cases, especially at high LED intensities. Since we are currently at an important crossroad in lighting management, we recommend to limit LED intensity and improve its spectral composition toward warmer colors to limit potential deleterious impacts on bat activity. Full article
(This article belongs to the Special Issue Impacts of Pressure on Bat Populations)
Show Figures

Graphical abstract

Article
Deep-Time Demographic Inference Suggests Ecological Release as Driver of Neoavian Adaptive Radiation
Diversity 2020, 12(4), 164; https://doi.org/10.3390/d12040164 - 23 Apr 2020
Cited by 7 | Viewed by 2093
Abstract
Assessing the applicability of theory to major adaptive radiations in deep time represents an extremely difficult problem in evolutionary biology. Neoaves, which includes 95% of living birds, is believed to have undergone a period of rapid diversification roughly coincident with the Cretaceous–Paleogene ( [...] Read more.
Assessing the applicability of theory to major adaptive radiations in deep time represents an extremely difficult problem in evolutionary biology. Neoaves, which includes 95% of living birds, is believed to have undergone a period of rapid diversification roughly coincident with the Cretaceous–Paleogene (K-Pg) boundary. We investigate whether basal neoavian lineages experienced an ecological release in response to ecological opportunity, as evidenced by density compensation. We estimated effective population sizes (Ne) of basal neoavian lineages by combining coalescent branch lengths (CBLs) and the numbers of generations between successive divergences. We used a modified version of Accurate Species TRee Algorithm (ASTRAL) to estimate CBLs directly from insertion–deletion (indel) data, as well as from gene trees using DNA sequence and/or indel data. We found that some divergences near the K-Pg boundary involved unexpectedly high gene tree discordance relative to the estimated number of generations between speciation events. The simplest explanation for this result is an increase in Ne, despite the caveats discussed herein. It appears that at least some early neoavian lineages, similar to the ancestor of the clade comprising doves, mesites, and sandgrouse, experienced ecological release near the time of the K-Pg mass extinction. Full article
(This article belongs to the Special Issue Origins of Modern Avian Biodiversity)
Show Figures

Figure 1

Article
The First Fossil Owl (Aves, Strigiformes) From the Paleogene of Africa
Diversity 2020, 12(4), 163; https://doi.org/10.3390/d12040163 - 23 Apr 2020
Viewed by 2458
Abstract
The relatively extensive fossil record of owls (Aves, Strigiformes) in North America and Europe stands in stark contrast to the paucity of fossil strigiformes from Africa. The first occurrence of a fossil owl from the Paleogene of Africa extends the fossil record of [...] Read more.
The relatively extensive fossil record of owls (Aves, Strigiformes) in North America and Europe stands in stark contrast to the paucity of fossil strigiformes from Africa. The first occurrence of a fossil owl from the Paleogene of Africa extends the fossil record of this clade on that continent by as much as 25 million years, and confirms the presence of large-sized owls in Oligocene continental faunas. The new fossil is tentatively referred to the Selenornithinae, a clade of large owls previously restricted to Europe. This new fossil owl was likely similar in size to the extant Eagle Owls of the genus Bubo, and suggests that the niche of large, volant, terrestrial avian predator, although relatively rare throughout avian evolutionary history, may be an ecological role that was more common among extinct owls than previously recognized. Full article
(This article belongs to the Special Issue Origins of Modern Avian Biodiversity)
Show Figures

Figure 1

Article
Niche Models Differentiate Potential Impacts of Two Aquatic Invasive Plant Species on Native Macrophytes
Diversity 2020, 12(4), 162; https://doi.org/10.3390/d12040162 - 23 Apr 2020
Cited by 7 | Viewed by 1952
Abstract
Potamogeton crispus (curlyleaf pondweed) and Myriophyllum spicatum (Eurasian watermilfoil) are widely thought to competitively displace native macrophytes in North America. However, their perceived competitive superiority has not been comprehensively evaluated. Coexistence theory suggests that invader displacement of native species through competitive exclusion is [...] Read more.
Potamogeton crispus (curlyleaf pondweed) and Myriophyllum spicatum (Eurasian watermilfoil) are widely thought to competitively displace native macrophytes in North America. However, their perceived competitive superiority has not been comprehensively evaluated. Coexistence theory suggests that invader displacement of native species through competitive exclusion is most likely where high niche overlap results in competition for limiting resources. Thus, evaluation of niche similarity can serve as a starting point for predicting the likelihood of invaders having direct competitive impacts on resident species. Across two environmental gradients structuring macrophyte communities—water depth and light availability—both P. crispus and M. spicatum are thought to occupy broad niches. For a third dimension, phenology, the annual growth cycle of M. spicatum is typical of other species, whereas the winter-ephemeral phenology of P. crispus may impart greater niche differentiation and thus lower risk of native species being competitively excluded. Using an unprecedented dataset comprising 3404 plant surveys from Minnesota collected using a common protocol, we modeled niches of 34 species using a probabilistic niche framework. Across each niche dimension, P. crispus had lower overlap with native species than did M. spicatum; this was driven in particular by its distinct phenology. These results suggest that patterns of dominance seen in P. crispus and M. spicatum have likely arisen through different mechanisms, and that direct competition with native species is less likely for P. crispus than M. spicatum. This research highlights the utility of fine-scale, abundance-based niche models for predicting invader impacts. Full article
(This article belongs to the Special Issue Ecology of Invasive Aquatic Plants)
Show Figures

Figure 1

Article
Do Salamanders Limit the Abundance of Groundwater Invertebrates in Subterranean Habitats?
Diversity 2020, 12(4), 161; https://doi.org/10.3390/d12040161 - 20 Apr 2020
Cited by 5 | Viewed by 1943
Abstract
Several species of surface salamanders exploit underground environments; in Europe, one of the most common is the fire salamander (Salamandra salamandra). In this study, we investigated if fire salamander larvae occurring in groundwater habitats can affect the abundance of some cave-adapted [...] Read more.
Several species of surface salamanders exploit underground environments; in Europe, one of the most common is the fire salamander (Salamandra salamandra). In this study, we investigated if fire salamander larvae occurring in groundwater habitats can affect the abundance of some cave-adapted species. We analyzed the data of abundance of three target taxa (genera Niphargus (Amphipoda; Niphargidae), Monolistra (Isopoda; Sphaeromatidae) and Dendrocoelum (Tricladida; Dedrocoelidae)) collected in 386 surveys performed on 117 sites (pools and distinct subterranean stream sectors), within 17 natural and 24 artificial subterranean habitats, between 2012 and 2019. Generalized linear mixed models were used to assess the relationship between target taxa abundance, fire salamander larvae occurrence, and environmental features. The presence of salamander larvae negatively affected the abundance of all the target taxa. Monolistra abundance was positively related with the distance from the cave entrance of the sites and by their surface. Our study revealed that surface salamanders may have a negative effect on the abundance of cave-adapted animals, and highlited the importance of further investigations on the diet and on the top-down effects of salamanders on the subterranean communities. Full article
(This article belongs to the Special Issue The Ecological Role of Salamanders as Predators and Prey)
Show Figures

Figure 1

Article
Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast
Diversity 2020, 12(4), 160; https://doi.org/10.3390/d12040160 - 20 Apr 2020
Cited by 3 | Viewed by 1577
Abstract
Cross-taxon analyses can explain patterns of interaction between taxa and their application in conservation studies can drive management actions. In a coastal sand dune system characterized by a high human pressure, we explored the co-occurrence patterns between vascular plants and bryophytes, with a [...] Read more.
Cross-taxon analyses can explain patterns of interaction between taxa and their application in conservation studies can drive management actions. In a coastal sand dune system characterized by a high human pressure, we explored the co-occurrence patterns between vascular plants and bryophytes, with a focus on how the occurrence of invasive alien species (IAS) can affect those taxa and their relationships. Species congruences were evaluated at the community level considering taxonomic and functional diversities. Predictive co-correspondence analysis (Co-CA) was applied to quantify the strength of vascular plant communities in predicting bryophytes species composition. The relationship between the composition of vascular plants and bryophytes was significant, even if weak. Altitude and percentage of bare soil cover are the environmental variables exerting greater influence on the two taxa. The presence of IAS affects communities in an opposite way: for vascular plants, species richness increases with the presence of invasive alien species; for bryophytes, IAS’s presence has a low but significant negative influence, both on species richness and in terms of functional diversity. Results give elements for future studies on the effect of IAS on the bryophytes colonizing coastal sand dunes. Full article
(This article belongs to the Special Issue Plant Community Ecology: From Theory to Practice)
Show Figures

Figure 1

Article
Genetic Diversity and Population Structure of Acanthochiton rubrolineatus (Polyplacophora) Based on Mitochondrial and Nuclear Gene Markers
Diversity 2020, 12(4), 159; https://doi.org/10.3390/d12040159 - 19 Apr 2020
Cited by 1 | Viewed by 1239
Abstract
Acanthochiton rubrolineatus (Cryptoplacidae, Neoloricata, Polyplacophora) has a narrow distribution range along the seacoasts of China, the Korean Peninsula and Japan. We collected 238 samples from eight localities along the Chinese coast, and analyzed the genetic diversity and population structure with COI, 16S-rRNA and [...] Read more.
Acanthochiton rubrolineatus (Cryptoplacidae, Neoloricata, Polyplacophora) has a narrow distribution range along the seacoasts of China, the Korean Peninsula and Japan. We collected 238 samples from eight localities along the Chinese coast, and analyzed the genetic diversity and population structure with COI, 16S-rRNA and 28S-rRNA gene sequences. All analyses based on combined sequences of COI and 16S-rRNA suggested that there was evident genetic differentiation between the northern populations (YT, WH, DL, QD, LYG) and southern populations (ZS, YH, XM) of A. rubrolineatus. The haplotype distribution pattern and genetic diversity based on 28S-rRNA sequences also supported the genetic divergence between the two groups. Both groups had experienced population expansion after the ice age of Pleistocene, and an additional population bottleneck had happened in the southern group in recent history, which led to low genetic diversity of mitochondrial DNA and abnormally high diversity of nuclear DNA in this group. Our results suggested that the protection on A. rubrolineatus is necessary, and the northern and southern group should be protected separately. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

Article
Patterns of Distribution of Bivalve Populations in a Mediterranean Temporary River
Diversity 2020, 12(4), 158; https://doi.org/10.3390/d12040158 - 19 Apr 2020
Viewed by 1034
Abstract
In the south of the Iberian Peninsula, many rivers are intermittent, a state most likely to be exacerbated by climate change, strongly affecting river biota. An additional challenge for native biota in this area is the arrival of new species, frequently aided by [...] Read more.
In the south of the Iberian Peninsula, many rivers are intermittent, a state most likely to be exacerbated by climate change, strongly affecting river biota. An additional challenge for native biota in this area is the arrival of new species, frequently aided by humans, and bivalves are particularly at risk. Here we assessed whether the native (Unio delphinus) and invasive (Corbicula fluminea) bivalves differed in habitat use. To address this question, we sampled populations of both species in six isolated permanent pools in the same river during summer in three consecutive years. U. delphinus occurred in all pools, while C. fluminea occurred only in the two most downstream pools. U. delphinus, but not C. fluminea, was found preferentially in patches under riparian vegetation cover. Both species were found in similar sediment types (coarse and fine gravel respectively). Although U. delphinus was present in all pools, recruitment was detected only in 2016, in one pool. We concluded that both species have the potential to compete for space, but a well-developed riparian vegetation cover may provide U. delphinus some advantage against C. fluminea. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

Article
A Common Approach to the Conservation of Threatened Island Vascular Plants: First Results in the Mediterranean Basin
Diversity 2020, 12(4), 157; https://doi.org/10.3390/d12040157 - 18 Apr 2020
Cited by 24 | Viewed by 2285
Abstract
The Mediterranean islands represent a center of vascular plant diversity featuring a high rate of endemic richness. Such richness is highly threatened, however, with many plants facing the risk of extinction and in need of urgent protection measures. The CARE-MEDIFLORA project promoted the [...] Read more.
The Mediterranean islands represent a center of vascular plant diversity featuring a high rate of endemic richness. Such richness is highly threatened, however, with many plants facing the risk of extinction and in need of urgent protection measures. The CARE-MEDIFLORA project promoted the use of ex situ collections to experiment with in situ active actions for threatened plants. Based on common criteria, a priority list of target plant species was elaborated, and germplasm conservation, curation and storage in seed banks was carried out. Accessions were duplicated in the seed banks of the partners or other institutions. Germination experiments were carried out on a selected group of threatened species. A total of 740 accessions from 429 vascular plants were stored in seed banks, and 410 seed germination experiments for 283 plants species were completed; a total of 63 in situ conservation actions were implemented, adopting different methodological protocols. For each conservation program, a specific monitoring protocol was implemented in collaboration with local and regional authorities. This project represents the first attempt to develop common strategies and an opportunity to join methods and methodologies focused on the conservation of threatened plants in unique natural laboratories such as the Mediterranean islands. Full article
(This article belongs to the Special Issue In Situ and Ex Situ Biodiversity Conservation)
Article
In Nitrate-Rich Soil, Fallopia x bohemica Modifies Functioning of N Cycle Compared to Native Monocultures
Diversity 2020, 12(4), 156; https://doi.org/10.3390/d12040156 - 17 Apr 2020
Cited by 1 | Viewed by 1314
Abstract
The effects of invasive species at the ecosystem level remain an important component required to assess their impacts. Here, we conducted an experimental study with labeled nitrogen in two types of soil (low and high nitrate conditions), investigating the effects of (1) the [...] Read more.
The effects of invasive species at the ecosystem level remain an important component required to assess their impacts. Here, we conducted an experimental study with labeled nitrogen in two types of soil (low and high nitrate conditions), investigating the effects of (1) the presence of Fallopia x bohemica on the traits of three native species (Humulus lupulus, Sambucus ebulus, and Urtica dioica) and (2) interspecific competition (monoculture of the invasive species, monoculture of the native species, and a mixture of invasive/native species) on nitrification, denitrification, and related microbial communities (i.e., functional gene abundances). We found that the species with the higher nitrate assimilation rate (U. dioica) was affected differently by the invasive species, with no effect or even an increase in aboveground biomass and number of leaves. F. x bohemica also decreased denitrification, but only in the soil with high nitrate concentrations. The impacts of the invasive species on nitrification and soil microorganisms depended on the native species and the soil type, suggesting that competition for nitrogen between plants and between plants and microorganisms is highly dependent on species traits and environmental conditions. This research highlights that studies looking at the impacts of invasive species on ecosystems should consider the plant–soil–microorganism complex as a whole. Full article
(This article belongs to the Special Issue Microbial Interactions with Invasive Plant Species)
Show Figures

Figure 1

Communication
Revised Calculation of Kalinowski’s Ancestral and New Inbreeding Coefficients
Diversity 2020, 12(4), 155; https://doi.org/10.3390/d12040155 - 17 Apr 2020
Cited by 13 | Viewed by 1918
Abstract
To test for the presence of purging in populations, the classical pedigree-based inbreeding coefficient (F) can be decomposed into Kalinowski’s ancestral (FANC) and new (FNEW) inbreeding coefficients. The FANC and FNEW can be [...] Read more.
To test for the presence of purging in populations, the classical pedigree-based inbreeding coefficient (F) can be decomposed into Kalinowski’s ancestral (FANC) and new (FNEW) inbreeding coefficients. The FANC and FNEW can be calculated by a stochastic approach known as gene dropping. However, the only publicly available algorithm for the calculation of FANC and FNEW, implemented in GRain v 2.1 (and also incorporated in the PEDIG software package), has produced biased estimates. The FANC was systematically underestimated and consequently, FNEW was overestimated. To illustrate this bias, we calculated FANC and FNEW by hand for simple example pedigrees. We revised the GRain program so that it now provides unbiased estimates. Correlations between the biased and unbiased estimates of FANC and FNEW, obtained for example data sets of Hungarian Pannon White rabbits (22,781 individuals) and Dutch Holstein Friesian cattle (37,061 individuals), were high, i.e., >0.96. Although the magnitude of bias appeared to be small, results from studies based on biased estimates should be interpreted with caution. The revised GRain program (v 2.2) is now available online and can be used to calculate unbiased estimates of FANC and FNEW. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

Article
Species Richness, Ecology, and Prediction of Orchids in Central Europe: Local-Scale Study
Diversity 2020, 12(4), 154; https://doi.org/10.3390/d12040154 - 17 Apr 2020
Cited by 6 | Viewed by 1370
Abstract
Orchids are one of the most species-rich families in the world, and many species are under threat in numerous countries. Biodiversity research focusing on the relationship between the richness of orchid species and ecological factors was performed across the Cerová vrchovina Mts (Western [...] Read more.
Orchids are one of the most species-rich families in the world, and many species are under threat in numerous countries. Biodiversity research focusing on the relationship between the richness of orchid species and ecological factors was performed across the Cerová vrchovina Mts (Western Carpathians) testing impact of 26 explanatory variables. We aimed to determine the main ecological predictors controlling species richness and to predict potential species richness patterns. Altogether, 19 orchid species were found in the studied area, with Cephalanthera damasonium and Epipactis microphylla being the most common. Four environmental predictors (minimal longitude, carbonate-containing sediments, maximal yearly solar irradiation, and agricultural land) had statistically significant effects on orchid richness following regression analysis. Predictive models for the nine most frequent species using MaxEnt software showed (i) that land cover and geological substrate had the highest contribution to the explained variance in the models and (ii) strong potential for occurrence of given orchids in several poorly mapped parts of the studied area. Full article
(This article belongs to the Special Issue The Ecology and Diversity of Orchids)
Show Figures

Figure 1

Article
Coral Restoration Effectiveness: Multiregional Snapshots of the Long-Term Responses of Coral Assemblages to Restoration
Diversity 2020, 12(4), 153; https://doi.org/10.3390/d12040153 - 17 Apr 2020
Cited by 19 | Viewed by 3272
Abstract
Coral restoration is rapidly becoming a mainstream strategic reef management response to address dramatic declines in coral cover worldwide. Restoration success can be defined as enhanced reef functions leading to improved ecosystem services, with multiple benefits at socio-ecological scales. However, there is often [...] Read more.
Coral restoration is rapidly becoming a mainstream strategic reef management response to address dramatic declines in coral cover worldwide. Restoration success can be defined as enhanced reef functions leading to improved ecosystem services, with multiple benefits at socio-ecological scales. However, there is often a mismatch between the objectives of coral restoration programs and the metrics used to assess their effectiveness. In particular, the scales of ecological benefits currently assessed are typically limited in both time and space, often being limited to short-term monitoring of the growth and survival of transplanted corals. In this paper, we explore reef-scale responses of coral assemblages to restoration practices applied in four well-established coral restoration programs. We found that hard coral cover and structural complexity were consistently greater at restored compared to unrestored (degraded) sites. However, patterns in coral diversity, coral recruitment, and coral health among restored, unrestored, and reference sites varied across locations, highlighting differences in methodologies among restoration programs. Altogether, differences in program objectives, methodologies, and the state of nearby coral communities were key drivers of variability in the responses of coral assemblages to restoration. The framework presented here provides guidance to improve qualitative and quantitative assessments of coral restoration efforts and can be applied to further understanding of the role of restoration within resilience-based reef management. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

Article
Intraspecific Behavioral Variation Mediates Insect Prey Survival via Direct and Indirect Effects
Diversity 2020, 12(4), 152; https://doi.org/10.3390/d12040152 - 16 Apr 2020
Cited by 2 | Viewed by 1138
Abstract
Conspecific individuals often exhibit behavioral differences that influence susceptibility to predation. Yet, how such trait differences scale to affect prey population regulation and community structure remains unclear. We used an 8 day field mesocosm experiment to explore the effects of intraspecific prey behavioral [...] Read more.
Conspecific individuals often exhibit behavioral differences that influence susceptibility to predation. Yet, how such trait differences scale to affect prey population regulation and community structure remains unclear. We used an 8 day field mesocosm experiment to explore the effects of intraspecific prey behavioral trait variation on survival in an herbivorous insect community. We further manipulated spider predator composition to test for top-down context-dependence of behavioral effects. Insect prey behavioral trait variance influenced survival through both direct (i.e., variation among conspecifics) and indirect (i.e., variation among heterospecifics) mechanisms. The behavioral variance of two prey species, Philaenus and Orchelimum, directly reduced their survival, though for Philaenus, this direct negative effect only occurred in the presence of a single spider predator species. In contrast, the survival of Scudderia was enhanced by the behavioral trait variance of the surrounding insect community, an indirect positive effect. Taken together, these results emphasize the importance of accounting for intraspecific variation in community ecology, demonstrating novel pathways by which individual-level behavioral differences scale to alter population and community level patterns. Full article
(This article belongs to the Special Issue Predators as Agents of Selection and Diversification)
Show Figures

Figure 1

Article
The Role of Nest Depth and Site Choice in Mitigating the Effects of Climate Change on an Oviparous Reptile
Diversity 2020, 12(4), 151; https://doi.org/10.3390/d12040151 - 16 Apr 2020
Cited by 7 | Viewed by 1641
Abstract
Climate change is likely to have strong impacts on oviparous animals with minimal parental care, because nest temperature can impact egg development, sex, and survival, especially in the absence of mitigation via parental care. Nesting females may compensate for increasing temperatures by altering [...] Read more.
Climate change is likely to have strong impacts on oviparous animals with minimal parental care, because nest temperature can impact egg development, sex, and survival, especially in the absence of mitigation via parental care. Nesting females may compensate for increasing temperatures by altering how, when, and where they nest. We examined the factors determining nest depth and site choice as well as the effects that nest depth and location have on nest temperature and hatching success in the diamondback terrapin (Malaclemys terrapin). We found that nest depth was not correlated with nesting female size, egg characteristics, or daily temperatures. Nest temperatures and hatching success were correlated with different environmental and nest characteristics between 2004, a cool and wet year, and 2005, a hot and dry year. Females selected nests with lower southern overstory vegetation in 2005. These results suggest that nest depth and location can play an important yet varying role in determining nest temperature and hatching success in more extreme warm and dry environmental conditions and, therefore, may mitigate the impacts of climate change on oviparous reptiles. However, we found minimal evidence that turtles choose nest locations and depths that maximize offspring survival based on short-term environmental cues. Full article
(This article belongs to the Special Issue Advances in the Biology and Conservation of Turtles)
Article
Identifying Mechanisms for Successful Ecological Restoration with Salvaged Topsoil in Coastal Sage Scrub Communities
Diversity 2020, 12(4), 150; https://doi.org/10.3390/d12040150 - 14 Apr 2020
Cited by 8 | Viewed by 2312
Abstract
Although aboveground metrics remain the standard, restoring functional ecosystems should promote both aboveground and belowground biotic communities. Restoration using salvaged soil—removal and translocation of topsoil from areas planned for development, with subsequent deposition at degraded sites—is an alternative to traditional methods. Salvaged soil [...] Read more.
Although aboveground metrics remain the standard, restoring functional ecosystems should promote both aboveground and belowground biotic communities. Restoration using salvaged soil—removal and translocation of topsoil from areas planned for development, with subsequent deposition at degraded sites—is an alternative to traditional methods. Salvaged soil contains both seed and spore banks, which may holistically augment restoration. Salvaged soil methods may reduce non-native germination by burying non-native seeds, increase native diversity by adding native seeds, or transfer soil microbiomes, including arbuscular mycorrhizal fungi (AMF), to recipient sites. We transferred soil to three degraded recipient sites and monitored soil microbes, using flow cytometry and molecular analyses, and characterized the plant community composition. Our findings suggest that salvaged soil at depths ≥5 cm reduced non-native grass cover and increased native plant density and species richness. Bacterial abundance at recipient sites were statistically equivalent to donor sites in abundance. Overall, topsoil additions affected AMF alpha diversity and community composition and increased rhizophilic AMF richness. Because salvaged soil restoration combines multiple soil components, including native plant and microbial propagules, it may promote both aboveground and belowground qualities of the donor site, when applying this method for restoring invaded and degraded ecosystems. Full article
(This article belongs to the Special Issue Microbial Interactions with Invasive Plant Species)
Show Figures

Graphical abstract

Article
Monitoring of Plant Species and Communities on Coastal Cliffs: Is the Use of Unmanned Aerial Vehicles Suitable?
Diversity 2020, 12(4), 149; https://doi.org/10.3390/d12040149 - 10 Apr 2020
Cited by 17 | Viewed by 1477
Abstract
Cliffs are reservoirs of biodiversity; therefore, many plant species and communities of inland and coastal cliffs are protected by Council Directive 92/43/EEC (European Economic Community), and their monitoring is mandatory in European Union countries. Surveying plants on coastal cliff by traditional methods is [...] Read more.
Cliffs are reservoirs of biodiversity; therefore, many plant species and communities of inland and coastal cliffs are protected by Council Directive 92/43/EEC (European Economic Community), and their monitoring is mandatory in European Union countries. Surveying plants on coastal cliff by traditional methods is challenging and alternatives are needed. We tested the use of a small Unmanned Aerial Vehicle (UAV) as an alternative survey tool, gathering aerial images of cliffs at Palinuro Cape (Southern Italy). Four photo-interpreters analysed independently the derived orthomosaic and plotted data needed for the monitoring activity. Data showed to be not affected by photo-interpreters and reliable for the prescribed monitoring in the European Union (EU). Using the GIS analysis tools, we were able to: (a) recognise and map the plant species, (b) derive and measure the area of distribution on the cliff of habitat and species, and (c) count Eokochia saxicola individuals and gather quantitative data on their projected area. Quality of the images represented the main constraint, but incoming technological improvements of sensors and UAVs may overcome this problem. Overall results support the use of UAVs as an affordable and fast survey technique that can rapidly increase the number of studies on cliff habitats and improve ecological knowledge on their plant species and communities. Full article
(This article belongs to the Special Issue Conservation Biology of Vascular Plants)
Show Figures

Graphical abstract

Article
Functional Divergence Drives Invasibility of Plant Communities at the Edges of a Resource Availability Gradient
Diversity 2020, 12(4), 148; https://doi.org/10.3390/d12040148 - 09 Apr 2020
Cited by 8 | Viewed by 1313
Abstract
Invasive Alien Species (IAS) are a serious threat to biodiversity, severely affecting natural habitats and species assemblages. However, no consistent empirical evidence emerged on which functional traits or trait combination may foster community invasibility. Novel insights on the functional features promoting community invasibility [...] Read more.
Invasive Alien Species (IAS) are a serious threat to biodiversity, severely affecting natural habitats and species assemblages. However, no consistent empirical evidence emerged on which functional traits or trait combination may foster community invasibility. Novel insights on the functional features promoting community invasibility may arise from the use of mechanistic traits, like those associated with drought resistance, which have been seldom included in trait-based studies. Here, we tested for the functional strategies of native and invasive assemblage (i.e., environmental filtering hypothesis vs. niche divergence), and we assessed how the functional space determined by native species could influence community invasibility at the edges of a resource availability gradient. Our results showed that invasive species pools need to have a certain degree of differentiation in order to persist in highly invaded communities, suggesting that functional niche divergence may foster community invasibility. In addition, resident native communities more susceptible to invasion are those which, on average, have higher resource acquisition capacity, and lower drought resistance coupled with an apparently reduced water-use efficiency. We advocate the use of a mechanistic perspective in future research to comprehensively understand invasion dynamics, providing also new insights on the factors underlying community invasibility in different ecosystems. Full article
(This article belongs to the Special Issue Plant Community Ecology: From Theory to Practice)
Show Figures

Figure 1

Review
Knowing the Enemy: Inducible Defences in Freshwater Zooplankton
Diversity 2020, 12(4), 147; https://doi.org/10.3390/d12040147 - 07 Apr 2020
Cited by 20 | Viewed by 2398
Abstract
Phenotypic plasticity in defensive traits is an appropriate mechanism to cope with the variable hazard of a frequently changing predator spectrum. In the animal kingdom these so-called inducible defences cover the entire taxonomic range from protozoans to vertebrates. The inducible defensive traits range [...] Read more.
Phenotypic plasticity in defensive traits is an appropriate mechanism to cope with the variable hazard of a frequently changing predator spectrum. In the animal kingdom these so-called inducible defences cover the entire taxonomic range from protozoans to vertebrates. The inducible defensive traits range from behaviour, morphology, and life-history adaptations to the activation of specific immune systems in vertebrates. Inducible defences in prey species play important roles in the dynamics and functioning of food webs. Freshwater zooplankton show the most prominent examples of inducible defences triggered by chemical cues, so-called kairomones, released by predatory invertebrates and fish. The objective of this review is to highlight recent progress in research on inducible defences in freshwater zooplankton concerning behaviour, morphology, and life-history, as well as difficulties of studies conducted in a multipredator set up. Furthermore, we outline costs associated with the defences and discuss difficulties as well as the progress made in characterizing defence-inducing cues. Finally, we aim to indicate further possible routes in this field of research and provide a comprehensive table of inducible defences with respect to both prey and predator species. Full article
(This article belongs to the Special Issue Predators as Agents of Selection and Diversification)
Show Figures

Figure 1

Article
More Knot Worms: Four New Polygordius (Annelida) Species from the Pacific and Caribbean
Diversity 2020, 12(4), 146; https://doi.org/10.3390/d12040146 - 07 Apr 2020
Cited by 3 | Viewed by 1645
Abstract
Polygordius is a clade of marine annelids mainly seen in coarse-grained habitats. They are notable for their smooth bodies, lacking in chaetae or obvious segments, and they resemble Nematoda or Nemertea. Though Polygordius taxa are found in all oceans of the world, identifying [...] Read more.
Polygordius is a clade of marine annelids mainly seen in coarse-grained habitats. They are notable for their smooth bodies, lacking in chaetae or obvious segments, and they resemble Nematoda or Nemertea. Though Polygordius taxa are found in all oceans of the world, identifying species based only on morphological characters can be challenging due to their relatively uniform external appearances. Diversity within the clade has likely been markedly underestimated. Where morphological characters are inconspicuous or even unreliable, molecular methods can provide clarity in delimiting species. In this study, morphological methods (examination under light and scanning electron microscopy) were integrated with molecular analyses (sequencing of Cytochrome c oxidase subunit I, 16S rRNA and Histone H3 gene fragments) to establish the systematic placement of Polygordius specimens collected from Australia, Belize, French Polynesia, Indonesia, Japan, and the U.S. west coast. These analyses revealed three new species of Polygordius from the Pacific Ocean (P. erikae n. sp., P. kurthcarolae n. sp., and P. kurthsusanae n. sp.) as well as one new species from the Caribbean Sea (P. jenniferae n. sp.). These new species are formally described, and a previously known Japanese species, P. pacificus Uchida, 1936, is redescribed. This study establishes the first molecular data set for Polygordius species from the Pacific region, as well as the first formal description of a Caribbean species of Polygordius. Phylogenetic relationships within Polygordius are summarized and discussed. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

Communication
Assessing the Nature Reserve Management Effort Using an Expert-Based Threat Analysis Approach
Diversity 2020, 12(4), 145; https://doi.org/10.3390/d12040145 - 06 Apr 2020
Cited by 2 | Viewed by 1097
Abstract
In this note, we suggest the adoption of expert-based approaches for threat analysis to allow an assessment of the magnitude of efforts of wildlife management actions. Similar to what is proposed for expert-based quantification of threat events, in wildlife management this approach can [...] Read more.
In this note, we suggest the adoption of expert-based approaches for threat analysis to allow an assessment of the magnitude of efforts of wildlife management actions. Similar to what is proposed for expert-based quantification of threat events, in wildlife management this approach can be applied by assigning a score to the extent of the areas affected by management, their frequency and intensity of action, supporting the decision-making process and optimizing the management strategies, both ordinary (for example, in the operational management of nature reserves) and extraordinary (for example, within specific target-oriented conservation projects). Quantifying and defining priority ranks among management events can be useful: (i) to compare managed areas with each other or the same areas in different times; (ii) to adjust the allocation of resources among alternative management actions (assigning more or less resources in terms of time, budget, operators, and technology). Finally, similar to what is done in the threat analysis approach, managers could compare the effort (magnitude) of management at different times. We report, as an example, a first quantification for a case study carried out in a coastal nature reserve. Full article
Show Figures

Figure 1

Article
News from the Sea: A New Genus and Seven New Species in the Pleosporalean Families Roussoellaceae and Thyridariaceae
Diversity 2020, 12(4), 144; https://doi.org/10.3390/d12040144 - 06 Apr 2020
Cited by 13 | Viewed by 1708
Abstract
Nineteen fungal strains associated with the seagrass Posidonia oceanica, with the green alga Flabellia petiolata, and the brown alga Padina pavonica were collected in the Mediterranean Sea. These strains were previously identified at the family level and hypothesised to be undescribed [...] Read more.
Nineteen fungal strains associated with the seagrass Posidonia oceanica, with the green alga Flabellia petiolata, and the brown alga Padina pavonica were collected in the Mediterranean Sea. These strains were previously identified at the family level and hypothesised to be undescribed species. Strains were examined by deep multi-loci phylogenetic and morphological analyses. Maximum-likelihood and Bayesian phylogenies proved that Parathyridariella gen. nov. is a distinct genus in the family Thyriadriaceae. Analyses based on five genetic markers revealed seven new species: Neoroussoella lignicola sp. nov., Roussoella margidorensis sp. nov., R. mediterranea sp. nov., and R. padinae sp. nov. within the family Roussellaceae, and Parathyridaria flabelliae sp. nov., P. tyrrhenica sp. nov., and Parathyridariella dematiacea gen. nov. et sp. nov. within the family Thyridariaceae. Full article
(This article belongs to the Special Issue Fungal Diversity in the Mediterranean Area)
Show Figures

Figure 1

Interesting Images
Host-related Morphological Variation of Dwellings Inhabited by the Crab Domecia acanthophora in the Corals Acropora palmata and Millepora complanata (Southern Caribbean)
Diversity 2020, 12(4), 143; https://doi.org/10.3390/d12040143 - 05 Apr 2020
Cited by 6 | Viewed by 1303
Abstract
Brachyuran crabs of various families are known as obligate associates of stony corals, with many of these species living as endosymbionts inside the skeleton of their hosts [...] Full article
(This article belongs to the Special Issue Diversity of Coral-Associated Fauna)
Show Figures

Figure 1

Article
Modern Benthic Foraminiferal Diversity: An Initial Insight into the Total Foraminiferal Diversity along the Kuwait Coastal Water
Diversity 2020, 12(4), 142; https://doi.org/10.3390/d12040142 - 05 Apr 2020
Cited by 7 | Viewed by 1236
Abstract
Kuwait territorial water hosts an important part of national biodiversity (i.e., zooplankton and phytoplankton), but very limited information exists on the overall diversity of benthic foraminifera. On the basis of the integration of publications, reports and theses with new available data from the [...] Read more.
Kuwait territorial water hosts an important part of national biodiversity (i.e., zooplankton and phytoplankton), but very limited information exists on the overall diversity of benthic foraminifera. On the basis of the integration of publications, reports and theses with new available data from the Kuwait Bay and the northern islands, this study infers the total benthic foraminiferal diversity within Kuwait territorial water. This new literature survey documents the presence of 451 species belonging to 156 genera, 64 families, 31 superfamilies and 9 orders. These values are relatively high in consideration of the limited extension and the shallow depth of the Kuwait territorial water. Kuwait waters offer a variety of different environments and sub-environments (low salinity/muddy areas in the northern part, embayment, rocky tidal flats, coral reef systems, islands and shelf slope) that all together host largely diversified benthic foraminiferal communities. These figures are herein considered as underestimated because of the grouping of unassigned species due to the lack of reference collections and materials, as well as the neglection of the soft-shell monothalamids (‘allogromiids’). Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Article
The Influence of Urbanization and Fire Disturbance on Plant-floral Visitor Mutualistic Networks
Diversity 2020, 12(4), 141; https://doi.org/10.3390/d12040141 - 03 Apr 2020
Cited by 10 | Viewed by 2119
Abstract
The biodiversity loss resulting from rising levels of human impacts on ecosystems has been extensively discussed over the last years. The expansion of urban areas promotes drastic ecological changes, especially through fragmentation of natural areas. Natural grassland remnants surrounded by an urban matrix [...] Read more.
The biodiversity loss resulting from rising levels of human impacts on ecosystems has been extensively discussed over the last years. The expansion of urban areas promotes drastic ecological changes, especially through fragmentation of natural areas. Natural grassland remnants surrounded by an urban matrix are more likely to undergo disturbance events. Since grassland ecosystems are closely related to disturbances such as fire and grazing, grassland plant communities, pollinators, and their interaction networks may be especially sensitive to urban expansion, because it promotes habitat fragmentation and modifies disturbance regimes. This work evaluated the effect of the level of urbanization and recent history of fire disturbance on grassland plants communities and plant-floral visitor mutualistic networks. We sampled plant communities and floral visitors in 12 grassland sites with different levels of urbanization and time since the last fire event. Sites with higher levels of urbanization showed higher values for plant species richness, floral visitor richness, and network asymmetry. All sampled networks were significantly nested (with one exception), asymmetric, and specialized. In addition, all networks presented more modules than expected by chance. The frequency of fire disturbance events increased with the level of urbanization. Since grassland ecosystems depend on disturbances to maintain their structure and diversity, we inferred that the history of fire disturbance was the mechanism behind the relationship between urbanization and our biological descriptors. Our findings highlight the importance of small and isolated grassland remnants as conservation assets within urban areas, and that the disturbance events that such sites are submitted to may in fact be what maintains their diversity on multiple levels. Full article
Show Figures

Figure 1

Article
Diversity and Structure of an Arid Woodland in Southwest Angola, with Comparison to the Wider Miombo Ecoregion
Diversity 2020, 12(4), 140; https://doi.org/10.3390/d12040140 - 03 Apr 2020
Cited by 6 | Viewed by 2361
Abstract
Seasonally dry woodlands are the dominant land cover across southern Africa. They are biodiverse, structurally complex, and important for ecosystem service provision. Species composition and structure vary across the region producing a diverse array of woodland types. The woodlands of the Huíla plateau [...] Read more.
Seasonally dry woodlands are the dominant land cover across southern Africa. They are biodiverse, structurally complex, and important for ecosystem service provision. Species composition and structure vary across the region producing a diverse array of woodland types. The woodlands of the Huíla plateau in southwest Angola represent the extreme southwestern extent of the miombo ecoregion and are markedly drier than other woodlands within this ecoregion. They remain understudied, however, compared to woodlands further east in the miombo ecoregion. We aimed to elucidate further the tree diversity found within southwestern Angolan woodlands by conducting a plot-based study in Bicuar National Park, comparing tree species composition and woodland structure with similar plots in Tanzania, Mozambique, and the Democratic Republic of Congo. We found Bicuar National Park had comparatively low tree species diversity, but contained 27 tree species not found in other plots. Plots in Bicuar had low basal area, excepting plots dominated by Baikiaea plurijuga. In a comparison of plots in intact vegetation with areas previously disturbed by shifting-cultivation agriculture, we found species diversity was marginally higher in disturbed plots. Bicuar National Park remains an important woodland refuge in Angola, with an uncommon mosaic of woodland types within a small area. While we highlight wide variation in species composition and woodland structure across the miombo ecoregion, plot-based studies with more dense sampling across the ecoregion are clearly needed to more broadly understand regional variation in vegetation diversity, composition and structure. Full article
(This article belongs to the Special Issue Biodiversity of Vegetation and Flora in Tropical Africa)
Show Figures

Figure 1

Article
The Yeast Atlas of Appalachia: Species and Phenotypic Diversity of Herbicide Resistance in Wild Yeast
Diversity 2020, 12(4), 139; https://doi.org/10.3390/d12040139 - 03 Apr 2020
Cited by 4 | Viewed by 1690
Abstract
Glyphosate and copper-based herbicides/fungicides affect non-target organisms, and these incidental exposures can impact microbial populations. In this study, glyphosate resistance was found in the historical collection of S. cerevisiae, which was collected over the last century, but only in yeast isolated after [...] Read more.
Glyphosate and copper-based herbicides/fungicides affect non-target organisms, and these incidental exposures can impact microbial populations. In this study, glyphosate resistance was found in the historical collection of S. cerevisiae, which was collected over the last century, but only in yeast isolated after the introduction of glyphosate. Although herbicide application was not recorded, the highest glyphosate-resistant S. cerevisiae were isolated from agricultural sites. In an effort to assess glyphosate resistance and impact on non-target microorganisms, different yeast species were harvested from 15 areas with known herbicidal histories, including an organic farm, conventional farm, remediated coal mine, suburban locations, state park, and a national forest. Yeast representing 23 genera were isolated from 237 samples of plant, soil, spontaneous fermentation, nut, flower, fruit, feces, and tree material samples. Saccharomyces, Candida, Metschnikowia, Kluyveromyces, Hanseniaspora, and Pichia were other genera commonly found across our sampled environments. Managed areas had less species diversity, and at the brewery only Saccharomyces and Pichia were isolated. A conventional farm growing RoundUp Ready™ corn had the lowest phylogenetic diversity and the highest glyphosate resistance. The mine was sprayed with multiple herbicides including a commercial formulation of glyphosate; however, the S. cerevisiae did not have elevated glyphosate resistance. In contrast to the conventional farm, the mine was exposed to glyphosate only one year prior to sample isolation. Glyphosate resistance is an example of the anthropogenic selection of nontarget organisms. Full article
(This article belongs to the Special Issue Fungal Diversity)
Show Figures

Graphical abstract

Article
Enough Is Enough? Searching for the Optimal Sample Size to Monitor European Habitats: A Case Study from Coastal Sand Dunes
Diversity 2020, 12(4), 138; https://doi.org/10.3390/d12040138 - 02 Apr 2020
Cited by 12 | Viewed by 1721
Abstract
A robust survey method that samples the main characteristics of plant assemblages is needed to assess the conservation status of European habitat in the Natura 2000 network. A measure of variability, called pseudo-multivariate dissimilarity-based standard error (MultSE), was recently proposed for assessing sample-size [...] Read more.
A robust survey method that samples the main characteristics of plant assemblages is needed to assess the conservation status of European habitat in the Natura 2000 network. A measure of variability, called pseudo-multivariate dissimilarity-based standard error (MultSE), was recently proposed for assessing sample-size adequacy in ecological communities. Here, we used it on coastal sand dune systems in three Special Areas of Conservation (SACs) in Tuscany. Our aim was to assess the minimum number of replicates necessary to adequately characterize sand dune environments in terms of differences between habitats and SACs, after a preliminary baseline assessment of plant diversity. Analysis of α and β diversity indicated that especially between habitats the three SACs protect different plant communities. The study of the MultSE profiles showed that the minimum number of replicates needed to assess differences among habitats varied between 10 and 25 plots. Two-way PERMANOVA and SIMPER analysis on the full and reduced datasets confirmed that SACs and habitats host different plant communities, and that the contribution of the target species remained unchanged even with a reduced sample size. The proposed methodological approach can be used to develop cost-effective monitoring programs and it can be useful for plant ecologists and biodiversity managers for assessing ecosystem health and changes. Full article
(This article belongs to the Special Issue Plant Community Ecology: From Theory to Practice)
Show Figures

Figure 1

Article
The Effect of a Dam Construction on Subtidal Nematode Communities in the Ba Lai Estuary, Vietnam
Diversity 2020, 12(4), 137; https://doi.org/10.3390/d12040137 - 02 Apr 2020
Cited by 10 | Viewed by 1666
Abstract
Nematode communities and relevant environmental variables were investigated to assess how the presence of a dam affects the Ba Lai estuary benthic ecosystem, in comparison to the adjacent dam-free estuary Ham Luong. Both estuaries are part of the Mekong delta system in Vietnam. [...] Read more.
Nematode communities and relevant environmental variables were investigated to assess how the presence of a dam affects the Ba Lai estuary benthic ecosystem, in comparison to the adjacent dam-free estuary Ham Luong. Both estuaries are part of the Mekong delta system in Vietnam. This study has shown that the dam’s construction had an effect on the biochemical components of the Ba Lai estuary, as observed by the local increase in total suspended solids and heavy metal concentrations (Hg and Pb) and by a significant oxygen depletion compared to the natural river of Ham Luong. The nematode communities were also different between the two estuaries in terms of density, genus richness, Shannon–Wiener diversity, and dominant genera. The Ba Lai estuary exhibited lower nematode densities but a higher diversity, while the genus composition only slightly differed between estuaries. The results indicate that the present nematode communities may be well adapted to the natural organic load, to the heavy metal accumulation and to the oxygen stress in both estuaries, but the dam presence may potentially continue to drive the Ba Lai’s ecosystem to its tipping point. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop