The Influence of Urbanization and Fire Disturbance on Plant-floral Visitor Mutualistic Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Plant Community Sampling
2.3. Interaction Sampling
2.4. Urbanization Level and Fire Disturbance History
2.5. Statistical Analyses
3. Results
3.1. Spatial Autocorrelation, Urbanization, and Fire
3.2. Plant Communities
3.3. Interaction Networks
4. Discussion
4.1. Plant Community
4.2. Floral Visitors
4.3. Interaction Networks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Burkle, L.A.; Marlin, J.C.; Knight, T.M. Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science 2013, 339, 1611–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrné, K.; Bengtsson, J.; Elmqvist, T. Bumble bees (Bombus spp.) along a gradient of increasing urbanization. PLoS ONE 2009, 4, e5574. [Google Scholar] [CrossRef] [Green Version]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 567–593. [Google Scholar] [CrossRef] [Green Version]
- Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef]
- Nabhan, G.P.; Buchmann, S.L. Services provided by pollinators. In Nature’s Services; Daily, G., Ed.; Island Press: Washington, DC, USA, 1979; pp. 133–150. [Google Scholar]
- Jordano, P. Fruits and frugivory. In Seeds: The Ecology of Regeneration in Natural Plant Communities; Cabi Publication: Wallingfor, UK, 2000; pp. 125–166. [Google Scholar]
- Dormann, C.F.; Fründ, J.; Blüthgen, N.; Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Armbruster, W.S. Phylogeny and the evolution of plant-animal interactions. Bioscience 1992, 42, 12–20. [Google Scholar] [CrossRef]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Bond, W. Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1994, 344, 83–90. [Google Scholar]
- Traveset, A.; Richardson, D.M. Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol. Evol. 2006, 21, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewinsohn, T.M.; Ina, P.; Prado, P.I. Structure in plant -animal interaction assemblages. Oikos 2006, 113, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Strona, G.; Galli, P.; Fattorini, S. Fish parasites resolve the paradox of missing coextinctions. Nat. Commun. 2013, 4, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewinsohn, T.M.; Inácio Prado, P.; Jordano, P.; Bascompte, J.M.; Olesen, J. Structure in plant-animal interaction assemblages. Oikos 2006, 113, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Bascompte, J.; Jordano, P.; Melián, C.J.; Olesen, J.M. The nested assembly of plant–animal mutualistic networks. Proc. Natl. Acad. Sci. USA 2003, 100, 9383–9387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, D.P.; Aizen, M.A. Null model analyses of specialization in plant-pollinator interactions. Ecology 2003, 84, 2493–2501. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, D.P.; Melián, C.J.; Williams, N.M.; Blüthgen, N.; Krasnov, B.R.; Poulin, R. Species abundance and asymmetric interaction strength in ecological networks. Oikos 2007, 116, 1120–1127. [Google Scholar] [CrossRef]
- Dupont, Y.L.; Hansen, D.M.; Olesen, J.M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 2003, 26, 301–310. [Google Scholar] [CrossRef]
- Shochat, E.; Warren, P.S.; Faeth, S.H.; McIntyre, N.E.; Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Rodewald, A.D.; Rohr, R.P.; Fortuna, M.A.; Bascompte, J. Community-level demographic consequences of urbanization: An ecological network approach. J. Anim. Ecol. 2014, 83, 1409–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodewald, A.D.; Rohr, R.P.; Fortuna, M.A.; Bascompte, J. Does removal of invasives restore ecological networks? An experimental approach. Biol. Invasions 2015, 17, 2139–2146. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Török, P.; Tóthmérész, B. Factors threatening grassland specialist plants—A multi-proxy study on the vegetation of isolated grasslands. Biol. Conserv. 2016, 204, 255–262. [Google Scholar] [CrossRef]
- White, R.P.; Murray, S.; Rohweder, M. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Overbeck, G.E.; Müller, S.C.; Pillar, V.D.; Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 2005, 16, 655–664. [Google Scholar] [CrossRef]
- Cordova, C. Grasslands and grassland ecology by Gibson David J. J. Veg. Sci. 2009, 20, 1191. [Google Scholar] [CrossRef]
- Hunter, M.D.; Price, P.W. Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 1992, 73, 724–732. [Google Scholar]
- Terborgh, J.W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. USA. 2015, 112, 11415–11422. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Vulliamy, B.; Dafni, A.; Ne’eman, G.; O’Toole, C.; Roberts, S.; Willmer, P. Response of plant-pollinator communities to fire: Changes in diversity, abundance and floral reward structure. Oikos 2003, 101, 103–112. [Google Scholar] [CrossRef]
- Capitanio, R.; Carcaillet, C. Post-fire Mediterranean vegetation dynamics and diversity: A discussion of succession models. For. Ecol. Manag. 2008, 255, 431–439. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H.; Tinker, D.B. Surprises and lessons from the 1988 Yellowstone fires. Front. Ecol. Environ. 2003, 1, 351–358. [Google Scholar] [CrossRef]
- Van Nuland, M.E.; Haag, E.N.; Bryant, J.A.M.; Read, Q.D.; Klein, R.N.; Douglas, M.J.; Gorman, C.E.; Greenwell, T.D.; Busby, M.W.; Collins, J.; et al. Fire promotes pollinator visitation: Implications for ameliorating declines of pollination services. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Peralta, G.; Stevani, E.L.; Chacoff, N.P.; Dorado, J.; Vázquez, D.P. Fire influences the structure of plant–bee networks. J. Anim. Ecol. 2017, 86, 1372–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Syphard, A.D.; Radeloff, V.C.; Hawbaker, T.J.; Stewart, S.I. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. Conserv. Biol. 2009, 23, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Vizentin-Bugoni, J.; Maruyama, P.K.; de Souza, C.S.; Ollerton, J.; Rech, A.R.; Sazima, M. Plant-pollinator networks in the tropics: A review. In Ecological Networks in the Tropics; Springer: Cham, Switzerland, 2018; pp. 73–91. [Google Scholar]
- Danieli-Silva, A.; de Souza, J.M.T.; Donatti, A.J.; Campos, R.P.; Vicente-Silva, J.; Freitas, L.; Varassin, I.G. Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands? Oikos 2012, 121, 35–43. [Google Scholar] [CrossRef]
- Oleques, S.S.; Overbeck, G.E.; Avia, R.S. Flowering phenology and plant-pollinator interactions in a grassland community of Southern Brazil. Flora 2017, 229, 141–146. [Google Scholar] [CrossRef]
- Carstensen, D.W.; Sabatino, M.; Morellato, L.P.C. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space. Ecology 2016, 97, 1298–1306. [Google Scholar] [CrossRef]
- Overbeck, G.E.; Müller, S.C.; Fidelis, A.; Pfadenhauer, J.; Pillar, V.D.; Blanco, C.C.; Boldrini, I.I.; Both, R.; Forneck, E.D. Brazil’s neglected biome: The south brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- De Patta Pillar, V.; Vélez, E. Extinção dos Campos Sulinos em unidades de conservação: Um fenômeno natural ou um problema ético? Nat. Conserv. 2010, 8, 84–86. [Google Scholar] [CrossRef]
- Boldrini, I.I.; Miotto, S.T.S.; Longhi-Wagner, H.M.; Pillar, V.D.P.; Marzall, K. Aspectos florísticos e ecológicos da vegetação campestre do Morro da Polícia, Porto Alegre, RS, Brasil. Acta Bot. Brasilica 1998, 12, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Rambo, B. Análise histórica da flora de Porto Alegre. Sellowia 1954, 6, 9–111. [Google Scholar]
- Setubal, R.; Boldrini, I.I.; Ferreira, P.M.A. Campos Dos Morros de Porto Alegre; Igré—Associação Sócio-Ambientalista: Porto Alegre, Brazil, 2011. [Google Scholar]
- Menegat, R.; Porto, M.L.; Carraro, C.C.; Fernandes, L.A. Atlas ambiental de Porto Alegre; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 1999. [Google Scholar]
- Mueller-Dumbois, D.; Ellengerg, H. Aims and Methods of Vegetation Ecology; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Pielou, E.C. Ecological Diversity; John Wiley & Sons: New York, NY, USA, 1975; ISBN 0471689254. [Google Scholar]
- Londo, G. The decimal scale for releves of permanent quadrats. Vegetatio 1976, 33, 61–64. [Google Scholar] [CrossRef]
- Cruden, R.; Hermann-Parker, S.M. Butterfly pollination of Caesalpinia pulcherrima, with observations on a psychophilous syndrome. J. Ecol. 1979, 67, 155–168. [Google Scholar] [CrossRef]
- Gottsberger, G. Some aspects of beetle pollination in the evolution of flowering plants. In Flowering Plants; Springer: Vienna, Austria, 1977; pp. 211–226. [Google Scholar]
- Sakai, S. Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. Am. J. Bot. 2001, 88, 1527–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micheneau, C.; Fournel, J.; Warren, B.H.; Hugel, S.; Gauvin-Bialecki, A.; Pailler, T.; Strasberg, D.; Chase, M.W. Orthoptera, a new order of pollinator. Ann. Bot. 2010, 105, 355–364. [Google Scholar] [CrossRef]
- Somavilla, A.; Köhler, A. Preferência floral de vespas (Hymenoptera, Vespidae) no Rio Grande do Sul, Brasil. EntomoBrasilis 2012, 5, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Geographic Information System Development Team. QGIS Geographic Information System; Geographic Information System Development Team: Bonn, Germany, 2019. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2019. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. The Package Vegan. Commun. Ecol. Package 2013, 2, 1–295. [Google Scholar]
- Csárdi, G.; Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Dormann, C.F.; Gruber, B.; Fründ, J. Introducing the bipartite package: Analysing ecological networks. R. News 2008, 8, 8–11. [Google Scholar]
- Dormann, C.F. How to be a specialist ? Quantifying specialisation in pollination networks. Netw. Biol. 2011, 1, 1–20. [Google Scholar]
- Geslin, B.; Gauzens, B.; Thébault, E.; Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 2013, 8, e63421. [Google Scholar] [CrossRef]
- Dunne, J.A.; Williams, R.J.; Martinez, N.D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 2002, 5, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 2006, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Neto, M.; Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 2011, 26, 173–178. [Google Scholar] [CrossRef]
- Blüthgen, N.; Menzel, F.; Hovestadt, T.; Fiala, B.; Blüthgen, N. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 2007, 17, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.F.; Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 2014, 5, 90–98. [Google Scholar] [CrossRef]
- Dalsgaard, B.; Schleuning, M.; Maruyama, P.K.; Dehling, D.M.; Sonne, J.; Vizentin-Bugoni, J.; Zanata, T.B.; Fjeldså, J.; Böhning-Gaese, K.; Rahbek, C. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant-frugivore interaction systems. Ecography 2017, 40, 1395–1401. [Google Scholar] [CrossRef] [Green Version]
- Debastiani, V.J.; Pillar, V.D. SYNCSA-R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics 2012, 28, 2067–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Rodríguez, C.; Leoni, E.; Lezama, F.; Altesor, A. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. J. Veg. Sci. 2003, 14, 433–440. [Google Scholar] [CrossRef]
- Van Auken, O.W. Shrub invasions of north american semiarid grasslands. Annu. Rev. Ecol. Syst. 2000, 31, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Guido, A.; Salengue, E.; Dresseno, A. Effect of shrub encroachment on vegetation communities in Brazilian forest-grassland mosaics. Perspect. Ecol. Conserv. 2017, 15, 52–55. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W.K. A Generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Jiao, F.; Li, Y.H.; Kallenbach, R.L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.V.; Blüthgen, N.; Viana-Junior, A.B.; Guerra, T.J.; Di Spirito, L.; Neves, F.S. Resilience to fire and climate seasonality drive the temporal dynamics of ant-plant interactions in a fire-prone ecosystem. Ecol. Indic. 2018, 93, 247–255. [Google Scholar] [CrossRef]
- Blüthgen, N.; Fründ, J.; Vazquez, D.P.; Menzel, F. What do interaction network metrics tell us about specialization and biological traits? Ecology 2008, 89, 3387–3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordano, P.; Bascompte, J.; Olesen, J.M. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 2002, 6, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, D.P.; Aizen, M.A. Community-wide patterns of specialization in plant–pollinator interactions revealed by null models. In Plant–Pollinator Interactions: From Specialization to Generalization; Waser, N.M., Ollerton, J., Eds.; University of Chicago Press: Chicago, IL, USA, 2006; pp. 200–219. [Google Scholar]
- Montoya, J.M.; Pimm, S.L.; Sole, R. V Ecological networks and their fragility. Nature 2006, 442, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Schleuning, M.; Fründ, J.; Klein, A.M.; Abrahamczyk, S.; Alarcón, R.; Albrecht, M.; Andersson, G.K.S.; Bazarian, S.; Böhning-Gaese, K.; Bommarco, R.; et al. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 2012, 22, 1925–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidelis, A.; Appezzato-da-Glória, B.; Pillar, V.D.; Pfadenhauer, J. Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands? Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 110–116. [Google Scholar] [CrossRef]
- Giannini, T.C.; Garibaldi, L.A.; Acosta, A.L.; Silva, J.S.; Maia, K.P.; Saraiva, A.M.; Guimarães, P.R.; Kleinert, A.M.P. Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS ONE 2015, 10, e0137198. [Google Scholar] [CrossRef]
- Kerr, W.E. The history of the introduction of african bees in Brazil. South African Bee, J. 1967, 39, 33–35. [Google Scholar]
- Guzzman-Novoa, E.; Page, R.E.J. The impact of africanized bees on mexican beekeeping. Am. Bee J. 1994. [Google Scholar]
- Bascompte, J.; Jordano, P.; Olesen, J.M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 2006, 312, 431–433. [Google Scholar] [CrossRef] [Green Version]
- Freitas, L.; Bolmgren, K. Synchrony is more than overlap: Measuring phenological synchronization considering time length and intensity. Rev. Bras. Bot. 2008, 31, 721–724. [Google Scholar] [CrossRef] [Green Version]
- Denslow, J.S. Disturbance-mediated coexistence of species. In The Ecology of Natural Disturbance and Patch Dynamics; Pickett, S.T.A., White, P.S., Eds.; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Harrison, S.; Inouye, B.D.; Safford, H.D. Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conserv. Biol. 2003, 17, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Overbeck, G.E.; Müller, S.C.; Pillar, V.d.P.; Pfadenhauer, J. Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil. Braz. J. Biol. 2006, 66, 1073–1090. [Google Scholar] [CrossRef] [PubMed]
- McNeely, J.A. Protected areas for the 21st century: Working to provide benefits to society. Biodivers. Conserv. 1994, 3, 390–405. [Google Scholar] [CrossRef]
- Quinn, J.F.; Harrison, S.P. Effects of habitat fragmentation and isolation on species richness: Evidence from biogeographic patterns. Oecologia 1988, 75, 132–140. [Google Scholar] [CrossRef]
- Tscharntke, T.; Steffan-Dewenter, I.; Kruess, A.; Thies, C. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol. Appl. 2002, 12, 354–363. [Google Scholar]
Land Cover Classes | MO1 | MO2 | MO3 | SH3 | SH2 | SH1 | SP3 | SP1 | SP2 | PI2 | PI3 | PI1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Urban | 63.3 | 58.8 | 51.6 | 37.2 | 35.5 | 23.0 | 4.4 | 3.7 | 2.7 | 2.1 | 2.0 | 1.5 |
Grassland | 2.9 | 2.6 | 2.3 | 17.7 | 17.6 | 17.5 | 28.6 | 26.7 | 25.7 | 15.6 | 15.9 | 18.8 |
Forest | 31.5 | 30.4 | 28.9 | 44.6 | 46.4 | 53.6 | 66.4 | 68.3 | 71.1 | 53.3 | 54.6 | 74.0 |
Water | 2.3 | 8.2 | 17.3 | 0.3 | 0.4 | 5.9 | 0.6 | 1.4 | 0.6 | 29.0 | 27.4 | 5.7 |
Plantations | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Time since fire | 9 | 120 | 3 | 36 | 19 | 120 | 15 | 120 | 17 | 300 | 300 | 300 |
Network Metric | MO1 | MO2 | MO3 | SH3 | SH2 | SH1 | SP3 | SP1 | SP2 | PI2 | PI3 | PI1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N plant species (richness) | 22 | 23 | 19 | 25 | 19 | 19 | 19 | 26 | 27 | 16 | 16 | 23 |
N visitor species (richness) | 39 | 43 | 33 | 46 | 45 | 38 | 30 | 39 | 46 | 18 | 21 | 30 |
N visits | 102 | 107 | 57 | 170 | 70 | 108 | 63 | 90 | 78 | 36 | 53 | 106 |
N links | 62 | 52 | 38 | 72 | 52 | 52 | 41 | 50 | 51 | 23 | 27 | 45 |
Network size | 858 | 989 | 627 | 1150 | 855 | 722 | 570 | 1014 | 1242 | 288 | 336 | 690 |
Connectance | 0.07 | 0.05 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.05 | 0.04 | 0.08 | 0.08 | 0.07 |
Network asymmetry | 0.28 | 0.30 | 0.27 | 0.33 | 0.41 | 0.30 | 0.20 | 0.26 | 0.22 | 0.13 | 0.06 | 0.14 |
A. mellifera degree | 0.09 | 0.13 | 0.11 | 0.08 | 0.11 | 0 | 0.11 | 0.12 | 0.07 | 0.38 | 0.25 | 0.26 |
Nestedness | 7.98 | 7.19 | 12.58 | 7.80 | 11.22 | 12.57 | 11.29 | 8.49 | 11.34 | 17.85 | 22.00 | 11.49 |
high CI | 7.88 | 5.68 | 10.48 | 4.51 | 9.83 | 10.42 | 11.78 | 6.04 | 6.75 | 12.68 | 10.47 | 6.29 |
low CI | 7.78 | 5.62 | 10.36 | 4.45 | 9.73 | 10.29 | 11.64 | 5.96 | 6.67 | 12.51 | 10.33 | 6.21 |
Nestedness (z-score) | 0.06 | 1.63 | 1.15 | 3.63 | 0.90 | 1.05 | −0.19 | 2.13 | 3.76 | 1.97 | 5.62 | 4.05 |
Specialization (H2) | 0.57 | 0.83 | 0.78 | 0.74 | 0.71 | 0.76 | 0.61 | 0.66 | 0.75 | 0.74 | 0.77 | 0.57 |
high CI | 0.49 | 0.66 | 0.53 | 0.36 | 0.62 | 0.58 | 0.58 | 0.55 | 0.48 | 0.38 | 0.48 | 0.55 |
low CI | 0.49 | 0.66 | 0.52 | 0.35 | 0.62 | 0.57 | 0.57 | 0.54 | 0.47 | 0.37 | 0.47 | 0.54 |
Specialization (H2; z-score) | 2.02 | 2.55 | 2.86 | 5.93 | 1.32 | 2.99 | 0.83 | 2.16 | 3.37 | 3.28 | 2.84 | 1.64 |
Interaction evenness | 0.58 | 0.52 | 0.53 | 0.47 | 0.56 | 0.53 | 0.56 | 0.52 | 0.52 | 0.50 | 0.48 | 0.50 |
high CI | 0.58 | 0.54 | 0.57 | 0.52 | 0.57 | 0.55 | 0.56 | 0.54 | 0.56 | 0.57 | 0.55 | 0.52 |
low CI | 0.58 | 0.54 | 0.56 | 0.52 | 0.57 | 0.55 | 0.56 | 0.54 | 0.56 | 0.57 | 0.55 | 0.52 |
Inter. evenness (z-score) | −1.31 | −2.39 | −3.93 | −3.81 | −2.05 | −2.15 | −0.23 | −1.79 | −4.54 | −4.45 | −3.93 | −1.42 |
Modularity | 0.68 | 0.78 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.75 | 0.70 | 0.70 |
high CI | 0.63 | 0.68 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.73 | 0.64 | 0.66 |
low CI | 0.59 | 0.63 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.68 | 0.60 | 0.61 |
Modularity (z-score) | 1.72 | 2.01 | 0.91 | 0.91 | 0.91 | 0.92 | 0.92 | 0.90 | 0.91 | 0.93 | 1.02 | 0.86 |
N Modules | 15 | 13 | 14 | 12 | 13 | 13 | 9 | 17 | 13 | 14 | 9 | 14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beal-Neves, M.; Vogel Ely, C.; Westerhofer Esteves, M.; Blochtein, B.; Lahm, R.A.; Quadros, E.L.L.; Abreu Ferreira, P.M. The Influence of Urbanization and Fire Disturbance on Plant-floral Visitor Mutualistic Networks. Diversity 2020, 12, 141. https://doi.org/10.3390/d12040141
Beal-Neves M, Vogel Ely C, Westerhofer Esteves M, Blochtein B, Lahm RA, Quadros ELL, Abreu Ferreira PM. The Influence of Urbanization and Fire Disturbance on Plant-floral Visitor Mutualistic Networks. Diversity. 2020; 12(4):141. https://doi.org/10.3390/d12040141
Chicago/Turabian StyleBeal-Neves, Mariana, Cleusa Vogel Ely, Marjorie Westerhofer Esteves, Betina Blochtein, Regis Alexandre Lahm, Everton L.L. Quadros, and Pedro Maria Abreu Ferreira. 2020. "The Influence of Urbanization and Fire Disturbance on Plant-floral Visitor Mutualistic Networks" Diversity 12, no. 4: 141. https://doi.org/10.3390/d12040141
APA StyleBeal-Neves, M., Vogel Ely, C., Westerhofer Esteves, M., Blochtein, B., Lahm, R. A., Quadros, E. L. L., & Abreu Ferreira, P. M. (2020). The Influence of Urbanization and Fire Disturbance on Plant-floral Visitor Mutualistic Networks. Diversity, 12(4), 141. https://doi.org/10.3390/d12040141