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Abstract: Annular diffusers are frequently used in turbomachinery applications to recover the
discharge kinetic energy and increase the total-to-static isentropic efficiency. Despite its strong
influence on turbomachinery performance, the diffuser is often neglected during the preliminary
design. In this context, a one-dimensional flow model for annular diffusers that accounts for the
impact of this component on turbomachinery performance was developed. The model allows use of
arbitrary equations of state and to account for the effects of area change, heat transfer, and friction.
The mathematical problem is formulated as an implicit system of ordinary differential equations that
can be solved when the Mach number in the meridional direction is different than one. The model
was verified against a reference case to assess that: (1) the stagnation enthalpy is conserved and
(2) the entropy computation is consistent and it was found that the error of the numerical solution
was always smaller than the prescribed integration tolerance. In addition, the model was validated
against experimental data from the literature, finding that deviation between the predicted and
measured pressure recovery coefficients was less than 2% when the best-fit skin friction coefficient
is used. Finally, a sensitivity analysis was performed to investigate the influence of several input
parameters on diffuser performance, concluding that: (1) the area ratio is not a suitable optimization
variable because the pressure recovery coefficient increases asymptotically when this variable tends
to infinity, (2) the diffuser should be designed with a positive mean wall cant angle to recover the
tangential fraction of kinetic energy, (3) the mean wall cant angle is a critical design variable when
the maximum axial length of the diffuser is constrained, and (4) the performance of the diffuser
declines when the outlet hub-to-tip ratio of axial turbomachines is increased because the channel
height is reduced.

Keywords: axial; radial; centrifugal; turbine; compressor; pump; vaneless; organic rankine cycle;
steam turbine; gas turbine; supercritical carbon dioxide

1. Introduction

A diffuser is a device used to decelerate a flow and increase the static pressure of the fluid.
Annular diffusers are frequently used in turbomachinery applications to recover the kinetic energy
at the discharge of compressors and turbines to increase their total-to-static isentropic efficiency [1].
The design of an effective diffuser is a challenging task due to the presence of adverse pressure
gradients. If the adverse pressure gradient is strong enough, the boundary layer close to the wall will
separate and lead to flow reversal, reducing the pressure recovery [1]. The performance of a diffuser
is often measured using the pressure recovery coefficient given by Equation (1), which reduces to
Equation (2) for the limiting case of incompressible flow [2] (pp. 404–408).
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Cp =
p out − p in

p0, in − p in
(1)

Cp =
p out − p in

1
2 ρv2

in
(2)

The performance of the diffuser has a strong influence on the efficiency and design of
turbomachinery. Specifically, Macchi and Perdichizzi [3] showed that the optimal design (maximum
efficiency) of axial turbines depends on the amount of kinetic energy that can be recovered from the
last stage. In addition, the work of Bahamonde et al. [4] indicates that the discharge kinetic energy can
be one of the main mechanisms of efficiency loss when the influence of the diffuser is not accounted
during the preliminary design. Despite this, the impact of the diffuser on the overall performance
of turbomachines is often neglected or modeled in a very simple way during the preliminary design
(mean-line models).

Table 1 summarizes the treatment of the diffuser in several publications about the preliminary
design of turbines. Many works ignore the influence of the diffuser while others account for the
impact of the diffuser in a simplistic way by assuming that an arbitrary fraction of the outlet kinetic
energy is recovered. In addition, some of the works assumed that only the meridional fraction of the
kinetic energy can be recovered when, in fact, most annular diffusers also recover the swirling kinetic
energy (the tangential component of velocity decreases as the radius of the diffuser increases [1]).
However, none of the works contained in Table 1 considered the influence of the diffuser design on
the kinetic energy recovery and, to the knowledge of the authors, there are no studies that propose a
methodology that accounts for the design of the diffuser during the preliminary turbine design.

Table 1. Treatment of the diffuser in the literature about turbine preliminary design.

Reference Turbine Type Diffuser Modeling

Macchi and Perdichizzi [3] Axial flow Fixed recovery a

Lozza et al. [5] Axial flow Fixed recovery a

Da Lio et al. [6] Axial flow Fixed recovery b

Astolfi and Macchi [7] Axial flow Fixed recovery b

Da Lio et al. [8] Axial flow Fixed recovery b

Al Jubori et al. [9] Axial flow Not considered
Talluri and Lombardi [10] Axial flow Not considered
Tournier and El-Genk [11] Axial flow Not considered
Meroni et al. [12] Axial flow Not considered
Meroni et al. [13] Axial flow Not considered
Meroni et al. [14] Axial flow Fixed recovery b

Perdichizzi and Lozza [15] Radial inflow Fixed recovery a

Uusitalo et al. [16] Radial inflow Not considered
Rahbar et al. [17] Radial inflow Not considered
Da Lio et al. [18] Radial inflow Not considered
Pini et al. [19] Radial outflow Fixed recovery a

Casati et al. [20] Radial outflow Fixed recovery a

Bahamonde et al. [4]
Axial flow

Radial inflow
Radial outflow

Not considered

a Fixed recovery of the total kinetic energy. b Fixed recovery of the meridional
kinetic energy.

The diffuser performance can be predicted and optimized using detailed flow modes based on
CFD simulations and shape optimization, but this approach is unpractical during the preliminary
turbomachinery design. Instead, simplified one-dimensional flow models that account for the main
features of the flow such as the effects of geometry (area change), heat transfer, and friction are better
suited for the level of detail required during the preliminary design. There are several one-dimensional
models for the flow within annular diffusers including the ones proposed by Stanitz [21], Johnston
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and Dean [22], Elgammal and Elkersh [23], and Dubitsky and Japikse [24], see Table 2 . These models
were developed for the vaneless diffuser of compressors and pumps, but they can also be used for
turbine diffusers because the flow is governed by the same equations.

Table 2. One-dimensional diffuser models in the open literature.

Reference Friction Heat Transfer Fluid Properties

Stanitz [21] Yes Yes Perfect gas
Johnston and Dean [22] Yes No Incompressible
Elgammal and Elkersh [23] Yes No Incompressible
Dubitsky and Japikse [24] Yes No General
Present work Yes Yes General

Ideally, the diffuser model should accept any equation of state and account for the effects of
area change, heat transfer, and friction. None of the models available in the literature meets all these
requirements. The model proposed by Stanitz [21] accounts for the effects of area change, heat
transfer, and friction, but it assumes that the fluid behaves as a perfect gas. Similarly, the models
proposed by Johnston and Dean [22] and Elgammal and Elkersh [23], also account for the effects of
area change and friction, but they assume that the flow is adiabatic and incompressible. Finally, the
model proposed by Dubitsky and Japikse [24] is the most advanced. It is formulated as a two–zone
model that accounts for real gas effects, area change, and friction (although it neglects heat transfer).
One limitation of the model proposed by Dubitsky and Japikse [24] is that it is necessary to specify
several ad-hoc parameters that might not be known in the early design phase such as the turbulent
mixing loss coefficient or the secondary flow area fraction.

The purpose of this paper is to propose a one-dimensional flow model and solution algorithm
for annular diffusers that can be coupled with the preliminary design of turbomachinery (pumps,
compressors, and turbines). The flow equations are similar to those presented in previous works, refer to
Table 2, but are formulated in a general way to account for heat transfer, friction, and arbitrary geometry
and equations of state. The solution algorithm and discussion of the mathematical properties in terms
of the meridional Mach number of the flow are original and they are presented in Section 2. In addition,
the detailed derivation of the equations (omitted in other works) and the physical interpretation of
the different terms are presented in the Appendix A. The model was verified against a reference case
in Section 3 to assess that: (1) the stagnation enthalpy is conserved, (2) the computation of entropy
is consistent. In addition, the model was validated against experimental data from the literature.
Finally, a sensitivity analysis with respect to (1) the skin friction coefficient, (2) inlet hub-to-tip ratio,
(3) mean wall cant angle, (4) inlet swirl angle, and (5) inlet Mach number was performed and presented
in Section 4 to gain insight into the impact of these variables on diffuser performance and design.
The authors would like to mention that the source code of the diffuser model proposed in this work is
openly available in an online repository [25], see Supplementary Materials.

2. Diffuser Model

This section describes the diffuser model proposed in this work. First, the geometry of annular
diffusers and the conventions for the velocity vector are described. After that, the treatment for the
equations of state is presented. Finally, the mathematical model for the flow within the diffuser and
the solution algorithm are explained.

2.1. Diffuser Geometry

A sectioned view of a general annular diffuser geometry is shown in Figure 1a. The kinetic energy
decreases and the static pressure increases as the fluid flows within the annular duct defined by the
inner and outer surfaces. For the case of subsonic diffusers, the meridional component of velocity
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decreases when the flow area increases and the tangential component of velocity decreases when the
mean radius of the channel increases [1].

In general, the meridional direction m will not be exactly aligned with the axial x or the radial
r directions. This is illustrated in Figure 1b, where an axial–radial view of the diffuser is presented.
The mean line of the diffuser can be parametrized as r = r(m) and x = x(m) such that the meridional,
radial, and axial directions are related by the angle φ given by Equation (3).

tan φ =
dr
dx

=

(
dr
dm

)
·
(

dx
dm

)−1
(3)

With this geometry the flow area is given by Equation (4), where r is the mean radius of the annular
channel and b is height of the channel, measured normal to the meridional direction. The channel
height can be prescribed as an arbitrary function of the meridional direction b = b(m). The area ratio
is defined as the ratio of outlet to inlet areas and is given by Equation (5).

A = 2πr b (4)

AR =
A out

A in
(5)

This section described the geometry of a general annular diffuser. The particular geometry of
straight wall annular diffusers is described under the heading geometry model.

(a) Three-dimensional view (b) Axial–radial view.

Figure 1. Geometry of a general annular diffuser

2.2. Velocity Vector

In this work, the velocity is denoted by the symbol v, and the components are denoted by the
subscripts θ—tangential, m—meridional, x—axial, and r—radial. The velocity vector is illustrated in
Figure 2 and the different components are given by Equations (6)–(9). The angle α is measured from
the meridional towards the tangential direction.

vm = v cos (α) (6)

vθ = v sin (α) (7)

vx = vm cos (φ) = v cos (φ) cos (α) (8)

vr = vm sin (φ) = v sin (φ) cos (α) (9)



Int. J. Turbomach. Propuls. Power 2019, 4, 31 5 of 27

Figure 2. Decomposition of the velocity vector.

2.3. Equations of State

The diffuser model was formulated in a general way and the thermodynamic properties of the
working fluid can be computed with any set of equations of state that support pressure–density function
calls. In this work, the REFPROP fluid library [26] was used for the computation of thermodynamic
properties. The partial derivatives of fluid properties were computed using finite differences.

2.4. Mathematical Model

The diffuser model presented in this work is based on the transport equations for mass,
meridional and tangential momentum, and energy in an annular channel. It assumes that the
flow is one-dimensional (in the meridional direction), steady (no time variation), and axisymmetric
(no circumferential variation). The model can use arbitrary equations of state and it accounts for
effects of area change, heat transfer, and friction. Under these conditions the governing equations
of the flow are given by Equations (10)–(13). These equations can be derived considering the mass,
momentum, and energy balances for the infinitesimal control volume shown in Figure 3. The detailed
derivation of these equations and a discussion of the physical meaning of the different terms is
presented in the Appendix A.

vm
dρ

dm
+ ρ

dvm

dm
= − ρvm

b r
d

dm
(b r) (10)

ρvm
dvm

dm
+

dp
dm

=
ρv2

θ

r
sin (φ)− 2τw

b
cos (α) (11)

ρvm
dvθ

dm
= − ρvθvm

r
sin (φ)− 2τw

b
sin (α) (12)

ρvm
dp
dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b
(

∂e
∂p

)
ρ

(13)

Equations (10)–(13) pose a system of ordinary differential equations (ODE) that can be expressed
more compactly in matrix form as given by Equation (14). The solution vector U, coefficient matrix A,
and source term vector S are given by Equation (15).
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A
dU
dm

= S (14)

A =


ρ 0 vm 0

ρvm 0 0 1
0 ρvm 0 0
0 0 −ρvm a2 ρvm

 U =


vm

vθ

ρ

p

 S =


− ρvm

b r
d

dm (b r)
ρv2

θ
r sin (φ)− 2τw

b cos (α)
− ρvθ vm

r sin (φ)− 2τw
b sin (α)

2(τwv+q̇w)

b
(

∂e
∂p

)
ρ

 (15)

It can be readily shown that the determinant of matrix A is given by Equation (16). This means
that if the Mach number in the meridional direction is different than one, the matrix A can be inverted
to compute the vector of derivatives dU

dm according to Equation (17). In practice, matrix A is not
inverted, instead the linear system of equations given by Equation (14) is solved using Gaussian
elimination. It can be shown that the condition Ma m = 1 corresponds to a choked diffuser. This means
that the diffuser can only be choked due to the meridional component of velocity and that the
tangential component of velocity can be decelerated from supersonic to subsonic velocities without
shock waves [21].

det(A) = ρ3v2
m a2

(
v2

m
a2 − 1

)
= ρ3v2

m a2
(

Ma2
m − 1

)
(16)

dU
dm

= A−1S (17)

The vector dU
dm can be computed in this way for any integration step and then used as input for

an explicit numerical method to solve ordinary differential equations. The integration starts from the
initial values (see Section 2.5) and stops when the prescribed value of the outlet to inlet area ratio
AR is reached. In this work, the MATLAB function ode45 [27] was used to perform the numerical
integration. This function uses an automatic-stepsize-control solver that combines fourth and fifth
order Runge–Kutta methods.

To compute the source term vector, it is necessary to prescribe the geometry of the diffuser, i.e.,
the variation of the channel height b(m) and radius r(m) in the meridional direction, and to provide
models for the shear stress τw and the heat flux q̇w at the walls.

Figure 3. Differential control volume used to derive the diffuser governing equations.

2.4.1. Geometry Sub-Model

The diffuser model was formulated in a general way such that the geometry can be described
by any set of arbitrary functions r = r(m), x = x(m), and b = b(m). Although the one-dimensional
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model presented in this work can accept any geometry as input, it is not able to predict flow features
such as boundary layer separation. For this reason, this type of simplified model is not well suited for
a detailed geometry design of the diffuser.

Despite this, one-dimensional models can give a good indication of the expected performance
of a well-designed diffuser (in terms of the pressure recovery coefficient). For this reason, the main
purpose of the diffuser model presented in this paper is to serve as a realistic boundary condition at
the outlet of turbomachinery that reacts to changes in the design variables during the preliminary
design and optimization. In addition, the diffuser geometry obtained from this type of analysis can be
used as the starting point for a more detailed diffuser design such as a CFD-based shape optimization.
Within this context, the geometry of the diffuser was modeled in a simple way assuming that the inner
and outer surfaces are straight. These types of diffusers are known as conical wall annular diffusers
(also as straight wall annular diffusers) and their geometry is shown in Figure 4.

Figure 4. Axial–radial view of an annular diffuser with straight walls.

For this particular geometry, the angle φ is constant and it is given as the arithmetic mean of the
inner and outer wall cant angles, φ = (φ1 + φ2)/2. The relations r = r(m), x = x(m), and b = b(m)

can be deduced from Figure 4 and they are given by Equations (18)–(20), where δ = (φ2 − φ1)/2 is the
divergence semi-angle.

r(m) = r in + m sin (φ) (18)

x(m) = x in + m cos (φ) (19)

b(m) = b in + 2m tan (δ) (20)

2.4.2. Friction Sub-Model

The friction is modeled as a body force that does not do work (this models the no-slip condition
at the walls). This is the approach often used in one-dimensional flow models because they cannot
take into account the velocity gradient in the direction normal to the wall [21,24].

The viscous stress at the wall τw is computed in terms of the skin friction coefficient Cf as given
by Equation (21). The viscous force is assumed to have the opposite direction as the velocity vector
such that the friction components in the meridional and tangential direction are given by −τw cos (α)
and −τw sin (α), respectively, see Figure 3.

τw = Cf
ρv2

2
(21)
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To the knowledge of the authors there are no available correlations to predict the skin friction
coefficient in annular channels with swirling flow. Using ordinary skin friction correlations for internal
flows is discouraged because they do not consider the influence of swirl on the shear stress at the wall.

However, it is possible to estimate a reasonable value for the skin friction coefficient based
on experimental data from existing vaneless diffusers. Brown [28] measured the local skin friction
coefficient for different vaneless diffusers and obtained values in the range 0.003–0.010. In the absence
of better estimates, Johnston–Dean [22] recommend values within the range 0.005–0.010 for the global
skin friction coefficient. In a similar way, Dubitsky–Japikse [24] suggest 0.010 as a reasonable estimate
for the global skin friction coefficient, but noted that values from 0.005 to 0.020 were required to fit
experimental data, depending on the application. The values that were reported in this paragraph are
meaningful for well-designed diffusers without flow separation.

2.4.3. Heat Transfer Sub-Model

The universal approach in the design and analysis of diffusers for turbomachinery applications is
to neglect heat transfer and assume that the flow is adiabatic q̇w = 0. To the knowledge of the authors,
Stanitz [21] is the only reference that accounts for the effect of heat transfer in the energy transport
equation. Although heat transfer is usually neglected, the heat transfer modeling is discussed in this
section for the sake of completeness.

Stanitz [21] suggests that the heat flux is proportional to the temperature difference between the
fluid and the wall as given by Equation (22), where the wall temperature is prescribed as a function of
the meridional direction Tw(m). This equation uses the stagnation temperature of the fluid instead of
the static temperature because the fluid is at rest at the wall (a recovery factor of unity is assumed).

q̇w = U (Tw − T0) (22)

In addition, Stanitz [21] suggests to use the Reynolds analogy given by Equations (23) and (24),
to obtain an approximate value for the heat transfer coefficient in terms of the skin friction coefficient,
where the usual definitions for the Nusselt number Nu = UDh

k , Reynolds number Re = ρvDh
k ,

and Prandtl number Pr =
cpµ

k are used. The hydraulic diameter of an annular duct is given by
the channel height (Dh = b), but it is immaterial for the computation of the heat transfer coefficient.

Nu =
1
2

Cf Re Pr (23)

U =
ρvcp

2
Cf (24)

It is also possible to use the Chilton–Colburn analogy [29] (pp. 358–360) given by Equations (25)
and (26) to estimate the heat transfer coefficient. This analogy extends the Reynolds analogy to fluids
with a Prandtl number different from one.

Nu =
1
2

Cf Re Pr1/3 (25)

U =
ρvcp

2
Cf Pr−2/3 (26)

Both these analogies can be used to get a rough estimate of the heat transfer coefficient from a
known value of the skin friction coefficient. Using ordinary heat transfer correlations for internal
flows is discouraged, because they do not take into account the impact of the swirl into the heat
transfer process.

2.5. Connection with a Turbomachinery Model

This section describes the link between the diffuser model presented in this work and a generic
turbomachinery model. The initial conditions for the integration of the diffuser model are given by



Int. J. Turbomach. Propuls. Power 2019, 4, 31 9 of 27

Equation (27), where it is assumed that the thermodynamic state and velocity vector do not change
from the turbomachine outlet to the diffuser inlet.

U0 =


vm

vθ

ρ

p


0

=


vm

vθ

ρ

p


out

(27)

To describe the geometry of the diffuser, the mean radius r in and the channel height b in at
the inlet are obtained from the turbomachine outlet radius R out and blade height H out as given by
Equations (28) and (29), see Figure 5.

r in = R out (28)

b in = H out / cos (φ) (29)

In addition, it is necessary to prescribe the area ratio AR as the termination criterion for the
integration of the ODE system and the inner φ1 and outer φ2 wall angles. Equivalently, it is possible
to prescribe the mean cant angle φ = (φ1 + φ2)/2 and the divergence semi-angle δ = (φ2 − φ1)/2.
These geometric parameters can be specified as fixed parameters or independent variables during the
preliminary design and optimization of a turbomachine.

Figure 5. Connection of the diffuser model with a generic turbomachine model.

3. Verification and Validation of the Model

The aim of this section is the verification (solving the equations right) and validation (solving the
right equations) of the diffuser model and solution algorithm proposed in this work. To verify the
model, the reference case summarized in Table 3 was analyzed and the error of the numerical solution
in terms of stagnation enthalpy and entropy was assessed. The case study proposed considers a
subsonic flow of air within the annular diffuser at the outlet of an axial turbine or compressor. The skin
friction coefficient was assumed to be Cf = 0.010 based on the suggestions from [22,24,28] and the heat
transfer was neglected.
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In the absence of heat transfer, the stagnation enthalpy of the flow remains constant, see the
Appendix A, and any change in stagnation enthalpy is due to numerical error. The relative stagnation
enthalpy error was evaluated using Equations (30) and (31) and it is shown as a function of the diffuser
area ratio in Figure 6. It can be seen that the stagnation enthalpy is properly conserved and the relative
error is of the order of 10−9, which is smaller than the prescribed relative tolerance of 10−6 for the
integration of the ODE system.

h0, error =
|h0 − h0, in|

h0, in
(30)

h0 = h(p, ρ) +
v2

m
2

+
v2

θ

2
(31)

In a similar way, the entropy error was analyzed. The entropy of the flow was computed using
pressure–density function calls to the equation of state (EoS) at each integration step, Equation (32),
and also evaluated integrating the transport equation for entropy given by Equation (33), where σ̇

is the rate of entropy generation per unit volume due to friction. See the Appendix A for the details
about the derivation of the transport equation for entropy. The entropy error was evaluated using
Equation (34) and it is shown as a function of the diffuser area ratio in Figure 6. It can be observed
that the relative entropy error is of the order of 10−7, which is smaller than the prescribed integration
tolerance of 10−6. As both the stagnation enthalpy and entropy errors are smaller than the prescribed
tolerance, we can conclude that the solution algorithm solves the flow equations satisfactorily.

s EoS = s(p, ρ) (32)

ρvm

(
dsgen

dm

)
= σ̇ = 2

τwv
b T

(33)

s error =
|s EoS − sgen|

s EoS
(34)

In addition, the diffuser model was validated against the annular diffuser experimental data
from Kumar and Kumar [30]. The conditions that define this case are summarized in Table 4
and the experimental and computed pressure recovery coefficients are compared in Table 5 and in
Figure 7. The heat transfer was neglected for the validation (U = 0) because the experimental data
from Kumar and Kumar [30] corresponds to a low-speed annular diffuser where the difference between
fluid temperature and wall temperature is expected to be very small. The skin friction coefficient was
fitted to minimize the two-norm of the error between the experimental data and the model output.
In addition, the range of variation of the pressure recovery coefficient for skin friction coefficients
ranging between ±20% of the best-fit value is shown as a shaded area to illustrate the impact of this
parameter on the diffuser performance.

Ignoring the point corresponding to AR = 1.082, it can be observed that the relative deviation
of the pressure recovery coefficient is always less than 2% when the best-fit skin friction coefficient
(Cf = 0.029) is used. It is plausible that the deviation between experiment and model when AR = 1.082
is due to the development of the flow at the inlet of the diffuser. This analysis shows that the model
can be used to make accurate predictions when skin friction coefficient can be fitted to experimental
data or approximate predictions in cases where there is no experimental data available.
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Figure 6. Enthalpy and entropy error analyses for the reference case defined in Table 3.

Figure 7. Comparison of model output with the data from Kumar and Kumar [30].

Table 3. Definition of the reference case.

Variable Symbol Value

Working fluid - Air
Inlet static pressure p in 101.3 kPa
Inlet static temperature Tin 20.0 ◦C
Inlet meridional Mach Ma m,in 0.30
Inlet swirl angle α in 30.0◦

Turbomachine outlet radius R out 1.0 m
Outlet hub-to-tip ratio (rh/rt) out 0.7
Mean wall cant angle φ 30.0◦

Divergence semi-angle δ 5.0◦

Diffuser area ratio AR 1.0–5.0
Skin friction coefficient Cf 0.010
Heat transfer coefficient U 0 W/m2·K
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Table 4. Definition of the validation case from Kumar and Kumar [30].

Variable Symbol Value

Working fluid - Air
Inlet static pressure p in 101.3 kPa
Inlet static temperature Tin 20.0 ◦C
Inlet meridional Mach Ma m,in 0.07
Inlet swirl angle α in 0.0◦

Inlet mean radius r in 57.8 mm
Inlet channel height b in 39.5 mm
Mean wall cant angle φ 15.0◦

Divergence semi-angle δ 0.0◦

Diffuser area ratio AR 1.0–3.0
Skin friction coefficient Cf Fitted to data
Heat transfer coefficient U 0 W/m2·K

Table 5. Comparison of the model output with the experimental data from Kumar and Kumar [30].

AR Cexp
p Cmodel

p Relative Error

1.082 0.101 0.122 21.27%
1.317 0.349 0.347 −0.64%
1.561 0.467 0.475 1.73%
1.832 0.552 0.557 0.89%
2.012 0.593 0.592 −0.14%
2.308 0.626 0.631 0.89%
2.560 0.651 0.653 0.23%
2.779 0.670 0.666 −0.58%
2.863 0.681 0.670 −1.67%

4. Sensitivity Analysis

This section contains a sensitivity analysis of the reference case from Table 3 to gain insight about
the impact of several input parameters on diffuser performance. The next sections investigate the
influence of: (1) skin friction coefficient, (2) inlet hub-to-tip ratio, (3) mean wall cant angle, (4) inlet
swirl angle, and (5) inlet meridional Mach number on the pressure recovery coefficient as a function of
diffuser area ratio. The divergence semi-angle was not included in the analysis because increasing
this parameter may lead to boundary layer separation close to the walls and the model used in this
work cannot predict this phenomenon (Kline et al. [31] provide stability maps that can be used to
predict flow separation for straight-walled and conical diffusers as a function of divergence semi-angle
and area ratio. However, the authors are not aware of similar maps for annular diffusers in the open
literature). Each of the analyses studies the influence of one variable while the other parameters are
the same as in the reference case (one-at-a-time sensitivity analysis) and the ranges of the variables
were selected to cover the flow conditions typical of most turbomachinery applications.

In addition, the influence of heat transfer on diffuser performance was analyzed for different wall
temperatures using the Chilton–Colburn analogy to estimate the heat transfer coefficient. As expected,
heat addition accelerates the flow and penalizes the pressure recovery coefficient. The details of the
heat transfer investigations are not reported because the influence of heat addition was secondary
compared to that of the other input parameters.

4.1. Influence of the Skin Friction Coefficient

As discussed in Section 2, to the knowledge of the authors, there are no correlations available to
predict the skin friction coefficient in annular channels with swirling flow, but it is possible to estimate
a realistic value based on the existing literature. The friction factor was varied from 0.000 (frictionless)
to 0.030 (high friction) and the impact on the pressure recovery coefficient as a function of the area
ratio is shown in Figure 8.



Int. J. Turbomach. Propuls. Power 2019, 4, 31 13 of 27

It can be observed that increasing the friction factor decreases the pressure recovery in a linear way
(the different curves are equispaced) and that the effect is more notable when the area ratio increases
(since the length of the channel increases). For the reference case considered, the pressure recovery
increases with the area ratio in a monotonous manner and has an asymptotic behavior, irrespective of
the numerical value of the friction coefficient. This suggest that an optimum value of the area ratio
that maximizes the pressure recovery does not exist and that the pressure recovery always increases
with the area ratio up to a limiting value.

This, perhaps counter-intuitive, result may be explained as the consequence of two conflicting
effects. On the one hand, when the area ratio increases the diffuser length and wetted surface increase.
However, as the area ratio increases the velocity and shear stress at the wall are reduced (the shear
stress is proportional to the dynamic pressure). If this second effect dominates, friction becomes
negligible and the pressure recovery increases asymptotically as the area ratio tends to infinity.

Figure 8. Influence of skin friction coefficient.

4.2. Influence of the Inlet Hub-to-Tip Ratio

To accommodate the density change, the hub-to-tip ratio is usually high at the outlet of axial
compressors and low at the outlet of axial turbines. In this section, the hub-to-tip ratio at the inlet of the
diffuser was varied between 0.50 and 0.95 and the results were plotted in Figure 9. It can be observed
that the diffuser performance is penalized as the hub-to-tip ratio increases and that the effect is not
linear: the pressure recovery coefficient is reduced more rapidly at high hub-to-tip ratios.

The reason for this behavior is that when the hub-to-tip ratio increases, the channel height of the
diffuser is reduced according to Equation (35) and, since the channel height appears in the denominator
of the friction terms of the momentum equations, Equations (11) and (12), the diffuser performance
declines. Another interpretation based on physical intuition is that the channel height is the hydraulic
diameter of the annular diffuser and that reducing this parameter will increase the friction losses.

b in = H out / cos (φ) = 2 R out

(
1− (rh/rt)

1 + (rh/rt)

)
out

/ cos (φ) (35)
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Figure 9. Influence of the hub-to-tip ratio.

4.3. Influence of the Mean Wall Cant Angle

Figure 10a shows the pressure recovery coefficient as a function of the area ratio when the mean
cant angle is varied from 0◦ to 40◦. It can be seen that the pressure recovery coefficient is very low
when φ = 0◦ because the radius of the diffuser remains constant and the tangential component of
velocity is not recovered and that it increases very quickly as the mean cant angle increases (for instance
from 0◦ to 10◦). Further increasing the mean wall cant angle will only improve the pressure recovery
marginally (the change from 30◦ to 40◦ is almost inappreciable).

The same results are plotted as a function of the normalized axial length (instead of the area ratio)
in Figure 10b. The end of the lines corresponds to the point where AR = 5. It can be observed that for
a fixed diffuser axial length, the pressure recovery coefficient increases as the mean wall cant angle
increases because both the area and the mean radius of the channel increase.

These results illustrate that the mean cant angle is not a critical parameter when there are no space
limitations, but that adopting a high mean wall cant angle is advantageous when the maximum axial
length of the diffuser is constrained.

(a) (b)

Figure 10. Influence of the mean wall cant angle on the pressure recovery coefficient as a function of
the area ratio (a) and as a function of the axial length (b).
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4.4. Influence of the Inlet Swirl Angle

In this section, the influence of the inlet swirl angle for a fixed meridional velocity was investigated.
The results from Figure 11 show that increasing the inlet swirl angle decreases the pressure recovery
coefficient of the diffuser and that this effect is more marked at higher swirl angles. The reason for this
is that the presence of swirl increases the available dynamic pressure at the inlet and, for this reason,
the area ratio required to reach the same pressure recovery coefficient as for the case α = 0◦ is higher.
Moreover, the presence of swirl leads to wall shear stress in the circumferential direction that increases
the friction losses.

Figure 11. Influence of the inlet swirl angle.

4.5. Influence of the Inlet Mach Number

The influence of the inlet Mach number (compressibility effects) on the diffuser performance,
including the limiting case of incompressible flow, is shown in Figure 12. The analysis presented on
this section was performed assuming frictionless flow instead of Cf = 0.010 in order to compare the
results at different inlet Mach numbers with the analytical results for inviscid, incompressible flow
given by Equation (36). This equation is a well-known result [1,22] that can be proved integrating the
mass and momentum equations, Equations (10)–(12), for constant density and zero wall shear stress.

It can be observed that the model predicts a modest increase on the pressure recovery coefficient
as the inlet Mach number increases. In addition, the results obtained when the inlet meridional Mach
number is 0.30 or lower (low-speed flow) are consistent with the analytical results for incompressible
flow. This result can be regarded as part of the model verification.

Cp ,incompressible = 1−
tan (α in)

2 +
(

b in
b

)2

1 + tan (α in)
2 ·

( r in

r

)2
(36)
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Figure 12. Influence of the inlet Mach number.

5. Conclusions

A one-dimensional flow model for annular diffusers was proposed and the connection of this
model with the preliminary design and optimization of turbomachinery was discussed. The model
formulation is more general than that of previous literature as it is possible to use arbitrary equations of
state and include the effects of area change, heat transfer, and friction. The mathematical model poses a
system of ordinary differential equations and it was shown that: (1) the solution is undetermined when
the Mach number in the meridional direction is one (the flow is choked) and (2) the Mach number in
the circumferential direction does not compromise the solution. In addition, the detailed derivation of
the equations (omitted in other works) was presented in the Appendix A to provide physical insight
about the flow in annular channels.

The model was verified against a reference case assessing that: (1) the stagnation enthalpy is
conserved, (2) the entropy generation computed using the equation of state and using the second
law of thermodynamics is consistent and it was found that the error of the numerical solution was
always smaller than the prescribed integration tolerance. In addition, the model was validated against
the experimental data from Kumar and Kumar [30], finding that the relative deviation between the
predicted and measured pressure recovery coefficients was always less than 2% when the best-fit skin
friction coefficient is used.

A sensitivity analysis was performed to investigate the influence of the: (1) skin friction coefficient,
(2) inlet hub-to-tip ratio, (3) mean wall cant angle, (4) inlet swirl angle, and (5) inlet meridional Mach
number on the diffuser performance. The ranges of these variables were selected to cover the flow
conditions typical of most turbomachinery applications. The following conclusions were gathered:

• The pressure recovery coefficient increases asymptotically as the area ratio tends to infinity,
regardless of the value of the skin friction coefficient. This suggest that the area ratio is not
a suitable optimization variable during the diffuser design when the size of the diffuser is
not constrained.

• The inlet hub-to-tip ratio has a strong impact on the pressure recovery because it is closely related
to the channel height of the diffuser. The pressure recovery is penalized when the hub-to-tip ratio
increases, and the trend is nonlinear: the pressure recovery coefficient is reduced more rapidly
at high hub-to-tip ratios. This implies that in general, the design of efficient diffusers for axial
compressors (high hub-to-tip ratios and short blades at the last stage) is more challenging than
that of axial turbines (low hub-to-tip ratios and long blades at the last stage).

• The pressure recovery is very low when the mean wall cant angle is zero because the radius of the
diffuser remains constant and the tangential component of velocity is not recovered. This shows
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that the diffuser should be designed with an increasing mean radius to recover the kinetic energy
of swirling flows effectively.

• Assuming that there is no flow separation, increasing the mean wall cant angle always improves
the pressure recovery. However, for a given area ratio the mean wall cant angle has only a small
impact on the pressure recovery, while for a given axial length increasing the mean wall cant angle
improves the pressure recovery significantly. This implies that the mean wall cant angle is not a
critical parameter when there are no space limitations, but that adopting a high mean wall cant
angle is advantageous when the maximum axial length of the diffuser is constrained.

• Increasing the swirl angle at the inlet of the diffuser reduces the pressure recovery coefficient
because the wall shear stress in the circumferential direction is increased. This implies that the
diffuser performance will be improved if the velocity triangle of the last turbomachinery stage is
designed so that the absolute velocity has a small tangential component.

• The pressure recovery coefficient increases as the inlet meridional Mach number increases.
The effect on the inlet Mach number has only a modest impact on the pressure recovery,
compared with the other variables. In addition, it was found that when the inlet meridional
Mach number is lower than 0.30 the results from the compressible and incompressible analyses
are almost identical.

Supplementary Materials: The source code of the diffuser model proposed in this work is openly available in an
online repository (doi:10.5281/zenodo.2634095).
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Nomenclature

Latin symbols
A Annulus area or coefficient matrix m2

a Speed of sound m/s
AR Area ratio –
b Diffuser channel height m
Cf Skin friction coefficient –
Cp Pressure recovery coefficient –
cp Specific heat capacity at constant pressure J/kg K
Dh Hydraulic diameter m
e Internal energy J/kg
h Static specific enthalpy J/kg
h0 Stagnation specific enthalpy J/kg
H out Outlet turbomachinery blade height m
k Heat conductivity W/m K
Nu Nusselt number –
p Static pressure Pa
p0 Stagnation pressure Pa
Pr Prandtl number –
q̇w Heat flux at the wall W/m2

r Mean radius m
R out Outlet turbomachinery radius m
Re Reynolds number –
S Source term vector –
s Specific entropy J/kg K

http://dx.doi.org/10.5281/zenodo.2634095
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T Static temperature K
T0 Stagnation temperature K
Tw Temperature at the wall K
U Solution vector or heat transfer coefficient W/m2 K
v Velocity m/s
x Axial distance m

Greek symbols
α Angle between the velocity vector the meridional direction ◦

δ Divergence semi-angle ◦

θ Tangential angle ◦

ρ Density kg/m3

σ̇ Entropy generation per unit volume W/m3 K
τw Shear stress at the wall Pa
φ Mean wall cant angle or angle between the radial a meridional directions ◦

φ1 Inner wall cant angle ◦

φ2 Outer wall cant angle ◦

Abbreviations
CFD Computational Fluid Dynamics
EOS Equation of State
ODE Ordinary Differential Equation

Subscripts
gen Refers to entropy generation
in Refers to the inlet
m Refers to the meridional direction
out Refers to the outlet
r Refers to the radial direction
x Refers to the axial direction
θ Refers to the tangential direction

Appendix A. Derivation of the Governing Equations

This appendix contains the derivation the governing equations for the one-dimensional flow in
an annular channel with area change, heat transfer, and friction using arbitrary equations of state.
The final version of the equations derived in this appendix were presented within a box and they
correspond to Equations (10)–(13) in the main text.

Appendix A.1. Groundwork

The starting point for the derivation of the governing equations is the integral form of the mass,
momentum, energy, and entropy balance equations for a fixed control volume. The integral form
of these equations can be found in any fluid mechanics textbook such as [2]. The integral equations
are applied to the differential control volume shown in Figure 3 to determine the differential form
of the equations. First, the transport equation for mass is derived and then it is used to obtain the
transport equation for a general quantity. After this, the general transport equation is used to derive
the momentum, energy, and entropy equations in a systematic way. Once the differential equations
are found, they are simplified assuming that the flow is steady and axisymmetric to determine the
one-dimensional equations used to model the diffuser.

The additional notation used in this appendix was not included in the nomenclature.
Instead, it was preferred to introduce the new notation along the way to make the derivations easier
to follow. The symbol e (vector quantities were typeset in boldface) is used to denote the unitary
vectors in the different coordinate directions: eθ—tangential, ex—axial, er—radial, em—meridional,
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and en—normal. The unitary vectors in the meridional–normal plane are related to the unitary vectors
in the axial–radial plane according to Equations (A1) and (A2).

em = cos (φ) ex + sin (φ) er (A1)

en = − sin (φ) ex + cos (φ) er (A2)

The derivatives of the meridional and tangential vectors along the meridional and tangential
directions are given by Equations (A3)–(A6). These equations are given without proof, but they can
be derived using the chain rule for differentiation and geometric relations between the coordinate
directions. Space derivatives of the unitary vectors are non-zero due to the curvature of the coordinate
system and they are necessary to derive the momentum transport equation. The term Rm is the radius
of curvature of the mean surface of the annular channel and it can be expressed in different ways
depending on the parametrization used (we will not be concerned about this term because it does not
appear on the final equations of the diffuser model).

dem

dm
=

d2r
dx2 ·

(
1 +

(
dr
dx

)2
)− 3

2

en =
1

Rm
en (A3)

dem

dθ
= sin (φ) eθ (A4)

deθ

dm
= 0 (A5)

deθ

dθ
= −er = − sin (φ) em − cos (φ) en (A6)

The velocity vector can be expressed in terms of the unitary vectors according to Equations (A7)
and (A8).

v = vm em + vθ eθ (A7)

v = vx ex + vr er + vθ eθ (A8)

The volume of the differential control volume is given by dV = b r dθdm, while the normal vectors
and surface elements of the differential control surface are summarized in Table A1. These parameters
are necessary to evaluate the integrals appearing on the balance equations

Table A1. Normal vectors and surface elements of the differential control volume.

Number Face n dS

1 Front −em rb dθ
2 Back +em rb dθ
3 Left −eθ b dm
4 Right +eθ b dm
5 Bottom −en r dθdm
6 Top +en r dθdm

Appendix A.2. Transport Equation for Mass

The integral form of the mass balance equation is given by Equation (A9). This equation indicates
that the rate of change of mass within the control volume plus the net mass flow rate leaving the
control volume is equal to zero (mass is conserved).∫

CV

∂ρ

∂t
dV +

∫
CS

ρ (v · n) dS = 0 (A9)
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The accumulation term is approximated by Equation (A10).∫
CV

∂ρ

∂t
dV ≈ ∂ρ

∂t
dV =

∂ρ

∂t
b rdθdm (A10)

The convective term is approximated byEquation (A11). This expression is found integrating the
mass flux over the six faces of the differential control volume using the normal vectors and surface
elements from Table A1 and the velocity vector given by Equation (A7).

∫
CS

ρ (v · n) dS ≈
6

∑
i=1

ρi (vi · ni) dSi

≈ [ρvmr b dθ]2 − [ρvmr b dθ]1 + [ρvθb dm]4 − [ρvθb dm]3

(A11)

The different summands of Equation (A11) are approximated by a first order Taylor expansion.
The Taylor expansions of a generic property β in the meridional and tangential directions are given by
Equations (A12) and (A13), respectively.

β2 − β1 =

(
β +

∂β

∂m
dm
2

)
−
(

β− ∂β

∂m
dm
2

)
+O(dm2) ≈ ∂β

∂m
dm (A12)

β4 − β3 =

(
β +

∂β

∂θ

dθ

2

)
−
(

β− ∂β

∂θ

dθ

2

)
+O(dθ2) ≈ ∂β

∂θ
dθ (A13)

Inserting the Taylor expansions into Equation (A11) leads to Equation (A14).∫
CS

ρ (v · n) dS ≈ ∂

∂m
(ρvmr b) dmdθ +

∂

∂θ
(ρvθb) dmdθ (A14)

Collecting the accumulation and the convective terms and dividing by dV leads to Equation (A15).

∂ρ

∂t
+

1
b r

∂

∂m
(ρvmr b) +

1
b r

∂

∂θ
(ρvθb) = 0 (A15)

Assuming steady and axisymmetric flow Equation (A15) reduces to Equation (A16), where
the partial differentials were replaced by total differentials because the only variation is along the
meridional direction.

d
dm

(ρvmr b) = 0 (A16)

The final form of the mass transport equation, Equation (A17), is found using the product rule for
differentiation and rearranging.

vm
dρ

dm
+ ρ

dvm

dm
= −ρvm

b r
d

dm
(b r) (A17)

Appendix A.3. Transport Equation for A General Quantity

The integral form of a general balance equation is given by Equation (A18). This equation indicates
that the rate of change of any intensive quantity η within the control volume plus the net flow rate of
η leaving the control volume is equal to the generation of η due to source terms Sη . In general, this
quantity η can be a scalar such as energy or entropy or a vector such as the velocity.∫

CV

∂

∂t
(ρη) dV +

∫
CS

ρη (v · n) dS = Sη (A18)
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The accumulation term is approximated by Equation (A19).∫
CV

∂

∂t
(ρη) dV ≈ ∂

∂t
(ρη) dV =

∂

∂t
(ρη) b rdθdm (A19)

The convective term is approximated by Equation (A20). This expression is found integrating
the η-flux over the six faces of the differential control volume using the normal vectors and surface
elements from Table A1 and the velocity vector given by Equation (A7).

∫
CS

ρη (v · n) dS ≈
6

∑
i=1

ρiηi (vi · ni) dSi

≈ [ρηvmr b dθ]2 − [ρηvmr b dθ]1 + [ρηvθb dm]4 − [ρηvθb dm]3

(A20)

The different summands of Equation (A20) are approximated by first order Taylor expansions,
Equations (A12) and (A13), to find Equation (A21).∫

CS
ρη (v · n) dS ≈ ∂

∂m
(ρηvmr b) dmdθ +

∂

∂θ
(ρηvθb) dmdθ (A21)

Collecting the accumulation, convective, and source terms leads to Equation (A22).[
∂

∂t
(ρη) b r +

∂

∂m
(ρηvmr b) +

∂

∂θ
(ρηvθb)

]
dmdθ = Sη (A22)

Using the product rule for differentiation and the transport equation for mass, Equation (A22)
can be expressed in non-conservative form as Equation (A23), where dV = b r dθdm.

ρ

[
∂η

∂t
+ vm

∂η

∂m
+

vθ

r
∂η

∂θ

]
dV = Sη (A23)

Equation (A23) is used in the next sections to derive the transport equations of momentum,
energy and entropy in a systematic way.

Appendix A.4. Transport Equations for Momentum

The integral form of the momentum balance equation is given by Equation (A24). This equation
indicates that the rate of change of momentum within the control volume plus the net flow rate of
momentum leaving the control volume is equal to the net pressure forces acting on the control surfaces
plus the body forces acting on the control volume. The viscous forces acting on the walls of the annular
channel are modeled as a volume force instead of as a surface force as discussed below.∫

CV

∂

∂t
(ρv) dV +

∫
CS

ρv (v · n) dS = −
∫

CS
pn dS +

∫
CV

ρf dV (A24)

The left hand side of Equation (A24) is formulated in differential form, Equation (A25), by making
the identification η = v in the general transport equation, Equation (A23).

∫
CV

∂

∂t
(ρv) dV +

∫
CS

ρv (v · n) dS = ρ

[
∂v
∂t

+ vm
∂v
∂m

+
vθ

r
∂v
∂θ

]
dV (A25)

The meridional, tangential, and normal components of the momentum equation are given by
Equation (A26). This equation found inserting the velocity vector given by Equation (A7) and using
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the product rule to account for the derivatives of the velocity components and the unitary vectors that
are given by Equations (A3)–(A6).

∫
CV

∂

∂t
(ρv) dV +

∫
CS

ρv (v · n) dS = em

(
ρ

[
∂vm

∂t
+ vm

∂vm

∂m
+

vθ

r
∂vm

∂θ
−

v2
θ

r
sin (φ)

]
dV

)

+ eθ

(
ρ

[
∂vθ

∂t
+ vm

∂vθ

∂m
+

vθ

r
∂vθ

∂θ
+

vmvθ

r
sin (φ)

]
dV
)

+ en

(
ρ

[
v2

m
Rm
−

v2
θ

r
cos (φ)

]
dV

) (A26)

The surface integral of the pressure forces can be approximated by Equation (A27), where the
first equality follows from a variation of the Gauss theorem for the surface integral of a scalar
field. The gradient of pressure for the curvilinear coordinates used here is given by Equation (A28),
see [32] (Ch. 3).

−
∫

CS
pn dS = −

∫
CV
∇p dV ≈ ∇p dV (A27)

∇p =
∂p
∂m

em +
1
r

∂p
∂θ

eθ +
∂p
∂n

en (A28)

The viscous force is approximated by Equation (A29). This force is modeled as a body force
pointing in the opposite direction of the velocity vector and with magnitude given by the product of
the stress at the walls and the surface of the walls dS = 2r dθdm. The factor 2 arises to account for the
inner and outer surfaces.∫

CV
ρf dV ≈ τw dS = −τw

v
|v| dS = −2τw [cos (α) em + sin (α) eθ ] r dθdm (A29)

Collecting all terms and dividing by dV, the meridional and tangential components of the
momentum equation are given by Equations (A30) and (A31), respectively. The normal component is
ignored because it is not used in the one-dimensional diffuser model.

ρ

(
∂vm

∂t
+ vm

∂vm

∂m
+

vθ

r
∂vm

∂θ
−

v2
θ

r
sin (φ)

)
= − ∂p

∂m
− 2τw

b
cos (α) (A30)

ρ

(
∂vθ

∂t
+ vm

∂vθ

∂m
+

vθ

r
∂vθ

∂θ
+

vmvθ

r
sin (φ)

)
= −1

r
∂p
∂θ
− 2τw

b
sin (α) (A31)

The final form of the momentum equations, Equations (A32) and (A33), is found assuming steady
and axisymmetric flow. The partial differentials were replaced by total differentials because the only
variation is along the meridional direction.

ρvm
dvm

dm
+

dp
dm

=
ρv2

θ

r
sin (φ)− 2τw

b
cos (α) (A32)

ρvm
dvθ

dm
= −ρvθvm

r
sin (φ)− 2τw

b
sin (α) (A33)

Appendix A.5. Transport Equations for Energy

Appendix A.5.1. Total Energy

The integral form of the energy balance equation is given by Equation (A34) or by Equation (A35).
Total energy is given by E = e + v2

2 and the term h0 = E + p
ρ can be recognized as the stagnation
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enthalpy of the flow. These equations indicate that the rate of change of total energy within the control
volume plus the net flow rate of total energy leaving the control volume is equal to the net heat flow
rate entering the control volume plus the work done by pressure forces. The work done by viscous
forces (modeled as a body force) is neglected to model the no-slip condition at the wall (this is further
discussed in the derivation of the entropy transport equation).∫

CV

∂

∂t
(ρE) dV +

∫
CS

ρE (v · n) dS = −
∫

CS
q̇ · n dS−

∫
CS

p (v · n) dS (A34)∫
CV

∂

∂t
(ρE) dV +

∫
CS

ρ

(
E +

p
ρ

)
(v · n) dS = −

∫
CS

q̇ · n dS (A35)

The left hand side of Equation (A35) is formulated in differential form, Equation (A36), by making
the identification η = E in the general transport equation, Equation (A23).

∫
CV

∂

∂t
(ρE) dV +

∫
CS

ρ

(
E +

p
ρ

)
(v · n) dS = ρ

[
∂E
∂t

+ vm
∂

∂m

(
E +

p
ρ

)
+

vθ

r
∂

∂θ

(
E +

p
ρ

)]
dV (A36)

The heat flow rate is computed as the surface integral of heat flux into the system at it is given by
Equation (A37), where the factor 2 arises to account for the inner and outer surfaces. This equation
only accounts for the heat flux at the walls q̇w, ignoring the heat transfer in the meridional and
tangential directions.

−
∫

CS
q̇ · n dS ≈ 2q̇w r dθdm (A37)

Collecting all terms and dividing by dV, the total energy transport equation is given
by Equation (A38).

ρ

(
∂E
∂t

+ vm
∂

∂m

(
E +

p
ρ

)
+

vθ

r
∂

∂θ

(
E +

p
ρ

))
=

2q̇w

b
(A38)

Assuming that the flow is steady and axisymmetric, the total energy equation transport reduces
to Equation (A39), where the partial differentials were replaced by total differentials because the only
variation is along the meridional direction. Equation (A39) indicates that in the absence of heat transfer,
the stagnation enthalpy of the flow remains constant. This result is used in the main body of the paper
to verify the numerical solution of the model, see Section 3.

ρvm
d

dm

(
E +

p
ρ

)
= ρvm

d
dm

(
e +

v2
m
2

+
v2

θ

2
+

p
ρ

)
=

2q̇w

b
(A39)

The transport equations for mass, momentum, and energy derived so far pose a system of ordinary
differential equations that can be solved if an equation of state is provided to relate the density and
pressure with enthalpy. Instead of using this set of equations, a new form of the energy transport
equation will be derived, Equation (13). This alternative version of the energy equation is used to show
that system of equations has a solution when the meridional Mach number of the flow is different than
one (see Section 2).

Appendix A.5.2. Mechanical Energy

To derive the mechanical energy equation, first multiply the meridional component of the
momentum equation by vm, Equation (A40), and the tangential component of the momentum equation
by vθ , Equation (A41). The chain rule for differentiation and some algebraic manipulations were used
to obtain these two equations.
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ρvm

(
d

dm

(
v2

m
2

)
−

v2
θ

r
sin (φ)

)
+ vm

dp
dm

= −2τwv
b

cos (α)2 (A40)

ρvm

(
d

dm

(
v2

θ

2

)
+

v2
θ

r
sin (φ)

)
= −2τwv

b
sin (α)2 (A41)

Equation (A42) is found summing both expressions and it is known as the mechanical energy
equation. This equation can be viewed as the transport equation for kinetic energy. The physical
interpretation is that the fluid is decelerated (decreasing kinetic energy) by positive pressure gradients
and viscous forces.

ρvm
d

dm

(
v2

m
2

+
v2

θ

2

)
= −vm

dp
dm
− 2τwv

b
(A42)

Appendix A.5.3. Thermal Energy

The thermal energy equation is derived subtracting the mechanical energy equation,
Equation (A42), from the total energy equation, Equation (A39).

ρvm
d

dm

(
e +

p
ρ

)
= vm

dp
dm

+
2
b
(τwv + q̇w) (A43)

Equation (A43) can be simplified using the quotient rule for differentiation to reach Equation (A44).

ρvm

(
de
dm
− p

ρ2
dρ

dm

)
=

2
b
(τwv + q̇w) (A44)

Equation (A44) is known as the thermal energy equation and its physical interpretation is that the
internal energy is increased due to viscous dissipation and heat transfer, as well as to the deformation
of the fluid (product of pressure and density gradient).

The internal energy can be expressed in terms of pressure and density assuming a general
equation of state of the form e = e(p, ρ). First consider the Gibbs relation between thermodynamic
properties, Equation (A45), and insert the exact differential of internal energy given by Equation (A46)
to reach Equation (A47).

Tds = de− p
ρ2 dρ (A45)

de =
(

∂e
∂p

)
ρ

dp +

(
∂e
∂ρ

)
p

dρ (A46)

Tds =
(

∂e
∂p

)
ρ

dp +

[(
∂e
∂ρ

)
p
− p

ρ2

]
dρ (A47)

This equation reduces to Equation (A48) for an isentropic process and, since the speed of sound is
defined as a2 =

(
∂p
∂ρ

)
s
, we find that the speed of sound and the derivatives of the internal energy are

related according to Equation (A49).

0 =

(
∂e
∂p

)
ρ

(
∂p
∂ρ

)
s
+

[(
∂e
∂ρ

)
p
− p

ρ2

]
(A48)

a2 =

(
∂e
∂ρ

)
p
− p

ρ2(
∂e
∂p

)
ρ

(A49)
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Equation (A49) can be used to simplify the thermal energy equation given by Equation (A44).
First, replace the differential of internal energy given by Equation (A46) to find Equation (A50).

ρvm

((
∂e
∂p

)
ρ

dp
dm

+

[(
∂e
∂ρ

)
p
− p

ρ2

]
dρ

dm

)
=

2
b
(τwv + q̇w) (A50)

Now divide this expression by
(

∂e
∂p

)
ρ

and use Equation (A49) to find Equation (A51), which is

the alternative version of the energy equation that we wanted to prove.

ρvm
dp
dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b
(

∂e
∂p

)
ρ

(A51)

Appendix A.6. Transport Equation for Entropy

The transport equation for entropy is not required to model the flow within the diffuser. However,
it is interesting to consider this equation to compute the rate of entropy generation. This is useful to:
(1) check that the entropy generation is caused by viscous forces and heat transfer at a finite temperature
difference and (2) assess that the computation of entropy using the rate of entropy generation and the
equations of state is consistent (see Section 3 on model verification).

The integral form of the entropy balance equation is given by Equation (A52). This equation
indicates that the rate of change of entropy within the control volume plus the net flow rate of entropy
leaving the control volume is equal to the net flow rate of entropy entering the control volume due to
heat transfer plus the rate of entropy generation due to irreversibilities.∫

CV

∂

∂t
(ρs) dV +

∫
CS

ρs (v · n) dS = −
∫

CS

1
T

(q̇ · n) dS +
∫

CV
σ̇ dV (A52)

The left hand side of Equation (A52) is formulated in differential form, Equation (A53), by making
the identification η = s in the general transport equation, Equation (A23).

∫
CV

∂

∂t
(ρs) dV +

∫
CS

ρs (v · n) dS = ρ

[
∂s
∂t

+ vm
∂s
∂m

+
vθ

r
∂s
∂θ

]
dV (A53)

The entropy flow due to heat transfer is computed according to Equation (A54). This equation
only accounts for the heat flux at the walls q̇w at temperature Tw and ignores the heat transfer in the
meridional and tangential directions.

−
∫

CS

1
T

(q̇ · n) dS ≈ 2q̇w

Tw
r dθdm (A54)

The entropy generation term is approximated according to Equation (A55).∫
CV

σ̇ dV ≈ σ̇ dV (A55)

Collecting all terms and dividing by dV, the entropy transport equation is given
by Equation (A56).

ρ

(
∂s
∂t

+ vm
∂s
∂m

+
vθ

r
∂s
∂θ

)
=

2
b

q̇w

Tw
+ σ̇ (A56)
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The final form of the entropy transport equation, Equation (A57), is found assuming that the flow
is steady and axisymmetric. The partial differentials were replaced by total differentials because the
only variation is along the meridional direction.

ρvm
∂s
∂m

=
2
b

q̇w

Tw
+ σ̇ (A57)

Entropy Generation

Inserting the entropy, Equation (A57), and energy, Equation (A44), transport equations intro the
Gibbs relation, Equation (A45), it is possible to find the expression for the rate of entropy generation,
Equation (A58).

σ̇ =
2

b T

[
(τwv +

(
1− T

Tw

)
q̇w

]
(A58)

Equation (A58) indicates that the one-dimensional model predicts that the entropy generation
is caused by viscous stress and heat transfer at a finite temperature difference. This is satisfactory,
as these are the two mechanisms that lead to entropy generation in the real flow that we are tying to
model. It is interesting to note that if the work done by viscous stress at the walls was not neglected,
the viscous stress would not lead to entropy generation (clearly, an unsatisfactory result). This is
because the friction force was modeled as a body force and body forces do not lead to entropy
generation, for instance, gravity force or Coriolis acceleration.
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