Next Article in Journal
Deep-Time Demographic Inference Suggests Ecological Release as Driver of Neoavian Adaptive Radiation
Next Article in Special Issue
Biological Control of Salvinia molesta (D.S. Mitchell) Drives Aquatic Ecosystem Recovery
Previous Article in Journal
The First Fossil Owl (Aves, Strigiformes) From the Paleogene of Africa
Previous Article in Special Issue
Ecology and Environmental Impact of Myriophyllum heterophyllum, an Aggressive Invader in European Waterways
Open AccessArticle

Niche Models Differentiate Potential Impacts of Two Aquatic Invasive Plant Species on Native Macrophytes

Department of Fisheries, Wildlife and Conservation Biology & Minnesota Aquatic Invasive Species Research Center, University of Minnesota, 2003 Upper Buford Circle, St. Paul, MN 55108, USA
*
Author to whom correspondence should be addressed.
Diversity 2020, 12(4), 162; https://doi.org/10.3390/d12040162
Received: 29 February 2020 / Revised: 21 April 2020 / Accepted: 21 April 2020 / Published: 23 April 2020
(This article belongs to the Special Issue Ecology of Invasive Aquatic Plants)
Potamogeton crispus (curlyleaf pondweed) and Myriophyllum spicatum (Eurasian watermilfoil) are widely thought to competitively displace native macrophytes in North America. However, their perceived competitive superiority has not been comprehensively evaluated. Coexistence theory suggests that invader displacement of native species through competitive exclusion is most likely where high niche overlap results in competition for limiting resources. Thus, evaluation of niche similarity can serve as a starting point for predicting the likelihood of invaders having direct competitive impacts on resident species. Across two environmental gradients structuring macrophyte communities—water depth and light availability—both P. crispus and M. spicatum are thought to occupy broad niches. For a third dimension, phenology, the annual growth cycle of M. spicatum is typical of other species, whereas the winter-ephemeral phenology of P. crispus may impart greater niche differentiation and thus lower risk of native species being competitively excluded. Using an unprecedented dataset comprising 3404 plant surveys from Minnesota collected using a common protocol, we modeled niches of 34 species using a probabilistic niche framework. Across each niche dimension, P. crispus had lower overlap with native species than did M. spicatum; this was driven in particular by its distinct phenology. These results suggest that patterns of dominance seen in P. crispus and M. spicatum have likely arisen through different mechanisms, and that direct competition with native species is less likely for P. crispus than M. spicatum. This research highlights the utility of fine-scale, abundance-based niche models for predicting invader impacts. View Full-Text
Keywords: abundance-based niche; probabilistic niche model; competition; depth; light availability; macrophyte; phenology; trait probability distribution abundance-based niche; probabilistic niche model; competition; depth; light availability; macrophyte; phenology; trait probability distribution
Show Figures

Figure 1

MDPI and ACS Style

Verhoeven, M.R.; Glisson, W.J.; Larkin, D.J. Niche Models Differentiate Potential Impacts of Two Aquatic Invasive Plant Species on Native Macrophytes. Diversity 2020, 12, 162.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop