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Abstract: To test for the presence of purging in populations, the classical pedigree-based inbreeding
coefficient (F) can be decomposed into Kalinowski’s ancestral (FANC) and new (FNEW) inbreeding
coefficients. The FANC and FNEW can be calculated by a stochastic approach known as gene dropping.
However, the only publicly available algorithm for the calculation of FANC and FNEW, implemented in
GRain v 2.1 (and also incorporated in the PEDIG software package), has produced biased estimates.
The FANC was systematically underestimated and consequently, FNEW was overestimated. To illustrate
this bias, we calculated FANC and FNEW by hand for simple example pedigrees. We revised the GRain
program so that it now provides unbiased estimates. Correlations between the biased and unbiased
estimates of FANC and FNEW, obtained for example data sets of Hungarian Pannon White rabbits
(22,781 individuals) and Dutch Holstein Friesian cattle (37,061 individuals), were high, i.e., >0.96.
Although the magnitude of bias appeared to be small, results from studies based on biased estimates
should be interpreted with caution. The revised GRain program (v 2.2) is now available online and
can be used to calculate unbiased estimates of FANC and FNEW.

Keywords: ancestral inbreeding; new inbreeding; purging; gene dropping; inbreeding depression

1. Introduction

Inbreeding is the mating between (close) relatives and is unavoidable in genetically small
populations. The degree of inbreeding is typically measured with pedigree-based inbreeding
coefficients, as introduced by Wright [1]. Individuals with higher inbreeding coefficients show
a lower phenotypic performance on average, a phenomenon known as inbreeding depression [2–4].
Inbreeding depression occurs because part of the genetic load in populations, known as inbreeding
load, is only expressed in homozygotes [2]. Inbreeding depression is expected to be largely due to
partial dominance, i.e., the existence of (partially) deleterious recessive alleles, although overdominance
and epistasis may also play a role [2,3,5].

Inbreeding load in a population is not constant, but rather dynamic over time. New deleterious
recessive alleles arise continuously by mutation and these alleles are eroded over time by (natural
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and/or artificial) selection and genetic drift [2]. Inbreeding increases the efficiency of selection against
deleterious recessive alleles in a process called purging [2,6].

To test for the existence of purging in populations, various pedigree-based methods have been
proposed [7–9]. To test for purging in captive wildlife populations, Ballou [7] introduced the ancestral
inbreeding coefficient, which is the probability that a random allele in an individual has been previously
exposed to inbreeding, i.e., that this allele has been identical-by-descent (IBD) in at least one ancestor.
While investigating purging in the captive breeding program of the Speke’s gazelle (Gazella Spekei),
Kalinowski et al. [8] extended Ballou’s concept by considering the IBD-status of the individual as
well. In Kalinowski’s approach the total pedigree-based inbreeding coefficient is decomposed into
an ancestral (FANC) and a new (FNEW) inbreeding coefficient. The FANC is the probability that alleles
are IBD in the individual while they were already IBD in at least one ancestor, whereas FNEW is the
probability that alleles are IBD for the first time in the individual’s pedigree [8].

To calculate FANC and FNEW (and other inbreeding coefficients), a gene dropping based algorithm
has been developed and implemented in GRain software [10]. The GRain algorithm has also been
incorporated in the PEDIG package [11], in versions 2007 and later. Various studies have used the
GRain algorithm, either in GRain itself [12–16] or in PEDIG [17–19], to calculate FANC and FNEW.

The objective of this study was to demonstrate that the previous version of GRain (v 2.1) produced
biased estimates of FANC and FNEW. For several simple pedigrees, we show how FANC and FNEW can
be calculated by hand. We also investigate the magnitude of the bias for two example data sets of
Hungarian Pannon White rabbits and Dutch Holstein Friesian dairy cattle. A revised version of GRain
software (v 2.2), which provides unbiased FANC and FNEW estimates, is now available online.

2. Calculation of Ancestral and New Inbreeding Coefficients by Hand

For simple pedigrees, Kalinowski’s ancestral inbreeding (FANC,X) and new inbreeding (FNEW,X)
coefficients of an individual X can be calculated by hand. To do so, Mendelian inheritance principles
are followed, meaning that each allele has a probability of 0.5 to be passed on from parent to offspring.
First, Wright’s classical inbreeding coefficient (FX) is determined. The FX is defined as the probability
that the two alleles at a random locus in individual X are IBD, and is calculated as [1]:

FX =
n∑

i=1

(1 + Fi)
(1

2

)ks+kd+1
(1)

where n is the number of paths connecting the sire of X with the dam of X through the ith common
ancestor, Fi is the inbreeding coefficient of the ith common ancestor, and ks and kd are the number of
generations from, respectively, sire and dam (included) to the ith common ancestor (excluded). Then,
FANC,X is calculated as the probability that X is IBD for an allele, given that this allele was also IBD in at
least one of the ancestors of X. Finally, FNEW,X is obtained by subtracting FANC,X from FX, since the
ancestral and new inbreeding sum up to the total inbreeding.

In Figure 1, four example pedigrees are shown. The corresponding inbreeding coefficients are
provided in Table 1. In example (1), the FX equals 0.0078 (0.57), because there is a single path that
connects parents F and G through common ancestor A, which is of length 7 (ks + kd + 1 = 7), and
ancestor A is non-inbred (FA = 0). The FANC,X for this example is 0, because none of the ancestors of X
are inbred. Consequently, FNEW,X is equal to FX (so 0.0078).
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Figure 1. Example pedigrees for the calculation of classical and Kalinowski’s inbreeding coefficients. 
X is the individual of interest and the other letters represent ancestors of X. Inbreeding coefficients for 
individual X, corresponding to the four pedigrees, are shown in Table 1. 

Table 1. Inbreeding coefficients for four example pedigrees (Figure 1), estimated with revised and 
previous version of GRain. 

Pedigree FX 
Revised Version (v 2.2) Previous Version (v 2.1) Difference in 

FANC,X FANC,X FNEW,X FANC,X FNEW,X 

(1) 0.0078 0 0.0078 0 0.0078 0 
(2) 0.0703 0.0156 0.0547 0.0156 0.0547 0 
(3) 0.0390 0.0078 0.0312 0.0039 0.0351 0.0039 
(4) 0.1641 0.0390 0.1250 0.0234 0.1406 0.0156 

FX, classical inbreeding coefficient of individual X; FANC,X, Kalinowski’s ancestral inbreeding 
coefficient of individual X; FNEW,X, Kalinowski’s new inbreeding coefficient of individual X. 

In example (2), the FX equals 0.0703, because it is the inbreeding on ancestor D (0.54) multiplied 
with (1 + FD), where FD is the inbreeding coefficient of ancestor D (0.53). The FANC,X is calculated as the 
probability that X is IBD for an allele that was IBD in D as well. Since D is the only inbred ancestor, 
we do not need to consider the IBD status of any other ancestors. The probability that D is IBD for an 
allele from its grandparent A, is the inbreeding coefficient of D on A and equals 0.125 (0.53). To obtain 
FANC,X, this probability has to be multiplied with the probabilities that the allele is passed on to X, 
through both the paths D-E-F-X and D-G-X. The probability that E inherits the allele from D is simply 
1, because D is IBD. The probability that F inherits the allele from E is 0.5 and that X inherits it from 
F is also 0.5, so the total probability for the path D-E-F-X is 0.25 (0.52). Similarly, the probability for 
path D-G-X is 0.5. This gives a total probability of 0.125 × 0.25 × 0.5 = 0.0156 for FANC,X. Consequently, 
FNEW,X = FX  FANC,X = 0.0703  0.0156 = 0.0547. Note that, in this example, the FANC,X can also be calculated 
as two times the inbreeding coefficient of X on D (0.54), multiplied with the inbreeding coefficient of 
D on A (0.53). However, it is important to realize that this reasoning only holds for scenarios in which 
one inbreeding loop is “on top of the other”, and not when there is an overlap in inbreeding loops, 
such as in examples (3) and (4).  

In example (3), the FX equals 0.0390 and is the sum of inbreeding on ancestor A (0.57) and on 
ancestor B (0.55). The FANC,X is calculated as the probability that X is IBD for an allele that was IBD in 
ancestor E as well. Since ancestor E is the only inbred ancestor, we do not need to consider the IBD 
status of any other ancestors. The probability that E is IBD for an allele from its grandparent A, is the 
inbreeding coefficient of E on A and equals 0.125 (0.53). This probability has to be multiplied by the 
probability that this allele is passed on to X through both the path E-G-X and B-D-F-X. The probability 
that G inherits the allele from E is 1, because E is IBD. The probability that X inherits the allele from 
G is 0.5, so the total probability for the path E-G-X is 0.5. The probability that B carries the allele is 1, 

C

ED

A

B

F G

X X

B C

D

E

GF

A

X

A

B C

G

ED

F

X

C

E

GF

D

B

A

Figure 1. Example pedigrees for the calculation of classical and Kalinowski’s inbreeding coefficients. X
is the individual of interest and the other letters represent ancestors of X. Inbreeding coefficients for
individual X, corresponding to the four pedigrees, are shown in Table 1.

Table 1. Inbreeding coefficients for four example pedigrees (Figure 1), estimated with revised and
previous version of GRain.

Pedigree FX
Revised Version (v 2.2) Previous Version (v 2.1) Difference in

FANC,XFANC,X FNEW,X FANC,X FNEW,X

(1) 0.0078 0 0.0078 0 0.0078 0
(2) 0.0703 0.0156 0.0547 0.0156 0.0547 0
(3) 0.0390 0.0078 0.0312 0.0039 0.0351 0.0039
(4) 0.1641 0.0390 0.1250 0.0234 0.1406 0.0156

FX, classical inbreeding coefficient of individual X; FANC,X, Kalinowski’s ancestral inbreeding coefficient of individual
X; FNEW,X, Kalinowski’s new inbreeding coefficient of individual X.

In example (2), the FX equals 0.0703, because it is the inbreeding on ancestor D (0.54) multiplied
with (1 + FD), where FD is the inbreeding coefficient of ancestor D (0.53). The FANC,X is calculated
as the probability that X is IBD for an allele that was IBD in D as well. Since D is the only inbred
ancestor, we do not need to consider the IBD status of any other ancestors. The probability that D
is IBD for an allele from its grandparent A, is the inbreeding coefficient of D on A and equals 0.125
(0.53). To obtain FANC,X, this probability has to be multiplied with the probabilities that the allele is
passed on to X, through both the paths D-E-F-X and D-G-X. The probability that E inherits the allele
from D is simply 1, because D is IBD. The probability that F inherits the allele from E is 0.5 and that X
inherits it from F is also 0.5, so the total probability for the path D-E-F-X is 0.25 (0.52). Similarly, the
probability for path D-G-X is 0.5. This gives a total probability of 0.125 × 0.25 × 0.5 = 0.0156 for FANC,X.
Consequently, FNEW,X = FX − FANC,X = 0.0703 − 0.0156 = 0.0547. Note that, in this example, the FANC,X
can also be calculated as two times the inbreeding coefficient of X on D (0.54), multiplied with the
inbreeding coefficient of D on A (0.53). However, it is important to realize that this reasoning only
holds for scenarios in which one inbreeding loop is “on top of the other”, and not when there is an
overlap in inbreeding loops, such as in examples (3) and (4).

In example (3), the FX equals 0.0390 and is the sum of inbreeding on ancestor A (0.57) and on
ancestor B (0.55). The FANC,X is calculated as the probability that X is IBD for an allele that was IBD in
ancestor E as well. Since ancestor E is the only inbred ancestor, we do not need to consider the IBD
status of any other ancestors. The probability that E is IBD for an allele from its grandparent A, is the
inbreeding coefficient of E on A and equals 0.125 (0.53). This probability has to be multiplied by the
probability that this allele is passed on to X through both the path E-G-X and B-D-F-X. The probability
that G inherits the allele from E is 1, because E is IBD. The probability that X inherits the allele from G
is 0.5, so the total probability for the path E-G-X is 0.5. The probability that B carries the allele is 1,
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otherwise E could not have been IBD. The probability that the allele is passed on from B to D to F and to
X is 0.125 (0.53). This gives a total probability of 0.125 × 0.125 × 0.5 = 0.0078 for FANC,X. Consequently,
FNEW,X = FX − FANC,X = 0.0390 − 0.0078 = 0.0312.

In example (4), the FX equals 0.1641 and is the sum of inbreeding on ancestor A (0.57 + 0.55),
on ancestor B (0.54) and on ancestor C (0.54). The FANC,X in this example is the probability that X is IBD
for an allele that was also IBD in F and/or G (since F and G are inbred ancestors). The FANC,X is the
sum of the probabilities for three scenarios: (i) X is IBD for an allele that was IBD in both F and G, (ii) X
is IBD for an allele that was IBD in F, but not in G, and (iii) X is IBD for an allele that was IBD in G, but
not in F. The probability that F is IBD for an allele from A is the inbreeding coefficient of F on A and
equals 0.0625 (0.54). If F is IBD for an allele from A, then both B and C must be carriers of that allele,
and the probability that G is also IBD for that same allele is 0.125 (0.53), since this is the probability
that G inherits that allele through B-G (0.5) multiplied with the probability that G inherits that allele
through C-E-G (0.52). When F and G are IBD for the same allele, X has to be IBD for that allele as well.
Therefore, the probability that scenario (i) happens is 0.0078 (i.e., 0.0625 × 0.125 × 1). If F is IBD for an
allele from A, the probability that G carries two other “unknown” alleles is 0.375 (i.e., 0.5 × (1 − 0.52)),
leaving 1 − 0.125 − 0.375 = 0.5, for the probability that G carries one copy of the allele and one copy of
an unknown allele (scenario ii). In that case, the probability that the allele is inherited by X from G is 0.5.
The total probability for scenario (ii) is therefore 0.0156 (i.e., 0.0625 × 0.5 × 0.5). Due to the symmetry
in the pedigree, the probability for scenario (iii) is equal to that of scenario (ii), so 0.0156. Thus, the total
probability that X is IBD for an allele that was also IBD in F and/or G, i.e., the FANC,X, equals 0.0078 +

0.0156 + 0.0156 = 0.0391. Consequently, FNEW,X = FX − FANC,X = 0.1641 − 0.0391 = 0.1250.

3. Underestimation of Ancestral Inbreeding by Previous Version of GRain

In GRain, a stochastic approach known as gene dropping [20] is implemented to calculate
inbreeding coefficients. In this approach, many independent simulations are run. In each simulation,
alleles are dropped through the pedigree following Mendelian inheritance rules, and the IBD-status
of individuals is stored. After all simulations are completed, the FX is estimated as the fraction of
simulations in which the alleles of individual X were IBD. Similarly, the FANC,X is calculated as the
fraction of simulations in which X was IBD for an allele that was already IBD in one of the ancestors
of X. The accuracy of the estimated inbreeding coefficients is higher when more simulations are run.
As shown by Baumung et al. [10], using 106 simulations provides estimates of inbreeding coefficients
that show a correlation of >0.999 with inbreeding coefficients calculated using a deterministic approach
(with only minor differences at the fourth decimal). A more detailed explanation of the GRain program
and its computational demands is given by Baumung et al. [10].

When FANC,X was computed using the previous version of GRain (v 2.1), the FANC,X for examples
(1), (2), (3) and (4) from Figure 1 equaled 0, 0.0156, 0.0039 and 0.0234, respectively (Table 1). Although
the coefficients for examples (1) and (2) were correct, the FANC,X coefficients for examples (3) and (4)
were underestimated. Note that example (3) is equivalent to the example used by McParland et al. [18],
in Figure 1 in their paper, for which they reported the incorrect FANC,X estimate of 0.0039.

The underestimation of FANC,X was occasionally caused by an incorrect tracking of IBD-status
of ancestors throughout the pedigree. In the previous version of GRain (v 2.1), every individual was
given a flag that indicated whether one of their ancestors had been IBD (1 if true, 0 if false). This flag
was calculated as the sum of the flags of the parents, divided by two. Thus, when both parents had a
flag of 1, the flag of the offspring would also be 1, which is correct. However, when only one of the
parents had a flag of 1 (and the other 0), the offspring would get a value of 0.5, which is incorrect (since
it should be 1). In the revised version of GRain (v 2.2), this issue was solved by obtaining the flag of an
offspring as the maximum of the flags of its parents.

To clarify, in example (2) in Figure 1, whenever ancestor D was IBD, both parents F and G had
a flag of 1 and X also got a flag of 1. Therefore, the FANC,X was estimated correctly. In example (3),
however, whenever ancestor E was IBD, parent G had a flag of 1 and parent F had a flag of 0 and, as a
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result, X got a flag of 0.5. Consequently, for simulations in which individual X was IBD for an allele that
was also IBD in E, a value of 0.5 was stored (instead of 1) for the FANC,X calculation. After simulations
were completed, the stored values were summed across simulations and divided by the total number
of simulations. Since stored values were underestimated by a factor two, the FANC,X for example (3)
was also underestimated by a factor two. In example (4), whenever both F and G were IBD, X got a flag
of 1. This happened in 0.0078 of the simulations (see explanation in the previous section for calculation
by hand, scenario (i)). When only parent F or parent G were IBD, while the other parent was not, X got
a flag of 0.5. This happened in 0.0156 + 0.0156 = 0.0312 of the simulations (see explanation in the
previous section for calculation by hand, scenarios (ii) and (iii)). Therefore, the FANC,X for example
(4) was underestimated by some factor between one and two. More specifically, the underestimated
FANC,X was equal to 0.0078 + (0.5 × 0.0312) = 0.0234.

4. Examples for Pannon White Rabbits and Holstein Friesian Cattle

To investigate the impact of the incorrect estimation, we computed FANC and FNEW for two
example data sets, using both the previous and revised version of GRain, and 106 simulations. The first
data set was a pedigree of 22,781 rabbits of the Hungarian Pannon White (PW) breed. This pedigree
included 6760 rabbits (1421 bucks and 5339 does) with offspring and 16,021 rabbits without offspring.
All rabbits were born between 1992 and 2016. To assess pedigree completeness, the number of complete
generations (NCG) and the complete generation equivalent (CGE) were computed for each rabbit.
The CGE was computed as the sum of (1/2)n of all known ancestors of an individual, with n being
the number of generations between the individual and a given ancestor. The mean NCG in the PW
pedigree was 4.0 (ranging from 0 to 10) and the mean CGE was 8.6 (ranging from 0 to 22.1). The second
data set contained 37,061 Dutch Holstein Friesian (HF) cows, which were part of a larger pedigree of
167,924 individuals (19,363 bulls and 148,561 cows) and were used by Doekes et al. [21]. These HF
cows were born between 2012 and 2016 and were filtered to have a high pedigree completeness
(NCG ≥ 3 and CGE ≥ 10), and have phenotypic information on 305-day milk, fat and protein yields.
The mean NCG in these HF cows was 6.5 generations (ranging from 3 to 9) and the mean CGE was
12.5 generation equivalents (ranging from 10.0 to 14.7). More details on the HF data set can be found in
Doekes et al. [21].

For both the PW and HF data set, the total inbreeding coefficients (F) were identical across the
previous and revised version of GRain. The FANC in the previous version however, was generally
underestimated and the FNEW was overestimated (Figure 2). For the PW data set and for inbreeding
coefficients above zero, the FANC from the previous version was on average 0.65 times the revised
FANC (and the FNEW was 1.27 times the revised FNEW). For the HF data set and inbreeding coefficients
above zero, the FANC from the previous version was on average 0.71 times the revised FANC (and the
FNEW was 1.36 times the revised FNEW). Pearson correlation coefficients between coefficients estimated
with the previous and revised version were high. For the PW data set, the correlations between the
previous and revised version equaled 0.997 and 0.968 for FANC and FNEW, respectively. For the HF data
set, these correlations equaled 0.993 and 0.987, respectively. This indicates that the underestimation of
FANC (and overestimation of FNEW) did not strongly affect the ranking of animals.
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Figure 2. Relationship between Kalinowski’s inbreeding coefficients calculated with previous (v 2.1) 
and revised (v 2.2) version of GRain, for example data sets of Pannon White rabbits (PW; n = 22,781) 
and Holstein Friesian cattle (HF; n = 37,061). The dashed line indicates y = x, i.e., a relationship in 
which there is no difference in estimation between the two GRain versions. FANC: Kalinowski’s 
ancestral inbreeding coefficient. FNEW: Kalinowski’s new inbreeding coefficient. (A) FANC for the PW 
data set, (B) FNEW for the PW data set, (C) FANC for the HF data set, and (D) FNEW for the HF data set. 

For the Holstein Friesian data set, we also investigated the potential differences in inbreeding 
depression estimates for FANC and FNEW, calculated with the previous and revised version of GRain. A 
linear mixed model was run in ASReml 4.1 [22], in which FANC and FNEW were fitted as fixed effects 
and the regression coefficients on FANC and FNEW were used as estimates of inbreeding depression (see 
Doekes et al. [21] for a detailed explanation). In general, differences between inbreeding depression 
estimates based on the previous and revised version of GRain were small (Figure 3). For example, the 
effect of a 1% increase in FNEW on 305-day milk yield was 46.4 kg (SE = 12.4 kg) for the previous 
version and 47.3 kg (SE = 11.2 kg) for the revised version. Standard errors for the inbreeding 
depression effects appeared smaller when the revised version was used to estimate FANC and FNEW, 
compared to when the previous version was used. For example, the mean standard error of 
inbreeding depression estimates for fat and protein yields was 0.51 kg for the revised version, and 
0.67 kg for the previous version. The overall conclusion, that FNEW was associated with significant 
inbreeding depression, while FANC was not, was the same for both versions. Based on these findings, 
we expect that conclusions from other studies using FANC and FNEW estimates from GRain v 2.1 (e.g., 
[17,18]) will also largely hold. However, they should be interpreted with caution.  
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Figure 2. Relationship between Kalinowski’s inbreeding coefficients calculated with previous (v 2.1)
and revised (v 2.2) version of GRain, for example data sets of Pannon White rabbits (PW; n = 22,781)
and Holstein Friesian cattle (HF; n = 37,061). The dashed line indicates y = x, i.e., a relationship in which
there is no difference in estimation between the two GRain versions. FANC: Kalinowski’s ancestral
inbreeding coefficient. FNEW: Kalinowski’s new inbreeding coefficient. (A) FANC for the PW data set,
(B) FNEW for the PW data set, (C) FANC for the HF data set, and (D) FNEW for the HF data set.

For the Holstein Friesian data set, we also investigated the potential differences in inbreeding
depression estimates for FANC and FNEW, calculated with the previous and revised version of GRain.
A linear mixed model was run in ASReml 4.1 [22], in which FANC and FNEW were fitted as fixed effects
and the regression coefficients on FANC and FNEW were used as estimates of inbreeding depression
(see Doekes et al. [21] for a detailed explanation). In general, differences between inbreeding depression
estimates based on the previous and revised version of GRain were small (Figure 3). For example,
the effect of a 1% increase in FNEW on 305-day milk yield was −46.4 kg (SE = 12.4 kg) for the previous
version and −47.3 kg (SE = 11.2 kg) for the revised version. Standard errors for the inbreeding
depression effects appeared smaller when the revised version was used to estimate FANC and FNEW,
compared to when the previous version was used. For example, the mean standard error of inbreeding
depression estimates for fat and protein yields was 0.51 kg for the revised version, and 0.67 kg for
the previous version. The overall conclusion, that FNEW was associated with significant inbreeding
depression, while FANC was not, was the same for both versions. Based on these findings, we expect
that conclusions from other studies using FANC and FNEW estimates from GRain v 2.1 (e.g., [17,18]) will
also largely hold. However, they should be interpreted with caution.



Diversity 2020, 12, 155 7 of 8

 

−60 

−40 

−20 

0 

−2 

−1 

0 

1 

−2 

−1 

0 

1 

−3 

Inbreeding coefficient 

E
ff

ec
t 

(k
g

) 

Previous Previous Revised Revised Revised 

FANC FNEW FNEW FANC FNEW FANC FNEW FANC FNEW FANC FNEW FANC 

(A) 305-day milk yield (B) 305-day protein yield (C) 305-day fat yield 

Previous 

Figure 3. Effect of a 1% increase in Kalinowski’s ancestral (FANC) and new (FNEW) inbreeding on yield
traits in Dutch Holstein Friesian cattle (n = 37,061), for FANC and FNEW calculated with the previous
(v 2.1) and revised (v 2.2) version of GRain. Red asterisks indicate effects that significantly (p < 0.001)
differed from zero. (A) 305-day milk yield, (B) 305-day protein yield, and (C) 305-day fat yield.

5. Conclusions

The previous version of GRain software (v 2.1) systematically underestimated Kalinowski’s
ancestral inbreeding and, consequently, overestimated Kalinowski’s new inbreeding coefficients.
Although the magnitude of bias was rather small, results from studies based on biased estimates
should be interpreted with caution. The GRain software has been revised, and the revised version
(v 2.2), which provides unbiased estimates of Kalinowski’s coefficients, can be downloaded from [23]
or [24].

Author Contributions: H.P.D. and J.J.W. performed the Holstein Friesian data analysis; J.F. and G.K. performed
the Pannon White data analysis; H.P.D. prepared the manuscript. H.P.D., I.C., I.N., J.F., G.K. and J.J.W. participated
in the interpretation of results and revision of the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: Calculations performed on the Dutch Holstein Friesian population were conducted as part of the
IMAGE project, which received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under the grant agreement no 677353. Calculations performed on the Pannon White rabbit population
were supported by the Hungarian Scientific Research Fund (OTKA) K 128177 project. The study was co-funded
by the Dutch Ministry of Agriculture, Nature and Food Quality (KB-34-013-002).

Acknowledgments: The authors would like to thank the Dutch-Flemish cattle improvement cooperative (CRV)
for providing the Holstein Friesian data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wright, S. Coefficients of inbreeding and relationship. Amer. Nat. 1922, 56, 330–338. [CrossRef]
2. Hedrick, P.W.; García-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends

Ecol. Evol. 2016, 31, 940–952. [CrossRef] [PubMed]
3. Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding,

inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [CrossRef]
[PubMed]

4. Leroy, G. Inbreeding depression in livestock species: Review and meta-analysis. Anim. Genet. 2014, 45, 618–628.
[CrossRef] [PubMed]

5. Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783. [CrossRef]
[PubMed]

6. García-Dorado, A. Understanding and predicting the fitness decline of shrunk populations: inbreeding,
purging, mutation, and standard selection. Genetics 2012, 190, 1461–1476. [CrossRef] [PubMed]

http://dx.doi.org/10.1086/279872
http://dx.doi.org/10.1016/j.tree.2016.09.005
http://www.ncbi.nlm.nih.gov/pubmed/27743611
http://dx.doi.org/10.3168/jds.2017-12787
http://www.ncbi.nlm.nih.gov/pubmed/28601448
http://dx.doi.org/10.1111/age.12178
http://www.ncbi.nlm.nih.gov/pubmed/24975026
http://dx.doi.org/10.1038/nrg2664
http://www.ncbi.nlm.nih.gov/pubmed/19834483
http://dx.doi.org/10.1534/genetics.111.135541
http://www.ncbi.nlm.nih.gov/pubmed/22298709


Diversity 2020, 12, 155 8 of 8

7. Ballou, J.D. Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations.
J. Hered. 1997, 88, 169–178. [CrossRef] [PubMed]

8. Kalinowski, S.T.; Hedrick, P.W.; Miller, P.S. Inbreeding depression in the Speke’s gazelle captive breeding
program. Conserv. Biol. 2000, 14, 1375–1384. [CrossRef]

9. García-Dorado, A.; Wang, J.; López-Cortegano, E. Predictive model and software for inbreeding-purging
analysis of pedigreed populations. G3 2016, 6, 3593–3601. [CrossRef] [PubMed]

10. Baumung, R.; Farkas, J.; Boichard, D.; Mészáros, G.; Sölkner, J.; Curik, I. GRAIN: a computer program to
calculate ancestral and partial inbreeding coefficients using a gene dropping approach. J. Anim. Breed. Genet.
2015, 132, 100–108. [CrossRef] [PubMed]

11. Boichard, D. PEDIG: a fortran package for pedigree analysis suited for large populations. In Proceedings of
the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002.

12. Ács, V.; Bokor, Á.; Nagy, I. Population Structure Analysis of the Border Collie Dog Breed in Hungary. Animals
2019, 9, 250. [CrossRef] [PubMed]

13. Addo, S.; Schäler, J.; Hinrichs, D.; Thaller, G. Genetic Diversity and Ancestral History of the German Angler
and the Red-and-White Dual-Purpose Cattle Breeds Assessed through Pedigree Analysis. Agric. Sci. 2017,
8, 1033. [CrossRef]

14. Schäler, J.; Krüger, B.; Thaller, G.; Hinrichs, D. Comparison of ancestral, partial, and genomic inbreeding in a
local pig breed to achieve genetic diversity. Conserv. Genet. Resour. 2018, 1–10. [CrossRef]

15. Todd, E.T.; Ho, S.Y.; Thomson, P.C.; Ang, R.A.; Velie, B.D.; Hamilton, N.A. Founder-specific inbreeding
depression affects racing performance in Thoroughbred horses. Sci. Rep. 2018, 8, 6167:10. [CrossRef]
[PubMed]

16. Vostry, L.; Milerski, M.; Schmidova, J.; Vostra-Vydrova, H. Genetic diversity and effect of inbreeding on litter
size of the Romanov sheep. Small Ruminant Res. 2018, 168, 25–31. [CrossRef]

17. Hinrichs, D.; Bennewitz, J.; Wellmann, R.; Thaller, G. Estimation of ancestral inbreeding effects on stillbirth,
calving ease and birthweight in German Holstein dairy cattle. J. Anim. Breed. Genet. 2015, 132, 59–67.
[CrossRef] [PubMed]

18. McParland, S.; Kearney, F.; Berry, D.P. Purging of inbreeding depression within the Irish Holstein-Friesian
population. Genet. Sel. Evol. 2009, 41, 16. [CrossRef] [PubMed]

19. Roos, L.; Hinrichs, D.; Nissen, T.; Krieter, J. Investigations into genetic variability in Holstein horse breed
using pedigree data. Livest. Sci. 2015, 177, 25–32. [CrossRef]

20. MacCluer, J.W.; VandeBerg, J.L.; Read, B.; Ryder, O.A. Pedigree analysis by computer simulation. Zoo Biol.
1986, 5, 147–160. [CrossRef]

21. Doekes, H.P.; Veerkamp, R.F.; Bijma, P.; de Jong, G.; Hiemstra, S.J.; Windig, J.J. Inbreeding depression due
to recent and ancient inbreeding in Dutch Holstein–Friesian dairy cattle. Genet. Sel. Evol. 2019, 51, 54.
[CrossRef] [PubMed]

22. ASReml user guide release 4.1 structural specification. Available online: https://asreml.kb.vsni.co.uk/

knowledge-base/asreml_documentation/ (accessed on 17 April 2020).
23. BOKU. Department für Nachhaltige Agrarsysteme: Institut für Nutztierwissenschaften (NUWI): Software.

Available online: https://boku.ac.at/nas/nuwi/software/ (accessed on 17 April 2020).
24. ANGEN. Software: GRAIN 2-2. Available online: https://angen.agr.hr/hr/group/37/Grain+2-2 (accessed on

17 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/oxfordjournals.jhered.a023085
http://www.ncbi.nlm.nih.gov/pubmed/9183845
http://dx.doi.org/10.1046/j.1523-1739.2000.98209.x
http://dx.doi.org/10.1534/g3.116.032425
http://www.ncbi.nlm.nih.gov/pubmed/27605515
http://dx.doi.org/10.1111/jbg.12145
http://www.ncbi.nlm.nih.gov/pubmed/25823836
http://dx.doi.org/10.3390/ani9050250
http://www.ncbi.nlm.nih.gov/pubmed/31100978
http://dx.doi.org/10.4236/as.2017.89075
http://dx.doi.org/10.1007/s12686-018-1057-5
http://dx.doi.org/10.1038/s41598-018-24663-x
http://www.ncbi.nlm.nih.gov/pubmed/29670190
http://dx.doi.org/10.1016/j.smallrumres.2018.09.004
http://dx.doi.org/10.1111/jbg.12114
http://www.ncbi.nlm.nih.gov/pubmed/25100196
http://dx.doi.org/10.1186/1297-9686-41-16
http://www.ncbi.nlm.nih.gov/pubmed/19284688
http://dx.doi.org/10.1016/j.livsci.2015.04.013
http://dx.doi.org/10.1002/zoo.1430050209
http://dx.doi.org/10.1186/s12711-019-0497-z
http://www.ncbi.nlm.nih.gov/pubmed/31558150
https://asreml.kb.vsni.co.uk/knowledge-base/asreml_documentation/
https://asreml.kb.vsni.co.uk/knowledge-base/asreml_documentation/
https://boku.ac.at/nas/nuwi/software/
https://angen.agr.hr/hr/group/37/Grain+2-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Calculation of Ancestral and New Inbreeding Coefficients by Hand 
	Underestimation of Ancestral Inbreeding by Previous Version of GRain 
	Examples for Pannon White Rabbits and Holstein Friesian Cattle 
	Conclusions 
	References

