Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (653)

Search Parameters:
Keywords = turbomachinery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3663 KB  
Article
Advancing Sustainable Refrigeration: In-Depth Analysis and Application of Air Cycle Technologies
by Lorenz Hammerschmidt, Zlatko Raonic and Michael Tielsch
Thermo 2025, 5(4), 52; https://doi.org/10.3390/thermo5040052 - 12 Nov 2025
Abstract
Air cycle systems, once largely replaced by vapour-compression technologies due to efficiency concerns, are now re-emerging as a viable and sustainable alternative for highly dynamic thermal applications and excel in ultra-low temperature. By using air as the working fluid, these systems eliminate the [...] Read more.
Air cycle systems, once largely replaced by vapour-compression technologies due to efficiency concerns, are now re-emerging as a viable and sustainable alternative for highly dynamic thermal applications and excel in ultra-low temperature. By using air as the working fluid, these systems eliminate the need for synthetic refrigerants and comply naturally with evolving environmental regulations. This study presents the conceptual design and simulation-based analysis of a novel air cycle machine developed for advanced automotive testing environments. The system is intended to replicate a wide range of climatic conditions—from deep winter to peak summer—through the use of fast-responding turbomachinery and a flexible control strategy. A central focus is placed on the radial turbine, which is designed and evaluated using a modular, open source framework that integrates geometry generation, off-design CFD simulation, and performance mapping. The study outlines a potential operating strategy based on these simulations and discusses a control architecture combining lookup tables with zone-specific PID tuning. While the results are theoretical, they demonstrate the feasibility and flexibility of the proposed approach, particularly the turbine’s role within the system. Full article
Show Figures

Figure 1

29 pages, 6013 KB  
Article
Dynamic Behaviors and Ambient Temperature Effects of a Gas–Liquid Type Compressed CO2 Energy Storage System
by Xianbo Zhao, Guohao Chen, Shan Wang, Tianyu Deng, Zihao Huang, Zhiming Li, Chuang Wu and Kui Luo
Energies 2025, 18(22), 5923; https://doi.org/10.3390/en18225923 - 11 Nov 2025
Abstract
Compressed carbon dioxide energy storage (CCES) has emerged as a promising solution for long-duration energy storage owing to its high energy density, adaptability to diverse environments, and compatibility with carbon capture technologies. This study develops a dynamic MATLAB 2024a/Simscape model for a 10 [...] Read more.
Compressed carbon dioxide energy storage (CCES) has emerged as a promising solution for long-duration energy storage owing to its high energy density, adaptability to diverse environments, and compatibility with carbon capture technologies. This study develops a dynamic MATLAB 2024a/Simscape model for a 10 MW × 8 h gas–liquid CCES (GL-CCES) system featuring two-stage compression and two-stage expansion. Constant-pressure operation is maintained by check and throttle valves at the boundaries of the high-pressure tank. After startup, all system variables except those associated with the storage tank stabilize rapidly. The analysis reveals several critical dynamic phenomena: (1) a persistent mass-flow imbalance between charging and discharging processes under constant-pressure operation; (2) distinct phase transitions within the high-pressure tank that produce inflection points in thermodynamic evolution; and (3) strong ambient-temperature sensitivity that dictates system stability and efficiency boundaries. The system achieves a round-trip efficiency of 70.52% at 25 °C, which decreases to 67.01% at 21 °C. More importantly, the dynamic energy density (5.15 kWh m−3) is only 12.7% of the steady-state reference value. These results demonstrate the feasibility of GL-CCES for large-scale, long-duration energy storage, while also highlighting its pronounced sensitivity to ambient conditions, underscoring the need for optimized design and adaptive operational strategies. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

50 pages, 16753 KB  
Article
Spectral Energy of High-Speed Over-Expanded Nozzle Flows at Different Pressure Ratios
by Manish Tripathi, Sławomir Dykas, Mirosław Majkut, Krystian Smołka, Kamil Skoczylas and Andrzej Boguslawski
Energies 2025, 18(21), 5813; https://doi.org/10.3390/en18215813 - 4 Nov 2025
Viewed by 328
Abstract
This paper addresses the long-standing question of understanding the origin and evolution of low-frequency unsteadiness interactions associated with shock waves impinging on a turbulent boundary layer in transonic flow (Mach: 1.1 to 1.3). To that end, high-speed experiments in a blowdown open-channel [...] Read more.
This paper addresses the long-standing question of understanding the origin and evolution of low-frequency unsteadiness interactions associated with shock waves impinging on a turbulent boundary layer in transonic flow (Mach: 1.1 to 1.3). To that end, high-speed experiments in a blowdown open-channel wind tunnel have been performed across a convergent–divergent nozzle for different expansion ratios (PR = 1.44, 1.6, and 1.81). Quantitative evaluation of the underlying spectral energy content has been obtained by processing time-resolved pressure transducer data and Schlieren images using the following spectral analysis methods: Fast Fourier Transform (FFT), Continuous Wavelet Transform (CWT), as well as coherence and time-lag evaluations. The images demonstrated the presence of increased normal shock-wave impact for PR = 1.44, whereas the latter were linked with increased oblique λ-foot impact. Hence, significant disparities associated with the overall stability, location, and amplitude of the shock waves, as well as quantitative assertions related to spectral energy segregation, have been inferred. A subsequent detailed spectral analysis revealed the presence of multiple discrete frequency peaks (magnitude and frequency of the peaks increasing with PR), with the lower peaks linked with large-scale shock-wave interactions and higher peaks associated with shear-layer instabilities and turbulence. Wavelet transform using the Morlet function illustrates the presence of varying intermittency, modulation in the temporal and frequency scales for different spectral events, and a pseudo-periodic spectral energy pulsation alternating between two frequency-specific events. Spectral analysis of the pixel densities related to different regions, called spatial FFT, highlights the increased influence of the feedback mechanism and coupled turbulence interactions for higher PR. Collation of the subsequent coherence analysis with the previous results underscores that lower PR is linked with shock-separation dynamics being tightly coupled, whereas at higher PR values, global instabilities, vortex shedding, and high-frequency shear-layer effects govern the overall interactions, redistributing the spectral energy across a wider spectral range. Complementing these experiments, time-resolved numerical simulations based on a transient 3D RANS framework were performed. The simulations successfully reproduced the main features of the shock motion, including the downstream migration of the mean position, the reduction in oscillation amplitude with increasing PR, and the division of the spectra into distinct frequency regions. This confirms that the adopted 3D RANS approach provides a suitable predictive framework for capturing the essential unsteady dynamics of shock–boundary layer interactions across both temporal and spatial scales. This novel combination of synchronized Schlieren imaging with pressure transducer data, followed by application of advanced spectral analysis techniques, FFT, CWT, spatial FFT, coherence analysis, and numerical evaluations, linked image-derived propagation and coherence results directly to wall pressure dynamics, providing critical insights into how PR variation governs the spectral energy content and shock-wave oscillation behavior for nozzles. Thus, for low PR flows dominated by normal shock structure, global instability of the separation zone governs the overall oscillations, whereas higher PR, linked with dominant λ-foot structure, demonstrates increased feedback from the shear-layer oscillations, separation region breathing, as well as global instabilities. It is envisaged that epistemic understanding related to the spectral dynamics of low-frequency oscillations at different PR values derived from this study could be useful for future nozzle design modifications aimed at achieving optimal nozzle performance. The study could further assist the implementation of appropriate flow control strategies to alleviate these instabilities and improve thrust performance. Full article
Show Figures

Figure 1

21 pages, 3301 KB  
Article
Toward the Detection of Flow Separation for Operating Airfoils Using Machine Learning
by Kathrin Stahl, Arnaud Le Floc’h, Britta Pester, Paul L. Ebert, Alexandre Suryadi, Nan Hu and Michaela Herr
Int. J. Turbomach. Propuls. Power 2025, 10(4), 41; https://doi.org/10.3390/ijtpp10040041 - 3 Nov 2025
Viewed by 197
Abstract
Turbulent flow separation over lifting surfaces impacts high-lift systems such as aircraft, wind turbines, and turbomachinery, and contributes to noise, lift loss, and vibrations. Accurate detection of flow separation is therefore essential to enable active control strategies and to mitigate its adverse effects. [...] Read more.
Turbulent flow separation over lifting surfaces impacts high-lift systems such as aircraft, wind turbines, and turbomachinery, and contributes to noise, lift loss, and vibrations. Accurate detection of flow separation is therefore essential to enable active control strategies and to mitigate its adverse effects. Several machine learning models are compared for detecting flow separation from surface pressure fluctuations. The models were trained on experimental data covering various airfoils, angles of attack (0°–23°), and Reynolds numbers, with Rec=0.84.5×106. For supervised learning, the ground-truth binary labels (attached or separated flow) were derived from static pressure distributions, lift coefficients, and the power spectral densities of surface pressure fluctuations. Three machine learning techniques (multilayer perceptron, support vector machine, logistic regression) were utilized with fine-tuned hyperparameters. Promising results are obtained, with the support vector machine achieving the highest performance (accuracy 0.985, Matthews correlation coefficient 0.975), comparable to other models, with advantages in runtime and model size. However, most misclassifications occur near separation onset due to gradual transition, suggesting areas for model refinement. Sensitivity to database parameters is discussed alongside flow physics and data quality. Full article
(This article belongs to the Special Issue Advances in Industrial Fan Technologies)
Show Figures

Figure 1

26 pages, 2838 KB  
Article
Reducing Greenhouse Gas Emissions from Micro Gas Turbines Using Silicon Carbide Switches
by Ahmad Abuhaiba
Methane 2025, 4(4), 26; https://doi.org/10.3390/methane4040026 - 3 Nov 2025
Viewed by 373
Abstract
In micro gas turbines, electrical power from the high-speed generator is delivered to the grid through a converter that influences overall efficiency and energy quality. This subsystem is often overlooked in efforts to improve turbine performance, which have traditionally focused on combustors and [...] Read more.
In micro gas turbines, electrical power from the high-speed generator is delivered to the grid through a converter that influences overall efficiency and energy quality. This subsystem is often overlooked in efforts to improve turbine performance, which have traditionally focused on combustors and turbomachinery. This study investigates how replacing conventional silicon switching devices in the converter with silicon carbide technology can directly reduce greenhouse gas emissions from micro gas turbines. Although silicon carbide is widely used in electric vehicles and distributed energy systems, its emission reduction impact has not been assessed in micro gas turbines. A MATLAB-based model of a 100 kW Ansaldo Energia micro gas turbine was used to compare the performance of silicon and silicon carbide converters across the 20–100 kW operating range. Silicon carbide reduced total converter losses from 4.316 kW to 3.426 kW at full load, a decrease of 0.889 kW. This improvement lowered carbon dioxide emissions by 5.7 g/kWh and increased net electrical efficiency from 30.03% to 30.29%. Each turbine can therefore avoid about 1.53 tonnes of carbon dioxide annually, or 11.61 tonnes over a 50,000 h service life, without altering turbine design, combustor geometry, or fuel composition. This work establishes the first quantitative link between wide-bandgap semiconductor performance and direct greenhouse gas mitigation in micro gas turbines, demonstrating that upgrading converter technology from silicon to silicon carbide offers a deployable pathway to reduce emissions from micro gas turbines and, by extension, lower the carbon intensity of distributed generation systems. Full article
Show Figures

Figure 1

33 pages, 8558 KB  
Article
Unsteady Impact of Casing Air Injection in Reducing Aerodynamic Losses and Heat Transfer on Various Squealer Tip Geometries
by Nasser Can Kasımbeyoğlu, Levent Ali Kavurmacıoğlu and Cengiz Camci
Aerospace 2025, 12(11), 979; https://doi.org/10.3390/aerospace12110979 - 31 Oct 2025
Viewed by 207
Abstract
This study deals with the effectiveness of casing-injection for a few squealer tip designs in a turbine stage to mitigate tip leakage penalties. Seventy-two Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations were conducted. Five factors were examined: number of injection holes, axial position, jet inclination, [...] Read more.
This study deals with the effectiveness of casing-injection for a few squealer tip designs in a turbine stage to mitigate tip leakage penalties. Seventy-two Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations were conducted. Five factors were examined: number of injection holes, axial position, jet inclination, blowing ratio, and hole diameter. The ideal configuration demonstrated the highest aerodynamic loss reduction compared to the baseline flat tip by 2.66%. The optimal injection scheme was integrated with three tip-rim topologies: complete channel squealer, suction-side partial squealer, and pressure-side partial squealer. The channel squealer enhances the advantageous effects of injection; the injected jets produce a counter-rotating vortex pair that disturbs the tip leakage vortex core, while the cavity formed by the squealer rim captures low-momentum fluid, thus thermally protecting the tip surface. The injection combined with channel squealer had the highest stage isentropic efficiency and the lowest total-pressure loss, thereby validating the synergy between active jet momentum augmentation and passive geometric sealing. The best configuration shows a 2.87% total pressure loss decrement and a 4.49% total-to-total efficiency increment compared to the baseline design. The best configuration not only improved stage efficiency but also achieved a 43.9% decrease in the tip heat transfer coefficient. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 3275 KB  
Article
Analysis of Axial Thrust and Flow Characteristics in a Steam Turbine Regulating Stage Under Variable Conditions
by Fangfang Song, Kunlun Bai, Xiaodan Zhang, Chengyuan Wang, Ming Luo and Lili Qian
Processes 2025, 13(11), 3499; https://doi.org/10.3390/pr13113499 - 31 Oct 2025
Viewed by 270
Abstract
A full-scale CFD model of a steam turbine, including the regulating and multiple pressure stages, was developed to quantify the axial thrust—a critical parameter for operational safety. The results under various loads reveal two key findings: (1) The blade root hub is the [...] Read more.
A full-scale CFD model of a steam turbine, including the regulating and multiple pressure stages, was developed to quantify the axial thrust—a critical parameter for operational safety. The results under various loads reveal two key findings: (1) The blade root hub is the primary source of the total axial thrust, exhibiting a near-linear relationship with mass flow rate under partial loads—a crucial insight for precise thrust forecasting. (2) Significant circumferential pressure non-uniformity was identified as a primary characteristic of partial-load operation. Furthermore, an optimized mixing chamber geometry is proposed, which reduces regulating stage loss by 0.59% and 0.31% under Valve Wide Open (VWO) and Turbine Heat Acceptance (THA) conditions, respectively. This study provides a concrete strategy for enhancing turbine design and safety. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 7538 KB  
Article
Study on the Layered Structure of Ceramic-Side Bonding Area and the Mechanical Property of Al2O3–Kovar Brazed Joint with Ag-Cu-Ti Filler
by Junjie Qi, Dong Du, Dongqi Zhang, Shuai Xue, Jiaming Zhang, Jiamin Yi, Haifei You and Baohua Chang
J. Manuf. Mater. Process. 2025, 9(11), 355; https://doi.org/10.3390/jmmp9110355 - 29 Oct 2025
Viewed by 271
Abstract
During active brazing of alumina ceramics, active elements react with the ceramic to form a reaction layer, which has significant influence on the mechanical property of the brazed joint. However, the composition and formation mechanism of this layer remain unclear among researchers. To [...] Read more.
During active brazing of alumina ceramics, active elements react with the ceramic to form a reaction layer, which has significant influence on the mechanical property of the brazed joint. However, the composition and formation mechanism of this layer remain unclear among researchers. To fill this gap, different brazing temperatures (900–1100 °C) and heating rates (2.5 °C/min and 10 °C/min) were used to braze 95% Al2O3 ceramics and a Kovar 4J34 alloy using a Ag-Cu-2Ti active brazing filler, and the microstructure and mechanical properties of the joints were investigated. The results show that the joint could be divided into five layers: Al2O3, ceramic-side reaction layer, filler layer, Kovar-side reaction layer, and Kovar. The ceramic-side reaction layer could be further divided into a Ti-O-rich layer and an intermetallics (IMC)-rich layer, and the Kovar-side reaction layer consists of TiFe2 particles, Ag-Cu eutectic, and the remaining Kovar. A belt-like TiFe2+TiNi3 IMC could be found in the filler layer. Increasing the brazing temperature enlarged the belt-like TiFe2+TiNi3 IMC in the filler layer and increased the thickness of the IMC-rich layer in the ceramic-side reaction layer, but had no significant effect on the thickness of the Ti-O-rich layer in the ceramic-side reaction layer. A lower heating rate (2.5 °C/min) was found to suppress the formation of the IMC-rich layer and shift the fracture location in shear tests from the ceramic-side reaction layer to the filler layer, indicating that the strength of the ceramic-side reaction layer was enhanced by controlling the formation of the IMC-rich layer. A maximum shear strength of 170 ± 61 MPa was obtained at a heating rate of 2.5 °C/min and a brazing temperature of 940 °C. Full article
(This article belongs to the Special Issue Advances in Welding Technology: 2nd Edition)
Show Figures

Figure 1

44 pages, 4366 KB  
Review
Design Methods and Practices for Centrifugal Compressor Diffusers: A Review
by Oana Dumitrescu, Sergiu Strătilă and Valeriu Drăgan
Machines 2025, 13(11), 990; https://doi.org/10.3390/machines13110990 - 28 Oct 2025
Viewed by 637
Abstract
The design of diffusers is a critical aspect of compressor performance, directly influencing pressure recovery, flow stability, and overall stage efficiency and operating range. This review paper provides an analysis of diffuser design principles, methodologies, and practical considerations in turbomachinery applications. The importance [...] Read more.
The design of diffusers is a critical aspect of compressor performance, directly influencing pressure recovery, flow stability, and overall stage efficiency and operating range. This review paper provides an analysis of diffuser design principles, methodologies, and practical considerations in turbomachinery applications. The importance of diffusers in compressors is discussed, and the main types of diffusers are presented, highlighting, for each type of diffuser, their aerodynamic characteristics and operational advantages. Traditional empirical correlations and analytical models for diffuser geometry generation are reviewed, emphasizing their role in guiding preliminary design decisions. The integration of one-dimensional (1D) performance analysis methods with computational fluid dynamics (CFD) simulations is also discussed, illustrating how these approaches improve performance prediction and optimization accuracy. Design constraints are analyzed alongside performance trade-offs, highlighting the need to balance efficiency and stability. Overall, this review synthesizes existing knowledge on diffuser design in compressors, providing a structured framework for engineers and researchers to understand the key factors affecting performance and guiding the development of efficient, reliable diffuser configurations for real-world turbomachinery applications. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

22 pages, 6317 KB  
Article
Simulation Study on the Magnetic Field Characteristics of a Permanent Magnet Motor for a Rim-Driven Device
by Chao Jiang, Changgeng Shuai and Mingzhong Qiao
Appl. Sci. 2025, 15(20), 11129; https://doi.org/10.3390/app152011129 - 17 Oct 2025
Viewed by 240
Abstract
The rim-driven device (RDD) integrates the motor and the impeller, which can achieve shaftless, modular, and integrated operation of the turbomachinery system and has broad application prospects. To reduce the axial length and radial thickness of the RDD, a motor with a thin-yoke [...] Read more.
The rim-driven device (RDD) integrates the motor and the impeller, which can achieve shaftless, modular, and integrated operation of the turbomachinery system and has broad application prospects. To reduce the axial length and radial thickness of the RDD, a motor with a thin-yoke wide-tooth fractional slot concentrated winding stator and a coreless Halbach permanent magnet array rotor is designed. Theoretical and finite element simulation analyses of its air gap magnetic field characteristics were carried out. The results show that, for the thin-yoke wide-tooth fractional slot concentrated winding permanent magnet motor, the harmonic magnetic field generated by the magnetic poles should mainly consider the magnetic field components produced by the interaction between the harmonic magnetomotive force of the magnetic poles and the constant air gap specific magnetic permeability, as well as the magnetic field components generated by the interaction between the fundamental magnetomotive force of the magnetic poles and the fundamental and second-order harmonic air gap specific magnetic permeability. The harmonic magnetic field generated by the current should mainly consider the magnetic field components produced by the interaction between the harmonic magnetomotive force with a small number of pole pairs (NOPP) and large amplitude generated by the current and the constant air gap specific magnetic permeability. Compared with radial magnetic flux density, tangential magnetic flux density has the same NOPP and frequency components, with a phase difference of 90°. The fundamental amplitude difference between them is larger, while the harmonic amplitude difference between them is smaller. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

28 pages, 8901 KB  
Article
Aerodynamic Performance of a Natural Laminar Flow Swept-Back Wing for Low-Speed UAVs Under Take Off/Landing Flight Conditions and Atmospheric Turbulence
by Nikolaos K. Lampropoulos, Ioannis E. Sarris, Spyridon Antoniou, Odysseas Ziogas, Pericles Panagiotou and Kyros Yakinthos
Aerospace 2025, 12(10), 934; https://doi.org/10.3390/aerospace12100934 - 16 Oct 2025
Viewed by 337
Abstract
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The [...] Read more.
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The aim of this work is the numerical verification that a typical wing design (tapered with moderate aspect ratio and wash-out), being constructed out of aerodynamically highly efficient NLF airfoils during cruise, can deliver high aerodynamic loading under minimal freestream turbulence as well as realistic atmospheric conditions of intermediate turbulence. Thus, high mission flexibility is achieved, e.g., short take off/landing capabilities on the deck of ship where moderate air turbulence is prevalent. Special attention is paid to the effect of the Wing Tip Vortex (WTV) under minimal inflow turbulence regimes. The flight conditions are take off or landing at moderate Reynolds number, i.e., one to two millions. The numerical simulation is based on an open source CFD code and parallel processing on a High Performance Computing (HPC) platform. The aim is the identification of both mean flow and turbulent structures around the wing and subsequently the formation of the wing tip vortex. Due to the purely three-dimensional character of the flow, the turbulence is resolved with advanced modeling, i.e., the Improved Delayed Detached Eddy Simulation (IDDES) which is well-customized to switch modes between Delayed Detached Eddy Simulation (DDES) and Wall-Modeled Large Eddy Simulation (WMLES), thus increasing the accuracy in the shear layer regions, the tip vortex and the wake, while at the same time keeping the computational cost at reasonable levels. IDDES also has the capability to resolve the transition of the boundary layer from laminar to turbulent, at least with engineering accuracy; thus, it serves as a high-fidelity turbulence model in this work. The study comprises an initial benchmarking of the code against wind tunnel measurements of the airfoil and verifies the adequacy of mesh density that is used for the simulation around the wing. Subsequently, the wing is positioned at near-stall conditions so that the aerodynamic loading, the kinematics of the flow and the turbulence regime in the wing vicinity, the wake and far downstream can be estimated. In terms of the kinematics of the WTV, a thorough examination is attempted which comprises its inception, i.e., the detachment of the boundary layer on the cut-off wing tip, the roll-up of the shear layer to form the wake and the motion of the wake downstream. Moreover, the effect of inflow turbulence of moderate intensity is investigated that verifies the bibliography with regard to the performance degradation of static airfoils in a turbulent atmospheric regime. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 3062 KB  
Article
AMT Microjets Data Overall Evaluation Ratio at Different Operating Regimes
by Răzvan Marius Catană and Grigore Cican
Processes 2025, 13(10), 3200; https://doi.org/10.3390/pr13103200 - 8 Oct 2025
Viewed by 621
Abstract
The paper presents a comprehensive evaluation of certain main parameters and the performance of microjet series models from the same engine manufacturer, AMT Netherlands, under various operating regimes. The study was performed through a percentage-based analysis of a series of actual values extracted [...] Read more.
The paper presents a comprehensive evaluation of certain main parameters and the performance of microjet series models from the same engine manufacturer, AMT Netherlands, under various operating regimes. The study was performed through a percentage-based analysis of a series of actual values extracted from a set of charts, from which a specific database was created. The database comprised data sourced from official specification sheets issued by the manufacturer. The studied engines shared the same technical turbomachinery design, comprising a single shaft, one centrifugal compressor rotor, one axial turbine rotor stage, and a convergent jet nozzle, but differed in thrust class, ranging from 167 to 1569 N. Parameter and performance ratios were calculated to analyze the variation patterns within each engine and across different engines. The study refers to the variation analysis of thrust, fuel flow, exhaust gas temperature, and specific fuel consumption relative to engine speed, from idle to maximum regime. It presents the actual percentage values alongside polynomial functions that characterize the variations in engine parameters through which the analysis can be conducted. Full article
(This article belongs to the Special Issue Fluid Dynamics and Thermodynamic Studies in Gas Turbine)
Show Figures

Figure 1

18 pages, 7892 KB  
Article
Validation of an Eddy-Viscosity-Based Roughness Model Using High-Fidelity Simulations
by Hendrik Seehausen, Kenan Cengiz and Lars Wein
Int. J. Turbomach. Propuls. Power 2025, 10(4), 34; https://doi.org/10.3390/ijtpp10040034 - 2 Oct 2025
Viewed by 446
Abstract
In this study, the modeling of rough surfaces by eddy-viscosity-based roughness models is investigated, specifically focusing on surfaces representative of deterioration in aero-engines. In order to test these models, experimental measurements from a rough T106C blade section at a Reynolds number of 400 [...] Read more.
In this study, the modeling of rough surfaces by eddy-viscosity-based roughness models is investigated, specifically focusing on surfaces representative of deterioration in aero-engines. In order to test these models, experimental measurements from a rough T106C blade section at a Reynolds number of 400 K are adopted. The modeling framework is based on the k-ω-SST with Dassler’s roughness transition model. The roughness model is recalibrated for the k-ω-SST model. As a complement to the available experimental data, a high-fidelity test rig designed for scale-resolving simulations is built. This allows us to examine the local flow phenomenon in detail, enabling the identification and rectification of shortcomings in the current RANS models. The scale-resolving simulations feature a high-order flux-reconstruction scheme, which enables the use of curved element faces to match the roughness geometry. The wake-loss predictions, as well as blade pressure profiles, show good agreement, especially between LES and the model-based RANS. The slight deviation from the experimental measurements can be attributed to the inherent uncertainties in the experiment, such as the end-wall effects. The outcomes of this study lend credibility to the roughness models proposed. In fact, these models have the potential to quantify the influence of roughness on the aerodynamics and the aero-acoustics of aero-engines, an area that remains an open question in the maintenance, repair, and overhaul (MRO) of aero-engines. Full article
Show Figures

Figure 1

20 pages, 4517 KB  
Article
An Investigation of the Laminar–Turbulent Transition Mechanisms of Low-Pressure Turbine Boundary Layers with Linear Stability Theories
by Alice Fischer and Frank Eulitz
Int. J. Turbomach. Propuls. Power 2025, 10(4), 33; https://doi.org/10.3390/ijtpp10040033 - 2 Oct 2025
Viewed by 818
Abstract
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) [...] Read more.
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) and Linear Parabolized Stability Equations (LPSEs) over a wider parametric space. A parametric study was done to examine the wall-shear stress, shape factor, momentum thickness, as well as the growth rate and N-factor envelope. Additionally, the methodology was applied to active control techniques like suction and blowing. The results are consistent with the expected physical behavior and initial observations, while also offering a quantitative description of trends in frequencies, amplitude growth, and wavelengths. This confirms the suitability of the two stability theories, laying the base for their future validation to ensure accuracy and reliability. Full article
Show Figures

Figure 1

24 pages, 4357 KB  
Article
Experimental and Numerical Investigation of Suction-Side Fences for Turbine NGVs
by Virginia Bologna, Daniele Petronio, Francesca Satta, Luca De Vincentiis, Matteo Giovannini, Gabriele Cattoli, Monica Gily and Andrea Notaristefano
Int. J. Turbomach. Propuls. Power 2025, 10(4), 31; https://doi.org/10.3390/ijtpp10040031 - 1 Oct 2025
Viewed by 356
Abstract
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which [...] Read more.
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which are typical features of some LPT first stages directly downstream of an HPT, hence presenting high channel diffusion, especially near the tip. In particular, the present study complements existing literature by highlighting how blade fences positioned on the suction side can reduce the penetration of the large passage vortex. This is particularly effective in applications where flow turning is limited, the blades are lightly loaded at the front, and the horseshoe vortex is weak. The benefits of the present fence design in terms of losses and flow uniformity at the cascade exit plane have been demonstrated by means of a detailed experimental campaign carried out on a large-scale linear cascade in the low-speed wind tunnel installed in the Aerodynamics and Turbomachinery Laboratory of the University of Genova. Measurements mainly focused on the characterization of the flow field upstream and downstream of straight and fenced vane cascades using a five-hole pressure probe, to evaluate the impact of the device in reducing secondary flows. Furthermore, experiments were also adopted to validate both low-fidelity (RANS) and high-fidelity (LES) simulations and revealed the capability of both simulation approaches to accurately predict losses and flow deviation. Moreover, the accuracy in high-fidelity simulations has enabled an in-depth investigation of how fences act mitigating the effects of the passage vortex along the blade channel. By comparing the flow fields of the configurations with and without fences, it is possible to highlight the mitigation of secondary flows within the channel. Full article
Show Figures

Figure 1

Back to TopTop