Journal Description
Acoustics
Acoustics
is a peer-reviewed, open access journal on acoustics science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), and other databases.
- Reliable Service: rigorous peer review and professional production.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.2 days after submission; acceptance to publication is undertaken in 5.8 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Extra Benefits: no space constraints, no color charges. Free English editing service for accepted papers.
Latest Articles
Acknowledgment to the Reviewers of Acoustics in 2022
Acoustics 2023, 5(1), 120-121; https://doi.org/10.3390/acoustics5010007 - 20 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
GIS Based Road Traffic Noise Mapping and Assessment of Health Hazards for a Developing Urban Intersection
by
, , , , , , and
Acoustics 2023, 5(1), 87-119; https://doi.org/10.3390/acoustics5010006 - 13 Jan 2023
Abstract
Determination of health hazards of noise pollution is a challenge for any developing city intersection. The people working at roadside open-air shops or near the congested roads of any intersection face intense noise pollution. It becomes very difficult to efficiently determine the hazards
[...] Read more.
Determination of health hazards of noise pollution is a challenge for any developing city intersection. The people working at roadside open-air shops or near the congested roads of any intersection face intense noise pollution. It becomes very difficult to efficiently determine the hazards of noise on the health of people living near the intersection. An attempt was made to determine the noise-induced health hazards of the developing city of Bahadurpur, UP, India. The noise levels were monitored over 17 station points of the intersection for three months at different times of the day. Equivalent noise level (Leq) maps were determined within an accuracy of ±4dB. Areas adjacent to intersections indicated noise exposure levels close to 100 dB. Health hazards for the people of the intersection were determined through the testing of auditory and non-auditory health parameters for 100 people. A total of 75–92% of the people who work/live near the noisy intersection were found to be suffering from hearing impairment, tinnitus, sleep disturbance, cardiovascular diseases, hypertension, etc. Whether the recorded health hazards were indeed related to noise exposure was confirmed by testing the health parameters of people from the nearby and less noisy area of Pure Ganga. The nearby site reported mild hazards to the health of the population. An alarming level of hearing impairment was prevalent in the noisy Bahadurpur intersection (79–95%) compared to the same in Pure Ganga (13–30%). The estimated noise-induced health hazards were also compared for noisy and less-noisy study sites using ANOVA statistics. The results suggested that the health hazards reported in the two sites are not similar. Further, the severe hazards to people’s health at the underdeveloped intersection were found to be primarily caused by the intense exposure to noise.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effect of Stimuli Level on Distortion Product Otoacoustic Emission in Normal Hearing Adults
Acoustics 2023, 5(1), 72-86; https://doi.org/10.3390/acoustics5010005 - 10 Jan 2023
Abstract
The goal of this study is to compare three of the most commonly used primary-level relation paradigms (i.e., Scissors, Boys Town ‘Optimal’, and Equal-Level) in generation of distortion product otoacoustic emissions (DPOAEs) in normal hearing adults. The generator and reflection components were extracted
[...] Read more.
The goal of this study is to compare three of the most commonly used primary-level relation paradigms (i.e., Scissors, Boys Town ‘Optimal’, and Equal-Level) in generation of distortion product otoacoustic emissions (DPOAEs) in normal hearing adults. The generator and reflection components were extracted from DPOAEs in each paradigm. The generator and reflection component levels and input/output (I/O) functions were compared across paradigms and primary-tone levels. The results showed a different I/O function growth behavior across frequency and levels among paradigms. The Optimal paradigm showed a systematic change in the generator and reflection component levels and I/O slopes across primary levels among subjects. Moreover, the levels and slopes in the Optimal paradigm were more distinct across levels with less variations across frequency leading to a systematic change in the DPOAE fine structure across levels. The I/O functions were found to be more sensitive to the selected paradigm; especially the I/O function for the reflection component. The I/O functions of the reflection components showed large variability across frequencies due to different frequency shifts in their microstructure depending on the paradigm. The findings of this study suggested the Optimal paradigm as the proper primary-level relation to study cochlear amplification/compression. The findings of this study shows that care needs to be taken in comparing the findings of different studies that generated DPOAEs with a different level-relation paradigm.
Full article
(This article belongs to the Special Issue Acoustics in Biomedical Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Study of Tire–Pavement Noise Acoustic Performance in Resilient Road Pavement Made of Strain-Hardening Cementitious Composites
by
, , , , , , and
Acoustics 2023, 5(1), 57-71; https://doi.org/10.3390/acoustics5010004 - 09 Jan 2023
Abstract
A modified strain-hardening cementitious composite (SHCC) material, fabricated using corundum aggregates (SHCC-Cor), has been proposed for roadway applications as it offers high structural performance and high skid resistance. However, the acoustic performance of SHCC is unclear and has not been well studied in
[...] Read more.
A modified strain-hardening cementitious composite (SHCC) material, fabricated using corundum aggregates (SHCC-Cor), has been proposed for roadway applications as it offers high structural performance and high skid resistance. However, the acoustic performance of SHCC is unclear and has not been well studied in the past. Theoretically, SHCC may not provide the optimum solution in acoustic performance as it provides a low texture profile, high density, and low porosity. In this study, the acoustic performance of pavement slabs made of SHCC and modified SHCC-Cor are investigated using a nondestructive method to determine the surface roughness (macro texture) of slab surfaces. The pavement–tire noise level was then simulated using SPERoN software. As result, the noise level coming from the pavement made of SHCC could be up to 65 dB(A), while the noise level for SHCC-Cor increased up to 69.2 dB(A) because of the lower shape factor (G) due to a rougher surface as a result of the existence of corundum aggregate on the SHCC surface. The aeroacoustics were also increased compared to the SHCC slab. The modification of SHCC-Cor by introducing grooves (SHCC-Cor-Gro) successfully reduced the sound level coming from the vibration.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of the Change of Acoustic Pressure in an Element of Acoustic Barrier with an Elliptical Shape
Acoustics 2023, 5(1), 46-56; https://doi.org/10.3390/acoustics5010003 - 31 Dec 2022
Abstract
In the presented article we have investigated the variation of the sound pressure level in characteristic areas around an element of an acoustic barrier with an elliptical shape at different frequencies (from 100 Hz to 2000 Hz). The variation of the sound pressure
[...] Read more.
In the presented article we have investigated the variation of the sound pressure level in characteristic areas around an element of an acoustic barrier with an elliptical shape at different frequencies (from 100 Hz to 2000 Hz). The variation of the sound pressure level in four characteristic areas located on the axis of symmetry of the acoustic barrier element is investigated. The purpose of the research is to determine in which of the areas it is most efficient to place devices for generating electrical energy from acoustic noise. The results were analyzed and relevant conclusions were drawn.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessReview
Intangible Mosaic of Sacred Soundscapes in Medieval Serbia
Acoustics 2023, 5(1), 28-45; https://doi.org/10.3390/acoustics5010002 - 27 Dec 2022
Abstract
Religious practice in Serbia has taken place using both indoors and outdoors sacred sites ever since the adoption of Christianity in medieval times. However, previous archaeoacoustic research was focused on historic church acoustics, excluding the open-air soundscapes of sacred sites. The goal of
[...] Read more.
Religious practice in Serbia has taken place using both indoors and outdoors sacred sites ever since the adoption of Christianity in medieval times. However, previous archaeoacoustic research was focused on historic church acoustics, excluding the open-air soundscapes of sacred sites. The goal of this review paper is to shed light on the varieties of sacred soundscapes that have supported the various needs of Orthodox Christian practice in medieval Serbia. First, in relation to the acoustic requirements of the religious service, we compare the acoustic properties of masonry and wooden churches based on the published archaeoacoustic studies of medieval churches and musicological studies of the medieval art of chanting. Second, we provide an overview of the ethnological and historical studies that address the outdoor sacred soundscapes and investigate the religious sound markers of large percussion instruments, such as bells and semantra, the open-air litany procession that has been practiced during the annual celebration of a patron saint’s day in rural areas, and the medieval assemblies that took place on the sacred sites. This paper finally points out that the archaeoacoustic studies of sacred soundscapes should not be limited to church acoustics but also include open-air sacred sites to provide a complete analysis of the aural environment of religious practice and thus contribute to understanding the acoustic intention of medieval builders, as well as the aural experience of both clergy and laity.
Full article
(This article belongs to the Special Issue Acoustics, Soundscapes and Sounds as Intangible Heritage)
►▼
Show Figures

Figure 1
Open AccessArticle
A Hybrid Multistep Procedure for the Vibroacoustic Simulation of Noise Emission from Wind Turbines
Acoustics 2023, 5(1), 1-27; https://doi.org/10.3390/acoustics5010001 - 22 Dec 2022
Abstract
This paper proposes an efficient hybrid analytical-computational approach for the simulation of mechanical vibrations and sound radiation in wind turbine drive trains.The computational procedure encompasses the detailed modeling of vibrational sources and structural sound paths as well as the major panels of airborne
[...] Read more.
This paper proposes an efficient hybrid analytical-computational approach for the simulation of mechanical vibrations and sound radiation in wind turbine drive trains.The computational procedure encompasses the detailed modeling of vibrational sources and structural sound paths as well as the major panels of airborne noise radiation. The angle-varying mesh stiffness is obtained from a series of quasi-static finite element simulations. A novel procedure is proposed to obtain the time-varying mesh stiffness at fluctuating speed. The varying mesh stiffness is introduced as a parametric excitation in an analytical gear model, and the Fourier-transformed results are used as vibrational sources in a finite-element-based harmonic response analysis of the drive train. The present paper focuses on the modeling of gear contact and gearbox vibrations. The models and procedures are outlined, and computational results are compared to physical measurements on a 2.5 MW wind turbine. The results are in good qualitative agreement at tonal frequencies. This is particularly the case at fluctuating speed, where both the simulation and the measurement show the characteristic effect of frequency modulation. The computational procedure has been expanded to the whole drive train and is effectively applied in the conception and evaluation of design measures for the reduction of tonal amplitudes.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
A Modification of the Monte Carlo Filtering Approach for Correcting Negative SEA Loss Factors
by
and
Acoustics 2022, 4(4), 1028-1044; https://doi.org/10.3390/acoustics4040063 - 16 Dec 2022
Abstract
Monte Carlo Filtering (MCF) is one of the methods of Experimental Statistical Energy Analysis (E-SEA), which allows the correction of negative LFs (Loss Factors). In this article, a modification of the MCF method, called DESA (Diagonal Expansion of the Search Area), is proposed.
[...] Read more.
Monte Carlo Filtering (MCF) is one of the methods of Experimental Statistical Energy Analysis (E-SEA), which allows the correction of negative LFs (Loss Factors). In this article, a modification of the MCF method, called DESA (Diagonal Expansion of the Search Area), is proposed. The technique applies a non-uniform extension of the search area when generating a population of normalized energy matrices. The degree of expansion of the search area is controlled by the Diagonal Penalty Factor (DPF). The authors demonstrated the method’s effectiveness on a system that could not be identified in several frequency bands by the classical MCF method. After applying DESA, it was possible to fill in the problematic bands that were missing CLF (coupling loss factor) and DLF (damping loss factor) values. The paper also proposes a way to minimize the errors introduced by using overly high DPF values.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Damping on Oscillation Patterns on the Plain Piano Soundboard
by
and
Acoustics 2022, 4(4), 1013-1027; https://doi.org/10.3390/acoustics4040062 - 02 Dec 2022
Abstract
The influence of internal damping on the vibration of a piano soundboard is investigated using a Finite-Difference Time Domain (FDTD) physical model and experimental measurements. The damping constant of the model is varied according to a range similar to those found with measurements
[...] Read more.
The influence of internal damping on the vibration of a piano soundboard is investigated using a Finite-Difference Time Domain (FDTD) physical model and experimental measurements. The damping constant of the model is varied according to a range similar to those found with measurements on a real grand piano at different production stages. With strong damping, a clear driving-point dependency of the forced string oscillation on the oscillation pattern of the soundboard is found. When decreasing the damping, this driving-point dependency is decreasing, nevertheless, it is still present. High damping, therefore, decreases soundboard vibration when strings drive the soundboard at the soundboard’s eigenfrequencies. However, such large damping increases soundboard vibrations when strings drive the soundboard at frequencies which are not eigenfrequencies. Therefore, strong damping smooths out the frequency response spectrum of an instrument. Extreme damping without any presence of distinct eigenmodes leads to a radiation of the strings sound spectrum without soundboard filtering. Low damping leads to a strong influence of the soundboard on the string’s radiated sound. Therefore, the amount of soundboard characteristics can be designed to alter internal damping process by choice of materials, including wood or varnish, and geometry. Additionally, damping reduces the presence of ’dead spots’, notes which are considerably lower in volume compared to other notes.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhancement of Guided Wave Detection and Measurement in Buried Layers of Multilayered Structures Using a New Design of V(z) Acoustic Transducers
by
and
Acoustics 2022, 4(4), 996-1012; https://doi.org/10.3390/acoustics4040061 - 15 Nov 2022
Abstract
This paper presents the possibility of enhancement of the generation and detection of poorly energetic acoustic-guided waves in multilayered structures using a new design for a V(z) transducer. By defining a modified V(z) transducer composed of segmented piezoelectric elements,
[...] Read more.
This paper presents the possibility of enhancement of the generation and detection of poorly energetic acoustic-guided waves in multilayered structures using a new design for a V(z) transducer. By defining a modified V(z) transducer composed of segmented piezoelectric elements, the acoustical energy can be directed towards specific angles in such a way as to generate guided waves that are poorly energetic. By comparing the results using this new design to those obtained with a classical V(z) transducer, it is shown that the generation and detection of such waves is greatly improved, especially for poorly energetic waves that belong to a buried layer in a multilayered structure. This is especially seen on the components of the spectra of V(z). The modeling of the modified V(z) signature for a multi-element focused transducer is widely detailed first. Then, in order to illustrate the advantages of our proposed method, a three-layer structure (aluminum/epoxy/steel) is discussed. The interest of this method for the characterization of elastic properties of “buried” layers through specific guided waves that are detected with great difficulty—or even not at all—with a classical V(z) transducer is demonstrated, especially for the A0 and S0 modes corresponding to the steel layer inside the three-layer structure. In this study, we also develop a specific tracking method for particular guided waves possessing large phase velocity variations over the considered frequency range, as is the case for the S0 mode of the steel sub-layer.
Full article
(This article belongs to the Special Issue Opto/Photoacoustic for Imaging, Material Characterization and Nondestructive Evaluation)
►▼
Show Figures

Figure 1
Open AccessArticle
Temporal Howling Detector for Speech Reinforcement Systems
by
and
Acoustics 2022, 4(4), 967-995; https://doi.org/10.3390/acoustics4040060 - 15 Nov 2022
Abstract
In this paper, we address the problem of howling detection in speech reinforcement system applications for utilization in howling control mechanisms. A general speech reinforcement system acquires speech from a speaker’s microphone, and delivers a reinforced speech to other listeners in the same
[...] Read more.
In this paper, we address the problem of howling detection in speech reinforcement system applications for utilization in howling control mechanisms. A general speech reinforcement system acquires speech from a speaker’s microphone, and delivers a reinforced speech to other listeners in the same room, or another room, through loudspeakers. The amount of gain that can be applied to the acquired speech in the closed-loop system is constrained by electro-acoustic coupling in the system, manifested in howling noises appearing as a result of acoustic feedback. A howling detection algorithm aims to early detect frequency-howls in the system, before the human ear notices. The proposed algorithm includes two cascaded stages: Soft Howling Detection and Howling False-Alarm Detection. The Soft Howling Detection is based on the temporal magnitude-slope-deviation measure, identifying potential candidate frequency-howls. Inspired by the temporal approach, the Howling False-Alarm Detection stage considers the understanding of speech-signal frequency components’ magnitude behavior under different levels of acoustic feedback. A comprehensive howling detection performance evaluation process is designed, examining the proposed algorithm in terms of detection accuracy and the time it takes for detection, under a devised set of howling scenarios. The performance improvement of the proposed algorithm, with respect to a plain magnitude-slope-deviation-based method, is demonstrated by showing faster detection response times over a set of howling change-rate configurations. The two-staged proposed algorithm also provides a significant recall improvement, while improving the precision decrease via the Howling False-Alarm Detection stage.
Full article
(This article belongs to the Special Issue Acoustics, Speech and Signal Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
The Spherical Harmonic Family of Beampatterns
by
and
Acoustics 2022, 4(4), 958-966; https://doi.org/10.3390/acoustics4040059 - 15 Nov 2022
Abstract
The free space solution to the wave equation in spherical coordinates is well known as a separable product of functions. Re-examination of these functions, particularly the sums of spherical Bessel and harmonic functions, reveals behaviors which can produce a range of useful beampatterns
[...] Read more.
The free space solution to the wave equation in spherical coordinates is well known as a separable product of functions. Re-examination of these functions, particularly the sums of spherical Bessel and harmonic functions, reveals behaviors which can produce a range of useful beampatterns from radially symmetric sources. These functions can be modified by several key parameters which can be adjusted to produce a wide-ranging family of beampatterns, from the axicon Bessel beam to a variety of unique axial and lateral forms. We demonstrate that several special properties of the simple sum over integer orders of spherical Bessel functions, and then the sum of their product with spherical harmonic functions specifying the free space solution, lead to a family of useful beampatterns and a unique framework for designing them. Examples from a simulation of a pure tone 5 MHz ultrasound configuration demonstrate strong central axis concentration, and the ability to modulate or localize the axial intensity with simple adjustment of the integer orders and other key parameters related to the weights and arguments of the spherical Bessel functions.
Full article
(This article belongs to the Collection Featured Position and Review Papers in Acoustics Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Accelerated Conjugate Gradient for Second-Order Blind Signal Separation
by
and
Acoustics 2022, 4(4), 948-957; https://doi.org/10.3390/acoustics4040058 - 11 Nov 2022
Abstract
This paper proposes a new adaptive algorithm for the second-order blind signal separation (BSS) problem with convolutive mixtures by utilising a combination of an accelerated gradient and a conjugate gradient method. For each iteration of the adaptive algorithm, the search point and the
[...] Read more.
This paper proposes a new adaptive algorithm for the second-order blind signal separation (BSS) problem with convolutive mixtures by utilising a combination of an accelerated gradient and a conjugate gradient method. For each iteration of the adaptive algorithm, the search point and the search direction are obtained based on the current and the previous iterations. The algorithm efficiently calculates the step size for the accelerated conjugate gradient algorithm in each iteration. Simulation results show that the proposed accelerated conjugate gradient algorithm with optimal step size converges faster than the accelerated descent algorithm and the steepest descent algorithm with optimal step size while having lower computational complexity. In particular, the number of iterations required for convergence of the accelerated conjugate gradient algorithm is significantly lower than the accelerated descent algorithm and the steepest descent algorithm. In addition, the proposed system achieves improvement in terms of the signal to interference ratio and signal to noise ratio for the dominant speech outputs.
Full article
(This article belongs to the Special Issue Acoustics, Speech and Signal Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
Correlation between Seismic Waves Velocity Changes and the Occurrence of Moderate Earthquakes at the Bending of the Eastern Carpathians (Vrancea)
Acoustics 2022, 4(4), 934-947; https://doi.org/10.3390/acoustics4040057 - 01 Nov 2022
Abstract
Seismic velocity is the geophysical property that has a key role in characterizing dynamic processes and the state of the stress around the faults, providing valuable information regarding the change in the tectonic regime. The stress in the crust is an important indicator
[...] Read more.
Seismic velocity is the geophysical property that has a key role in characterizing dynamic processes and the state of the stress around the faults, providing valuable information regarding the change in the tectonic regime. The stress in the crust is an important indicator of the possible occurrence of a major earthquake, and the variation of seismic velocities, in time, can provide a clearer picture on the tectonic processes taking place in the region. In the crust, velocities change before, during, and after earthquakes through several mechanisms related to fault deformations, pore pressure, stress changes, and recovery processes. In this study, we investigate the possible correlation between the changes of seismic velocities (Vp/Vs) in time and the occurrence of moderate size crustal and intermediate depth earthquakes from the Vrancea region. Our findings show that there are no significant variations in Vp/Vs for the intermediate depth earthquakes, while crustal events have decreased seismic activity prior to the main earthquake and no high Vp/Vs anomalies. Our results indicate key aspects, and such analyses should be carried out in real-time to continuously explore any unusual pattern pointed out by the seismic velocity changes. Vp/Vs and their standard errors can also be used to describe seismic activity patterns that shape the tectonic evolution of the area.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
Flow Dynamics and Acoustics from Glottal Vibrations at Different Frequencies
Acoustics 2022, 4(4), 915-933; https://doi.org/10.3390/acoustics4040056 - 28 Oct 2022
Abstract
Glottal vibration is fundamental to breathing-related disorders and respiratory sound generation. However, responses of the flow and acoustics to glottal vibrations of different frequencies are unclear. The objective of this study is to numerically evaluate the influences of glottal vibration frequencies on inspiratory
[...] Read more.
Glottal vibration is fundamental to breathing-related disorders and respiratory sound generation. However, responses of the flow and acoustics to glottal vibrations of different frequencies are unclear. The objective of this study is to numerically evaluate the influences of glottal vibration frequencies on inspiratory airflow dynamics and flow-induced sound signals; this is different from normal phonation that is driven by controlled expiratory flows. A computational model was developed that comprised an image-based mouth–throat–lung model and a dynamic glottis expanding/contracting following a sinusoidal waveform. Large Eddy simulations were used to solve the temporal and spatial flow evolutions, and pressure signals were analyzed using different transform algorithms (wavelet, Hilbert, Fourier, etc.). Results show that glottal vibrations significantly altered the flows in the glottis and trachea, especially at high frequencies. With increasing vibration frequencies, the vortices decreased in scale and moved from the main flow to the walls. Phase shifts occurred between the glottis motion and glottal flow rates for all frequencies considered. Due to this phase shift, the pressure forces resisted the glottal motion in the first half of contraction/expansion and assisted the glottal motion in the second half of contraction/expansion. The magnitude of the glottal flow fluctuation was approximately linear with the vibration frequency (~f0), while the normal pressure force increased nonlinearly with the frequency (~f01.85). Instantaneous pressure signals were irregular at low vibration frequencies (10 and 20 Hz) but became more regular with increasing frequencies in the pressure profile, periodicity, and wavelet-transformed parameters. The acoustic characteristics specific to the glottal vibration frequency were explored in temporal and frequency domains, which may be used individually or as a combination in diagnosing vocal fold dysfunction, snoring, sleep apnea, or other breathing-related diseases.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
Resonant Metasurfaces with a Tangential Impedance
Acoustics 2022, 4(4), 903-914; https://doi.org/10.3390/acoustics4040055 - 21 Oct 2022
Abstract
Metasurfaces formed by monopole and dipole resonators are studied theoretically. The monopole resonators are Helmholtz resonators or membranes vibrating on the first eigenfrequency; the dipole ones are spheres on springs or membranes vibrating on the second eigenfrequency. It is shown that acoustic properties
[...] Read more.
Metasurfaces formed by monopole and dipole resonators are studied theoretically. The monopole resonators are Helmholtz resonators or membranes vibrating on the first eigenfrequency; the dipole ones are spheres on springs or membranes vibrating on the second eigenfrequency. It is shown that acoustic properties of the metasurface formed by the built-in monopole resonators can be described by an equivalent impedance, which characterizes a normal forcing to the surface, whereas this impedance is not suitable for the metasurface formed by the dipole resonators, because motion of the metasurface is excited by a forcing tangential to the surface. For such boundaries, a new characteristic named “tangential impedance” is proposed. This is a ratio of the second derivative of the sound pressure along a coordinate tangential to the boundary to the normal velocity of the boundary. The dipole metasurface can be described by the equivalent tangential impedance. Reflection and absorption coefficients of the surface with the tangential impedance are found for a harmonic plane wave in dependance of an incidence angle. It is found that the angular dependences of the coefficients are very different for the monopole and dipole metasurfaces.
Full article
(This article belongs to the Special Issue Resonators in Acoustics)
►▼
Show Figures

Figure 1
Open AccessArticle
Experimental Study of the Acoustic Cavitation Threshold in Sunflower Oil Depending on Different Impact Regime
Acoustics 2022, 4(4), 894-902; https://doi.org/10.3390/acoustics4040054 - 17 Oct 2022
Abstract
►▼
Show Figures
In engineering problems associated with acoustic wave propagation in a liquid, cavitation onset could be an adverse phenomenon, or, conversely, a required process. In both cases, knowledge of the ultrasonic parameters that lead to cavitation onset under given external conditions is relevant and
[...] Read more.
In engineering problems associated with acoustic wave propagation in a liquid, cavitation onset could be an adverse phenomenon, or, conversely, a required process. In both cases, knowledge of the ultrasonic parameters that lead to cavitation onset under given external conditions is relevant and necessary for solving both fundamental and practical problems. The present work proposes experimental results of studying the threshold of acoustic cavitation, which was implemented at different ultrasound frequencies with a change in external pressure, power of transducer and temperature of the liquid. The experiments were carried out for sunflower oil. The test findings demonstrated how the cavitation threshold changes with varying the power of ultrasound exposure in time. In addition, the effect of external pressure fluctuations on cavitation onset was investigated. The obtained results contribute to the understanding of cavitation processes and could be necessary for verification of theoretical models.
Full article

Figure 1
Open AccessArticle
One-Way Wave Operator
Acoustics 2022, 4(4), 885-893; https://doi.org/10.3390/acoustics4040053 - 10 Oct 2022
Abstract
The second-order partial differential wave Equation (Cauchy’s first equation of motion), derived from Newton’s force equilibrium, describes a standing wave field consisting of two waves propagating in opposite directions, and is, therefore, a “two-way wave equation”. Due to the second order differentials analytical
[...] Read more.
The second-order partial differential wave Equation (Cauchy’s first equation of motion), derived from Newton’s force equilibrium, describes a standing wave field consisting of two waves propagating in opposite directions, and is, therefore, a “two-way wave equation”. Due to the second order differentials analytical solutions only exist in a few cases. The “binomial factorization” of the linear second-order two-way wave operator into two first-order one-way wave operators has been known for decades and used in geophysics. When the binomial factorization approach is applied to the spatial second-order wave operator, this results in complex mathematical terms containing the so-called “Dirac operator” for which only particular solutions exist. In 2014, a hypothetical “impulse flow equilibrium” led to a spatial first-order “one-way wave equation” which, due to its first order differentials, can be more easily solved than the spatial two-way wave equation. To date the conversion of the spatial two-way wave operator into spatial one-way wave operators is unsolved. By considering the one-way wave operator containing a vector wave velocity, a “synthesis” approach leads to a “general vector two-way wave operator” and the “general one-way/two-way equivalence”. For a constant vector wave velocity the equivalence with the d’Alembert operator can be achieved. The findings are transferred to commonly used mechanical and electromagnetic wave types. The one-way wave theory and the spatial one-way wave operators offer new opportunities in science and engineering for advanced wave and wave field calculations.
Full article
(This article belongs to the Special Issue Elastic Wave Scattering in Heterogeneous Media)
►▼
Show Figures

Figure 1
Open AccessArticle
A Time-Domain Finite-Difference Method for Bending Waves on Infinite Beams on an Elastic Foundation
by
and
Acoustics 2022, 4(4), 867-884; https://doi.org/10.3390/acoustics4040052 - 05 Oct 2022
Abstract
To model the vibration and structure-borne sound excitation and propagation of a railway rail, it can be modeled as an infinite beam on an elastic foundation. Existing analytical or numerical models are either formulated in the frequency domain or consider only finite beams
[...] Read more.
To model the vibration and structure-borne sound excitation and propagation of a railway rail, it can be modeled as an infinite beam on an elastic foundation. Existing analytical or numerical models are either formulated in the frequency domain or consider only finite beams in the time domain. Therefore, a time-domain approach for bending wave propagation on an effectively infinite beam on an elastic foundation is proposed. The approach makes use of an implicit finite-difference method that allows for varying properties of the beam and the foundation along the length of the beam. Strategies for an efficient discretization are discussed. The method is validated against existing analytical models for a single layer and two layers, as well as continuous and discrete support. The results show very good agreement, and it can be concluded that the proposed method can be seen as a versatile method for simulating the behavior of a beam on different kinds of elastic foundations.
Full article
(This article belongs to the Special Issue Vibration and Noise)
►▼
Show Figures

Figure 1
Open AccessArticle
Horizontal and Vertical Voice Directivity Characteristics of Sung Vowels in Classical Singing
Acoustics 2022, 4(4), 849-866; https://doi.org/10.3390/acoustics4040051 - 01 Oct 2022
Cited by 1
Abstract
Singing voice directivity for five sustained German vowels /a:/, /e:/, /i:/, /o:/, /u:/ over a wide pitch range was investigated using a multichannel microphone array with high spatial resolution along the horizontal and vertical axes. A newly created dataset allows to examine voice
[...] Read more.
Singing voice directivity for five sustained German vowels /a:/, /e:/, /i:/, /o:/, /u:/ over a wide pitch range was investigated using a multichannel microphone array with high spatial resolution along the horizontal and vertical axes. A newly created dataset allows to examine voice directivity in classical singing with high resolution in angle and frequency. Three voice production modes (phonation modes) modal, breathy, and pressed that could affect the used mouth opening and voice directivity were investigated. We present detailed results for singing voice directivity and introduce metrics to discuss the differences of complex voice directivity patterns of the whole data in a more compact form. Differences were found between vowels, pitch, and gender (voice types with corresponding vocal range). Differences between the vowels /a:, e:, i:/ and /o:, u:/ and pitch can be addressed by simplified metrics up to about d2/D5/587 Hz, but we found that voice directivity generally depends strongly on pitch. Minor differences were found between voice production modes and found to be more pronounced for female singers. Voice directivity differs at low pitch between vowels with front vowels being most directional. We found that which of the front vowels is most directional depends on the evaluated pitch. This seems to be related to the complex radiation pattern of the human voice, which involves a large inter-subjective variability strongly influenced by the shape of the torso, head, and mouth. All recorded classical sung vowels at high pitches exhibit similar high directionality.
Full article
(This article belongs to the Special Issue Acoustics, Speech and Signal Processing)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Acoustics, Applied Sciences, Materials, Sensors, Buildings
Recent Advances in Structural Health Monitoring
Topic Editors: Giuseppe Lacidogna, Sanichiro Yoshida, Guang-Liang Feng, Jie Xu, Alessandro Grazzini, Gianfranco PianaDeadline: 31 March 2023
Topic in
Acoustics, Buildings, CivilEng, Climate, Energies, Environments, IJERPH, Sustainability
Built Environment and Human Comfort
Topic Editors: Wei Liu, Manuel Carlos Gameiro da Silva, Dayi LaiDeadline: 20 May 2023
Topic in
Acoustics, Crystals, Designs, Environments, Sustainability
Towards Sustainable and Liveable Cities: Recent Advances in Noise Control Measures
Topic Editors: Heow Pueh Lee, Linus Yinn Leng AngDeadline: 30 September 2024

Conferences
Special Issues
Special Issue in
Acoustics
Acoustics, Soundscapes and Sounds as Intangible Heritage
Guest Editors: Margarita Díaz-Andreu, Lidia Alvarez MoralesDeadline: 15 February 2023
Special Issue in
Acoustics
Acoustics, Speech and Signal Processing
Guest Editors: Anwar Ali, Asif Iqbal, Muhammad Naveed AmanDeadline: 31 March 2023
Special Issue in
Acoustics
Effects on Wildlife from Changing Soundscapes
Guest Editor: Rianna E. BurnhamDeadline: 28 April 2023
Special Issue in
Acoustics
Building Materials and Acoustics
Guest Editor: Haydar AygunDeadline: 20 May 2023
Topical Collections
Topical Collection in
Acoustics
Featured Position and Review Papers in Acoustics Science
Collection Editor: Jian Kang