Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Data Collection
2.3. Functional Traits
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sperandii, M.G.; Bazzichetto, M.; Acosta, A.T.R.; Barták, V.; Malavasi, M. Multiple drivers of plant diversity in coastal dunes: A Mediterranean experience. Sci. Total Environ. 2019, 652, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Malavasi, M.; Santoro, R.; Cutini, M.; Acosta, A.T.R.; Carranza, M.L. What has happened to coastal dunes in the last half century? A multitemporal coastal landscape analysis in Central Italy. Landsc. Urban Plan. 2013, 119, 54–63. [Google Scholar] [CrossRef]
- Acosta, A.; Carranza, M.L.; Izzi, C.F. Are there habitats that contribute best to plant species diversity in coastal dunes? Biodivers. Conserv. 2008, 18, 1087–1098. [Google Scholar] [CrossRef]
- Murru, V.; Marignani, M.; Acosta, A.T.R.; Cogoni, A. Bryophytes in Mediterranean coastal dunes: Ecological strategies and distribution along the vegetation zonation. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 1141–1148. [Google Scholar] [CrossRef]
- Coastal Dunes: Ecology and Conservation. In Ecological Studies; Martínez, M.L.; Psuty, N.P. (Eds.) Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-540-40829-1. [Google Scholar]
- Bu, C.; Zhang, K.; Zhang, C.; Wu, S. Key Factors Influencing Rapid Development of Potentially Dune-Stabilizing Moss-Dominated Crusts. PLoS ONE 2015, 10, 0134447. [Google Scholar] [CrossRef] [PubMed]
- Maestre, F.T.; Bowker, M.A.; Cantón, Y.; Castillo-Monroy, A.P.; Cortina, J.; Escolar, C.; Escudero, A.; Lázaro, R.; Martínez, I. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid. Environ. 2011, 75, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, M.; Costa, R.; Privitera, M. Bryophyte coastal vegetation of the Cilento and Vallo di Diano National Park (S Italy) as a tool for ecosystem assessment. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2012, 146, 309–323. [Google Scholar] [CrossRef]
- Rooney, R.C.; Azeria, E.T. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. J. Biogeogr. 2015, 42, 439–451. [Google Scholar] [CrossRef]
- Brunbjerg, A.K.; Bruun, H.H.; Dalby, L.; Fløjgaard, C.; Frøslev, T.G.; Høye, T.T.; Goldberg, I.; Læssøe, T.; Hansen, M.D.D.; Brøndum, L. Vascular plant species richness and bioindication predict multi-taxon species richness. Methods Ecol. Evol. 2018, 9, 2372–2382. [Google Scholar] [CrossRef]
- Zedda, L.; Cogoni, A.; Flore, F.; Brundu, G. Impacts of alien plants and man-made disturbance on soil-growing bryophyte and lichen diversity in coastal areas of Sardinia (Italy). Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2010, 144, 547–562. [Google Scholar] [CrossRef]
- Burrascano, S.; Andrade, R.B.; Paillet, Y.; Ódor, P.; Antonini, G.; Bouget, C.; Campagnaro, T.; Gosselin, F.; Janssen, P.; Persiani, A.M. Congruence across taxa and spatial scales: Are we asking too much of species data? Glob. Ecol. Biogeogr. 2018, 27, 980–990. [Google Scholar] [CrossRef]
- Santi, E.; Bacaro, G.; Rocchini, D.; Chiarucci, A.; Bonini, I.; Brunialti, G.; Muggia, L.; Maccherini, S. Methodological Issues in Exploring Cross-Taxon Congruence Across Vascular Plants, Bryophytes and Lichens. Folia Geobot 2016, 51, 297–304. [Google Scholar] [CrossRef]
- Bagella, S. Does cross-taxon analysis show similarity in diversity patterns between vascular plants and bryophytes? Some answers from a literature review. C. R. Biol. 2014, 337, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Sætersdal, M.; Gjerde, I.; Blom, H.H.; Ihlen, P.G.; Myrseth, E.W.; Pommeresche, R.; Skartveit, J.; Solhøy, T.; Aas, O. Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol. Conserv. 2004, 115, 21–31. [Google Scholar] [CrossRef]
- Brunialti, G.; Frati, L.; Aleffi, M.; Marignani, M.; Rosati, L.; Burrascano, S.; Ravera, S. Lichens and bryophytes as indicators of old-growth features in Mediterranean forests. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2010, 144, 221–233. [Google Scholar] [CrossRef]
- Bacaro, G.; Tordoni, E.; Martellos, S.; Maccherini, S.; Marignani, M.; Muggia, L.; Petruzzellis, F.; Napolitano, R.; Da Re, D.; Guidi, T. Cross Taxon Congruence Between Lichens and Vascular Plants in a Riparian Ecosystem. Diversity 2019, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Pinna, M.S.; Bacchetta, G.; Cogoni, D.; Fenu, G. Is vegetation an indicator for evaluating the impact of tourism on the conservation status of Mediterranean coastal dunes? Sci. Total Environ. 2019, 674, 255–263. [Google Scholar] [CrossRef]
- Marignani, M.; Bruschi, D.; Astiaso Garcia, D.; Frondoni, R.; Carli, E.; Pinna, M.S.; Cumo, F.; Gugliermetti, F.; Saatkamp, A.; Doxa, A. Identification and prioritization of areas with high environmental risk in Mediterranean coastal areas: A flexible approach. Sci. Total Environ. 2017, 590–591, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, D.; Picciarelli, P.; Bedini, G.; Sorce, C. Mediterranean Sea cliff plants: Morphological and physiological responses to environmental conditions. J. Plant Ecol. 2016, 9, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L. The impact of land use/land cover changes on land degradation dynamics: A Mediterranean case study. Environ. Manag. 2012, 49, 980–989. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Barni, E.; Bacaro, G.; Falzoi, S.; Spanna, F.; Siniscalco, C. Establishing climatic constrains shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecol. 2012, 213, 757–767. [Google Scholar] [CrossRef]
- Bacaro, G.; Maccherini, S.; Chiarucci, A.; Jentsch, A.; Rocchini, D.; Torri, D.; Gioria, M.; Tordoni, E.; Martellos, S.; Altobelli, A. Distributional patterns of endemic, native and alien species along a roadside elevation gradient in Tenerife, Canary Island. Comm. Ecol. 2015, 16, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Tordoni, E.; Napolitano, R.; Nimis, P.; Castello, M.; Altobelli, A.; Da Re, D.; Zago, S.; Chines, A.; Martellos, S.; Maccherini, S. Diversity patterns of alien and native plant species in Trieste port area: Exploring the role of urban habitats in biodiversity consevation. Urban Ecosys 2017, 20, 1151–1160. [Google Scholar] [CrossRef]
- Tordoni, E.; Petruzzellis, F.; Nardini, A.; Savi, T.; Bacaro, G. Make it simpler: Alien species decrease functional diversity of coastal plant communities. J. Veg. Sci. 2019, 30, 498–509. [Google Scholar] [CrossRef]
- Marcantonio, M.; Rocchini, D.; Ottaviani, G. Impact of alien species on dune systems: A multifaceted approach. Biodivers. Conserv. 2014, 23, 2645–2668. [Google Scholar] [CrossRef]
- Gallien, L.; Carboni, M. The community ecology of invasive species: Where are we and what’s next? Ecography 2017, 40, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Tordoni, E.; Napolitano, R.; Maccherini, S.; Da Re, D.; Bacaro, G. Ecological drivers of plant diversity patterns in remnants coastal sand dune ecosystems along the northern Adriatic coastline. Ecol. Res. 2018, 1157–1168. [Google Scholar] [CrossRef]
- Tordoni, E.; Petruzzellis, F.; Nardini, A.; Bacaro, G. Functional Divergence Drives Invasibility of Plant Communities at the Edges of a Resource Availability Gradient. Diversity 2020, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Malavasi, M.; Santoro, R.; Cutini, M.; Acosta, A.T.R.; Carranza, M.L. The impact of human pressure on landscape patterns and plant species richness in Mediterranean coastal dunes. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 73–82. [Google Scholar] [CrossRef]
- Gubbay, S.; Janssen, J.A.M. European Red List of Habitats; Publications Office of the European: Luxembourg, 2005. [Google Scholar]
- Garnier, E.; Navas, M.-L.; Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties; Oxford University Press: Oxford, UK; New York, NY, USA, 2015; ISBN 978-0-19-875737-5. [Google Scholar]
- Carboni, M.; Acosta, A.T.R.; Ricotta, C. Are differences in functional diversity among plant communities on Mediterranean coastal dunes driven by their phylogenetic history? J. Veg. Sci. 2013, 24, 932–941. [Google Scholar] [CrossRef]
- Prisco, I.; Carboni, M.; Jucker, T.; Acosta, A.T.R. Temporal changes in the vegetation of Italian coastal dunes: Identifying winners and losers through the lens of functional traits. J. Appl. Ecol. 2016, 53, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E.; Bernard-Verdier, M. Comparing traits of native and alien plants: Can we do better? Funct. Ecol. 2018, 32, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Chelli, S.; Marignani, M.; Barni, E.; Petraglia, A.; Puglielli, G.; Wellstein, C.; Acosta, A.T.R.; Bolpagni, R.; Bragazza, L.; Campetella, G. Plant–environment interactions through a functional traits perspective: A review of Italian studies. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 153, 853–869. [Google Scholar] [CrossRef]
- Orrù, P.; Cocco, A. Panizza V Rilevamento geomorfologico subacqueo del settore compreso tra Capo Boi e Punta Is Cappuccinus (Sardegna Sud-Occidentale. Mem. Descr. Della Carta Geol. d’Ital. 1994, 52, 163–176. [Google Scholar]
- Canu, S.; Rosati, L.; Fiori, M.; Motroni, A.; Filigheddu, R.; Farris, E. Bioclimate map of Sardinia Italy. J. Maps 2015, 11, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Pinna, M.S.; Bacchetta, G.; Orrù, H.; Cogoni, D.; Sanna, A.; Fenu, G. Results of the Providune project: Restoration of the “Coastal dunes with Juniperus spp.” priority habitat in Sardinia. Plant Sociol. 2017, 73–84. [Google Scholar]
- Acunto, S.; Bacchetta, G.; Bordigoni, A.; Cadoni, N.; Cinti, M.F.; Duràn Navarro, M.; Frau, F.; Lentini, L.; Liggi, M.G.; Masala, M. The LIFE+ project “RES MARIS—Recovering Endangered habitats in the Capo Carbonara MARIne area, Sardinia”: First results. Plant Sociol. 2017, 85–95. [Google Scholar]
- Cogoni, A.; Flore, F.; Scrugli, A. The bryological flora of Isola dei Cavoli SE-Sardinia, Italy. Flora Mediterr. 2004, 14. [Google Scholar]
- Cogoni, A.; Brundu, G.; Zedda, L. Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia Italy. N. Hedwig. 2011, 159–175. [Google Scholar] [CrossRef]
- Cogoni, A.; Scrugli, A.; Flore, F.; Cortis, P.; Aleffi, M. The bryophyte flora of the Asinara Island (northwest Sardinia, Italy. Cryptogam. Bryol. 2009, 30, 79–89. [Google Scholar]
- Pignatti, S. Flora d’Italia; ristampa della 1; Edagricole: Bologna, Italy, 1982; Volume 3, ISBN 978-88-206-2310-4. [Google Scholar]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S. An updated checklist of the vascular flora alien to Italy. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- Hodgetts, N.G. Checklist and country status of European bryophytes—Towards a new Red List for Europe. Irish Wildlife Manuals; National Parks and Wildlife Service. Dep. Arts Herit and the Gaeltacht Ireland. 2015, 84, 1–130. [Google Scholar]
- Pignatti, S.; Menegoni, P. Pietrosanti S Biondicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia 2005, 39, 1–97. [Google Scholar]
- Guarino, R.; Domina, G.; Pignatti, S. Ellenberg’s Indicator values for the Flora of Italy–first update: Pteridophyta. Gymnospermae Monocotyledoneae 2012, 22, 197–209. [Google Scholar]
- Domina, G.; Galasso, G.; Bartolucci, F.; Guarino, R. Ellenberg Indicator Values for the vascular flora alien to Italy. Flora Mediterr. 2018, 28, 53–61. [Google Scholar] [CrossRef]
- Sérgio, C.; Garcia, C.A.; Vieira, C.; Hespanhol, H.; Sim-Sim, M.; Stow, S.; Figueira, R. Conservation of Portuguese red-listed bryophytes species in Portugal: Promoting a shift in perspective on climate changes. Plant Biosyst. 2014, 148, 837–850. [Google Scholar] [CrossRef]
- During, H.J. Life Strategies of Bryophytes: A Preliminary Review. Lindbergia 1979, 5, 2–18. [Google Scholar]
- Dierßen, K. Distribution, Ecological Amplitude and Phytosociological-Characterization of European Bryophytes; Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung: Berlin, Germany, 2001; pp. 1–289. [Google Scholar]
- Hill, M.; Preston, C.; Bosanquet, S.; Roy, D. BRYOATT-Attributes of British and Irish Mosses, Liverworts and Hornworts; NERC Centre for Ecology and Hydrology; Countryside Council for Wales: Cambridge, UK, 2007; ISBN 978-1-85531-236-4. [Google Scholar]
- Cortini Pedrotti, C. Flora Dei Muschi d’Italia Sphagnopsida–Andreaeopsida–Bryopsida; Antonio Delfino: Roma, Italy, 2001; pp. 1–816. [Google Scholar]
- Azorean Biodiversity Group (cE3c) Universidade dos Açores, Dep. de Ciências Agrárias BRYOTRAIT-AZO. Available online: http://islandlab.uac.pt/software/ver.php?id=26 (accessed on 6 April 2020).
- Pavoine, S. adiv: Analysis of Diversity, R Package Version 2.0; 2020. Available online: http://islandlab.uac.pt/software/ver.php?id=26 (accessed on 11 February 2020).
- Pavoine, S.; Vallet, J.; Dufour, A.-B.; Gachet, S.; Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 2009, 118, 391–402. [Google Scholar] [CrossRef]
- Braak, C.J.F.; Schaffers, A.P. Co-Correspondence Analysis: A New Ordination Method to Relate Two Community Compositions. Ecology 2004, 85, 834–846. [Google Scholar] [CrossRef] [Green Version]
- Schaffers, A.P.; Raemakers, I.P.; Sýkora, K.V.; Braak, C.J.F. Arthropod assemblages are best predicted by plant species composition. Ecology 2008, 89, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package, R Package Version 2.5-6; 2019. Available online: https://rdrr.io/cran/vegan/ (accessed on 13 April 2020).
- Ricotta, C.; Pavoine, S.; Bacaro, G.; Acosta, A.T.R. Functional rarefaction for species abundance data. Methods Ecol. Evol. 2012, 3, 519–525. [Google Scholar] [CrossRef]
- Simpson, G.L.; Oksanen, J.A. Analogue and Weighted Averaging Methods for Palaeoecology, R Package Version 0.17-4; 2020. Available online: https://www.rdocumentation.org/packages/analogue/versions/0.17-4 (accessed on 13 April 2020).
- R Core Team. 2019. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 13 April 2020).
- Forey, E.; Chapelet, B.; Vitasse, Y.; Tilquin, M.; Touzard, B.; Michalet, R. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J. Veg. Sci. 2008, 19, 493–502. [Google Scholar] [CrossRef]
- Feola, S.; Carranza, M.L.; Schaminee, J.H.J.; Acosta, A.T.R.; Janssen, J. A M. EU habitats of interest: An insight into Atlantic and Mediterranean beach and foredunes. Biodivers. Conserv. 2011, 20, 1457–1468. [Google Scholar] [CrossRef]
- Jucker, T.; Carboni, M.; Acosta, A.T.R. Going beyond taxonomic diversity: Deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Divers. Distrib. 2013, 19, 1566–1577. [Google Scholar] [CrossRef]
- Campoy, J.G.; Acosta, A.T.R.; Affre, L.; Barreiro, R.; Brundu, G.; Buisson, E.; González, L.; Lema, M.; Novoa, A.; Retuerto, R. Monographs of invasive plants in Europe: Carpobrotus. Bot. Lett. 2018, 165, 440–475. [Google Scholar] [CrossRef]
- Lambdon, P.W.; Hulme, P.E. How Strongly Do Interactions with Closely-Related Native Species Influence Plant Invasions? Darwin’s Naturalization Hypothesis Assessed on Mediterranean Islands. J. Biogeogr. 2006, 33, 1116–1125. [Google Scholar] [CrossRef]
- van Kleunen, M.V.; Essl, F.; Pergl, J.; Brundu, G.; Carboni, M.; Dullinger, S.; Early, R.; González-Moreno, P.; Groom, Q.J.; Hulme, P.E. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018, 93, 1421–1437. [Google Scholar] [CrossRef]
- Marzialetti, F.; Bazzichetto, M.; Giulio, S.; Acosta, A.T.R.; Stanisci, A.; Malavasi, M.; Carranza, M.L. Modelling Acacia saligna invasion on the Adriatic coastal landscape: An integrative approach using LTER data. Nat. Conserv. 2019, 34, 127–144. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Barnett, D.T.; Kartesz, J.T. The rich get richer: Patterns of plant invasions in the United States. Front. Ecol. Environ. 2003, 1, 11–14. [Google Scholar] [CrossRef]
- Fridley, J.D.; Stachowicz, J.J.; Naeem, S.; Sax, D.F.; Seabloom, E.W.; Smith, M.D.; Stohlgren, T.J.; Tilman, D.; Von Holle, B. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 2007, 88, 3–17. [Google Scholar] [CrossRef]
- Peng, S.; Kinlock, N.L.; Gurevitch, J.; Peng, S. Correlation of native and exotic species richness: A global meta-analysis finds no invasion paradox across scales. Ecology 2019, 100, 02552. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean | Range (min-max) |
Spatial coordinates—X | 545,048 | 544,534–545,797 |
Spatial coordinates—Y | 4,330,030 | 4,329,298–4,331,129 |
Altitude a.s.l. (m) | 2.03 | 0.51–13.55 |
Sea distance (m) | 131.96 | 32.36–343.81 |
Bare soil (%) | 28.69 | 0–100 |
IAS cover (%) | 1.39 | 0–100 |
Ratio Alien Cover/Total Cover | 0.09 | 0–1 |
IAS presence/absence | - | 0–1 |
Vegetation type (categorical, 4 levels) | Number of plots | |
bare soil | 26 | |
low scattered Mediterranean scrub | 12 | |
low Mediterranean scrub | 31 | |
tall Mediterranean scrub | 31 |
Vascular Plants | ||
*Acacia saligna (Labill.) H.L. | Erodium chium Sm. | Parapholis strigosa (Dumort.) C.E.Hubb. |
*Agave americana L. | Eryngium maritimum L. | Pistacia lentiscus L. |
*Carpobrotus sp. | Filago pygmaea L. | Plantago bellardii All. |
*Myoporum tetrandrum Domin | Galium parisiense L. | Plantago crassifolia Forssk. |
*Opuntia ficus-indica (L.) Mill. | Hedypnois cretica (L.) Willd. | Plantago lanceolata L. |
Artemisia arborescens L. | Helichrysum italicum (Roth) G.Don | Polygonum maritimum L. |
Asparagus acutifolius L. | Inula crithmoides Spreng. | Rubia peregrina L. |
Asparagus stipularis Forssk. | Juncus acutus Retz. | Salicornia ramosissima J.Woods |
Asphodelus microcarpus Rchb. | Juncus maritimus E.Mey. | Salsola kali L. |
Cakile maritima Scop. | Juniperus oxycedrus var. macrocarpa (Sm.) Silba | Salsola soda L. |
Cerastium glomeratum Thuill. | Juniperus phoenicea L. | Sarcocornia fruticosa (L.) A.J.Scott |
Cistus monspeliensis L. | Lagurus ovatus L. | Scabiosa maritima L. |
Clematis flammula L. | Limonium retirameum Greuter & Burdet | Senecio leucanthemifolius Phil. |
Crithmum maritimum L. | Lophochloa pubescens (Lam.) H.Scholz | Senecio vulgaris L. |
Crucianella maritima L. | Lotus cytisoides L. | Silene nicaeensis All. |
Cyperus capitatus Poir. | Minuartia geniculata Thell. | Silene nocturna L. |
Cyperus kalli (Forssk.) Murb. | Olea sylvestris Mill. | Sporobolus pungens Kunth |
Elymus farctus (Viv.) Runemark ex Melderis | Pancratium maritimum L. | Stipa capensis Thunb. |
Tolpis virgata (Desf.) Bertol. | ||
Bryophytes | ||
Barbula unguiculata Hedw. | Microbryum davallianum (Sm.) R.H.Zander | Tortella squarrosa (Brid.) Limpr. |
Bryum dichotomum Hedw. | Ptychostomum imbricatulum (Müll. Hal.) D. T. Holyoak et N. Pedersen | Tortula atrovirens (Sm.) Lindb. |
Bryum radiculosum Brid. | Tortella flavovirens (Bruch.) Broth. | Tortula lindbergii Broth. |
Funaria hygrometrica Hedw. | Tortella humilis (Hedw.) Jenn. |
Vascular Plants vs. Bryophytes | Explained Variance | Cumulative % Explained Variance | Cross-Validatory Fit | p-Value |
---|---|---|---|---|
Axis 1 | 8.991 | 8.991 | 1.207 | <0.05 |
Axis 2 | 8.948 | 17.939 | 5.599 | <0.05 |
Axis 3 | 3.304 | 21.243 | 3.327 | <0.05 |
IAS Vascular plants vs. Bryophytes | ||||
Axis 1 | 4.485 | 4.485 | 1.528 | <0.05 |
Axis 2 | 1.403 | 5.888 | 1.156 | NS |
Axis 3 | 0.648 | 6.536 | 1.124 | NS |
Bryophytes Richness | Type of Variable | Coeff. | Explained Variability | p |
---|---|---|---|---|
Vegetation type | Categoric (4 levels) | - | 13.68% | ** |
Bare soil | Quantitative | −0.0269 | 11.20% | *** |
IAS presence/absence | Binary | −1.378 | 5% | * |
RaoQ Functional Diversity | Type of Variable | Coeff. | Explained Variability | p |
---|---|---|---|---|
Vegetation type | Categoric (4 levels) | - | 4.00% | ** |
Bare soil | Quantitative | 0.005 | 15.20% | *** |
Sea distance | Quantitative | −0.001 | 5.1% | * |
IAS cover | Quantitative | 0.001 | 4% | * |
IAS presence/absence | Binary | −0.024 | 6.5% | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marignani, M.; Lussu, M.; Murru, V.; Bacaro, G.; Cogoni, A. Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast. Diversity 2020, 12, 160. https://doi.org/10.3390/d12040160
Marignani M, Lussu M, Murru V, Bacaro G, Cogoni A. Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast. Diversity. 2020; 12(4):160. https://doi.org/10.3390/d12040160
Chicago/Turabian StyleMarignani, Michela, Michele Lussu, Valeria Murru, Giovanni Bacaro, and Annalena Cogoni. 2020. "Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast" Diversity 12, no. 4: 160. https://doi.org/10.3390/d12040160
APA StyleMarignani, M., Lussu, M., Murru, V., Bacaro, G., & Cogoni, A. (2020). Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast. Diversity, 12(4), 160. https://doi.org/10.3390/d12040160