Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (922)

Search Parameters:
Keywords = nanoformulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3193 KiB  
Article
Distinct In Vitro Effects of Liposomal and Nanostructured Lipid Nanoformulations with Entrapped Acidic and Neutral Doxorubicin on B16-F10 Melanoma and Walker 256 Carcinoma Cells
by Roxana Pop, Mădălina Nistor, Carmen Socaciu, Mihai Cenariu, Flaviu Tăbăran, Dumitriţa Rugină, Adela Pintea and Mihai Adrian Socaciu
Pharmaceutics 2025, 17(7), 904; https://doi.org/10.3390/pharmaceutics17070904 - 12 Jul 2025
Viewed by 234
Abstract
Background: Liposomes and, more recently, structured nanolipid particles have demonstrated effectiveness as carriers for delivering hydrophilic or lipophilic anticancer agents, enhancing their biocompatibility, bioavailability, and sustained release to target cells. Objective: Herein, four doxorubicin formulations—comprising either the acidic or neutral form—were encapsulated into [...] Read more.
Background: Liposomes and, more recently, structured nanolipid particles have demonstrated effectiveness as carriers for delivering hydrophilic or lipophilic anticancer agents, enhancing their biocompatibility, bioavailability, and sustained release to target cells. Objective: Herein, four doxorubicin formulations—comprising either the acidic or neutral form—were encapsulated into liposomes (Lipo) or nanostructured lipid carriers (NLCs) and characterized in terms of size, entrapment efficiency, morphology, and effects on two cancer cell lines (melanoma B16-F10 and breast carcinoma Walker 256 cells). Methods and Results: While liposomal formulations containing acidic doxorubicin displayed IC50 values ranging from 1.33 to 0.37 µM, NLC-based formulations, particularly NLC-Doxo@Ac, demonstrated enhanced cytotoxicity with IC50 values as low as 0.58 µM. Neutral Doxorubicin demonstrated lower cytotoxicity in both the nanoformulations and cell lines. Differences were also observed in their internalization patterns, cell-cycle impact, and apoptotic/necrotic effects. Compared to liposomes, NLCs exhibited distinct internalization patterns and induced stronger cell-cycle arrest and necrosis, especially in melanoma cells. Notably, NLC-Doxo@Ac outperformed liposomal counterparts in melanoma cells, while liposomal formulations showed slightly higher efficacy in Walker cells. Early and late apoptosis were more pronounced in Walker cells, whereas necrosis was more prominent in melanoma B16-F10 cells, particularly with the nanolipid formulations. Conclusions: These results correlated positively with cell-cycle measurements, highlighting the potential of NLCs as an alternative to liposomes for the delivery of neutral or acidic doxorubicin, particularly in tumor types that respond poorly to conventional formulations. Full article
Show Figures

Figure 1

30 pages, 2043 KiB  
Review
Berberine as a Bioactive Alkaloid: Multi-Omics Perspectives on Its Role in Obesity Management
by Bartłomiej Zieniuk and Magdalena Pawełkowicz
Metabolites 2025, 15(7), 467; https://doi.org/10.3390/metabo15070467 - 9 Jul 2025
Viewed by 324
Abstract
Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as Berberis and Coptis species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, [...] Read more.
Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as Berberis and Coptis species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, and adipokine networks, elucidating how these actions converge to suppress adipogenesis and improve insulin sensitivity. Metabolomic profiling reveals critical shifts in bile acid metabolism, short-chain fatty acid production, and mitochondrial function. Recent studies also highlight berberine’s anti-inflammatory effects and regulatory influence on glucose homeostasis. Despite its promise, challenges in oral bioavailability and drug interactions necessitate the development of advanced delivery strategies. We further discuss nanoformulations and multi-omics approaches, which integrate data from genomics, transcriptomics, proteomics, and metabolomics, provide new insights into berberine’s mechanisms, and may guide personalized therapeutic applications. While promising, further studies are needed to validate these findings in humans and translate them into effective clinical strategies. Full article
Show Figures

Figure 1

18 pages, 1034 KiB  
Article
Preparation and Characterization of Efficient and Safe Rotenone Solid Nanodispersion by Self-Emulsifying Technique
by Yunfei Zhang, Xuesheng Lin, Yunlong Qian, Mingda Qin, Shujing Zhang, Lanying Wang and Yanping Luo
Nanomaterials 2025, 15(14), 1056; https://doi.org/10.3390/nano15141056 - 8 Jul 2025
Viewed by 279
Abstract
Self-emulsifying solid nanodispersion technology is emerging as an attractive strategy to prepare new eco-friendly and efficient nano-formulations due to its simple, energy efficient and easy scale-up process. However, it is still unknown whether this technology can be employed to cope with the drawbacks [...] Read more.
Self-emulsifying solid nanodispersion technology is emerging as an attractive strategy to prepare new eco-friendly and efficient nano-formulations due to its simple, energy efficient and easy scale-up process. However, it is still unknown whether this technology can be employed to cope with the drawbacks of botanical insecticides including poor water solubility, rapid photodegradation and limited targeting efficiency. In this study, rotenone (Rot) was selected as a model of botanical insecticides, and its solid nanodispersion (Rot–SND) was prepared by a self-emulsifying method combined with parameter optimization. Our target nano-formulation, consisting of 5% Rot, 20% surfactant complexes of 8% Ethylan 992 and 12% EL–80, and 75% lactose, exhibited excellent storage stability and significantly improved the pseudo-solubility of Rot by at least 250 times. The average particle size and polydispersity index (PDI) of Rot–SND were determined to be 101.19 nm and 0.21, respectively. Rot–SND displayed smaller contact angles and greater retention on both cucumber and cabbage leaves than those of a commercial emulsifiable concentrates (ECs). Rot–SND was also more resistant to photodegradation, with a degradation rate reduced by 27.01% as compared with the ECs. In addition, the toxicity of Rot–SND towards Aphis gossypii was 3.01 times that of the ECs, with a median lethal concentration (LC50) of 1.45 µg a.i./mL. Under the field conditions, Rot–SND showed a prolonged duration for A. gossypii control, with a significantly higher control efficacy (88.10%) on the 10th day than that of the ECs (77.02%). Moreover, a 2.34-fold decline in the toxicity towards nontarget mosquito larvae was observed for Rot–SND as compared with the EC. Overall, for the first time, our results indicate the role of Rot–SND as an eco-friendly and efficient way to improve the solubility, foliar affinity, photostability, bioactivity and eco-safety of Rot. This research also provided a feasible strategy to prepare more eco-friendly botanical pesticide formulations of high efficiency. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 4010 KiB  
Article
Nano-Curcumin Mitigates Doxorubicin-Induced Reproductive Toxicity via Antioxidant, Anti-Apoptosis, and SIRT1-Modulating Effects in Rat Model
by Noha A. Alshuwayer, Qamraa H. Alqahtani, Marwa H. Hussein, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Toxics 2025, 13(7), 574; https://doi.org/10.3390/toxics13070574 - 8 Jul 2025
Viewed by 314
Abstract
Background: Doxorubicin (DOX) is a potent anti-cancer agent that is widely described in cancer treatment. However, its administration is often limited by its adverse effects, particularly its testicular toxicity, which can induce infertility in male patients. DOX-induced testicular damage is due to oxidative [...] Read more.
Background: Doxorubicin (DOX) is a potent anti-cancer agent that is widely described in cancer treatment. However, its administration is often limited by its adverse effects, particularly its testicular toxicity, which can induce infertility in male patients. DOX-induced testicular damage is due to oxidative stress, apoptosis, and inflammation. Nanocurcumin (NCR) is a nano-formulated edition of curcumin with a higher therapeutic potential. NCR has demonstrated antioxidant and anti-inflammatory properties. Methods: This study is designed to inspect the potential validity of NCR on DOX-induced testicular damage in male rats. We used thirty-two Wistar albino rats (150–200 g) and divided them into four groups. NCR (80 mg/kg/ dissolved in 1% CMC) was given orally by oral gavage for 14 days. A single dose of DOX (15 mg/kg) (i.p.) was injected on the 7th day of the experiment. Results: DOX treatment reduced the sperm viability and motility rate, cellular antioxidants, and gonadal hormones; it led to higher levels of inflammatory mediators, necrosis, and sloughing in seminiferous tubules. Conversely, NCR treatment significantly alleviated these side effects by improving sperm count/motility and reducing sperm abnormalities. The testicular function recovery was likely driven by stimulating the cytoprotective SIRT1/NF-κB pathway, depressing the testicular level of oxidative indicators such as MDA, TNF-α, iNOS, IL-1β, and NO, and increasing levels of antioxidants such as GSH and SOD. In addition, NCR contradicted the apoptotic changes by downregulating the pro-apoptotic signals Bax and caspase-3, while inducing Bcl-2 upregulation. Moreover, NCR increased levels of gonadal hormones, attenuated histological abnormalities, and preserved testicular structure when compared with the DOX group. Conclusions: NCR treatment can effectively ameliorate DOX-induced testicular toxicity. Full article
(This article belongs to the Special Issue Drug and Pesticides-Induced Oxidative Stress and Apoptosis)
Show Figures

Graphical abstract

22 pages, 1280 KiB  
Article
Development and Optimization of a Quercetin-Loaded Chitosan Lactate Nanoparticle Hydrogel with Antioxidant and Antibacterial Properties for Topical Skin Applications
by Raghda Yazidi, Majdi Hammami, Hamza Ghadhoumi, Ameni Ben Abdennebi, Sawssen Selmi, Kamel Zayani, Karima Horchani-Naifer, Iness Bettaieb Rebey and Moufida Saidani Tounsi
Cosmetics 2025, 12(4), 141; https://doi.org/10.3390/cosmetics12040141 - 3 Jul 2025
Viewed by 628
Abstract
Nanotechnology has revolutionized dermocosmetic innovation by improving the stability, bioavailability, and efficacy of active ingredients. In this study, we developed and optimized a novel xanthan gum-based hydrogel containing quercetin-loaded chitosan lactate nanoparticles for antioxidant and antimicrobial skincare applications. Chitosan was converted to its [...] Read more.
Nanotechnology has revolutionized dermocosmetic innovation by improving the stability, bioavailability, and efficacy of active ingredients. In this study, we developed and optimized a novel xanthan gum-based hydrogel containing quercetin-loaded chitosan lactate nanoparticles for antioxidant and antimicrobial skincare applications. Chitosan was converted to its lactate form to enhance water solubility and enable nanoparticle formation at physiological pH via ionic gelation with citric acid. The formulation was optimized using Box–Behnken response surface methodology to achieve minimal particle size and maximal zeta potential. The final gel was structured with xanthan gum as the gelling polymer, into which the optimized nanoparticles were incorporated to create a stable and bioactive hydrogel system. Encapsulation efficiency was measured separately to assess the effectiveness of drug loading. The optimized nanoparticles exhibited a mean diameter of 422.02 nm, a zeta potential of +29.49 mV, and a high quercetin encapsulation efficiency (76.9%), corresponding to the proportion of quercetin retained in the nanoparticle matrix relative to the total amount initially used in the formulation. Antioxidant assays (TAC, DPPH, and reducing power) confirmed superior radical-scavenging activity of the nanoformulation compared to the base hydrogel. Antibacterial tests showed strong inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with MIC values comparable to streptomycin. Accelerated stability studies demonstrated excellent physicochemical and microbiological stability over 60 days. This natural, bioactive, and eco-friendly formulation represents a promising platform for next-generation cosmeceuticals targeting oxidative stress and skin-related pathogens. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

19 pages, 2844 KiB  
Article
Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines
by Tatiane Roquete Amparo, Kamila de Fátima da Anunciação, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Ana Paula Moreira Barboza, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos, Glenda Nicioli da Silva and Geraldo Célio Brandão
Pharmaceutics 2025, 17(7), 868; https://doi.org/10.3390/pharmaceutics17070868 - 2 Jul 2025
Viewed by 291
Abstract
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has [...] Read more.
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has emerged as a potential nanocarrier for cancer therapy, including bladder cancer. The objective of this study was to develop and evaluate the effects of chitosan nanoparticles on bladder tumor cell lines. Methods: The nanoemulsion was prepared using the hot homogenization method, while the chitosan nanoparticles were obtained through the ionic gelation technique. The nanoformulations were characterized in terms of particle size and polydispersity index (PDI) using photon correlation spectroscopy, and zeta potential by electrophoretic mobility. Encapsulation efficiency was determined by ultracentrifugation, and the drug release was analyzed using the dialysis method. The antineoplastic potential was assessed using the MTT assay, and the safety profile was assessed through ex vivo analysis. Cellular uptake was determined by fluorescence microscopy. Results: The study demonstrated that both the chitosan-based nanoemulsion and nanospheres encapsulating lapachol exhibited appropriate particle sizes (around 160 nm), high encapsulation efficiency (>90%), and a controlled release profile (Korsmeyer–Peppas model). These nanoemulsion systems enhanced the antiproliferative activity of lapachol in bladder tumor cells, with the nanospheres showing superior cellular uptake. Histopathological analysis indicated the safety of the formulations when administered intravesically. Conclusions: The results suggest that chitosan nanoparticles may represent a promising alternative for bladder cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

18 pages, 8943 KiB  
Article
Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model
by Cínthia Caetano Bonatto, Ivy Garcez Reis, Dalila Juliana Silva Ribeiro, Raquel das Neves Almeida, Rafael Corrêa, Livia Pimentel Sant’Ana Dourado, Gabriel Pasquarelli-do-Nascimento, Kelly Grace Magalhães and Luciano Paulino Silva
Pharmaceuticals 2025, 18(7), 993; https://doi.org/10.3390/ph18070993 - 2 Jul 2025
Viewed by 319
Abstract
Background/Objectives: In recent years, silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties, which hold promise for various applications. However, concerns about their potential toxicity have also emerged, particularly regarding their impact on human and animal health. This study [...] Read more.
Background/Objectives: In recent years, silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties, which hold promise for various applications. However, concerns about their potential toxicity have also emerged, particularly regarding their impact on human and animal health. This study investigates the acute toxicological effects of AgNPs synthesized using a green route with an aqueous extract of a native Cerrado plant (AgNPs-Cb) in mice. Methods: The AgNPs-Cb were intravenously administered at a concentration of 64 µM, and the mice were euthanized after 24 h for the collection of blood and organ samples (liver, spleen, kidneys, and lungs) for hematological, biochemical, and histological analyses. Results: Hematological analysis, including complete blood count (CBC) and differential leukocyte count, showed no statistically significant alterations in the groups treated with AgNPs-Cb, Cb extract, and Ag+, compared with the control group (p < 0.05). Notably, only the Ag+ group exhibited a significant increase in red blood cell count and hematocrit levels, suggesting that the nanoformulation of silver might mitigate the hematological impact seen with free silver ions. Biochemical analyses of liver and kidney function markers also revealed no significant differences across the treatment groups. Conclusions: These findings indicate that AgNPs-Cb may offer a safer alternative for antimicrobial applications, reducing the risk of acute toxicity in mammals while maintaining efficacy against pathogens. Further studies are needed to explore the underlying mechanisms and long-term effects of AgNPs-Cb exposure. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Figure 1

27 pages, 2654 KiB  
Review
Bioactive Compound-Fortified Nanomedicine in the Modulation of Reactive Oxygen Species and Enhancement of the Wound Healing Process: A Review
by Popat Mohite, Abhijeet Puri, Shubham Munde, Nitin Ade, Aarati Budar, Anil Kumar Singh, Deepanjan Datta, Supachoke Mangmool, Sudarshan Singh and Chuda Chittasupho
Pharmaceutics 2025, 17(7), 855; https://doi.org/10.3390/pharmaceutics17070855 - 30 Jun 2025
Viewed by 479
Abstract
Wound healing is a complex biological process that involves the regulation of reactive oxygen species (ROS), which play a critical role in cellular signaling and tissue repair. While the dual nature of ROS means that maintaining controlled levels is essential for effective wound [...] Read more.
Wound healing is a complex biological process that involves the regulation of reactive oxygen species (ROS), which play a critical role in cellular signaling and tissue repair. While the dual nature of ROS means that maintaining controlled levels is essential for effective wound healing, excessive ROS production can hinder the recovery process. Bioactive compounds represent promising therapeutic candidates enriched with polyphenols, which are known for their high therapeutic properties and minimal adverse effects, and are thus highlighted as promising therapeutic candidates for wound healing due to their antioxidant properties. However, their clinical application is often limited due to challenges such as poor solubility and low bioavailability. To overcome this, the encapsulation of these compounds into nanocarriers has been proposed, which enhances their stability, facilitates targeted delivery, and allows for controlled release. The present review highlights emerging innovations in nanomedicine-based drug delivery of natural antioxidants for precise modulation of ROS in wound healing. Moreover, the review elaborates briefly on various in vitro and in vivo studies that assessed the ROS levels using different fluorescent dyes. By modulating ROS levels and improving the local microenvironment at wound sites, these bioactive-nanomedicine formulations can significantly accelerate the healing process of wounds. The review concludes by advocating for further research into optimizing these nano-formulations to maximize their potential in clinical settings, thereby improving therapeutic strategies for wound care and regeneration. Full article
(This article belongs to the Special Issue Biomaterials: Pharmaceutical Applications)
Show Figures

Figure 1

69 pages, 3775 KiB  
Review
Polysaccharide-Based Nanocarriers for Natural Antimicrobials: A Review
by Elena Kotenkova, Aleksandr Kotov and Maxim Nikitin
Polymers 2025, 17(13), 1750; https://doi.org/10.3390/polym17131750 - 24 Jun 2025
Viewed by 515
Abstract
Global concerns about environmental pollution, poor waste management, and the rise in antimicrobial resistance due to uncontrolled antibiotic use have driven researchers to seek alternative, multifaceted solutions. Plants, animals, microorganisms, and their processing wastes serve as valuable sources of natural biopolymers and bioactive [...] Read more.
Global concerns about environmental pollution, poor waste management, and the rise in antimicrobial resistance due to uncontrolled antibiotic use have driven researchers to seek alternative, multifaceted solutions. Plants, animals, microorganisms, and their processing wastes serve as valuable sources of natural biopolymers and bioactive compounds. Through nanotechnology, these can be assembled into formulations with enhanced antimicrobial properties, high safety, and low toxicity. This review explores polysaccharides, including chitosan, alginate, starch, pectin, cellulose, hemicellulose, gums, carrageenan, dextran, pullulan, and hyaluronic acid, used in nanotechnology, highlighting their advantages and limitations as nanocarriers. Addressing the global urgency for alternative antimicrobials, we examined natural compounds derived from plants, microorganisms, and animals, such as phytochemicals, bacteriocins, animal antimicrobial peptides, and proteins. Focusing on their protection and retained activity, this review discusses polysaccharide-based nanoformulations with natural antimicrobials, including nanoparticles, nanoemulsions, nanocapsules, nanoplexes, and nanogels. Special emphasis is placed on strategies and formulations for the encapsulation, entrapment, and conjugation of natural compounds using polysaccharides as protective carriers and delivery systems, including a brief discussion on their future applications, prospects, and challenges in scaling up. Full article
Show Figures

Figure 1

15 pages, 2149 KiB  
Article
Biofilm-Forming Lactic Acid Bacteria in Sausages: Isolation, Characterization, and Inhibition Using Eisenia bicyclis-Based Nanoparticles
by Do Kyung Oh, Du-Min Jo, Minji Kim, Jeong-Bin Jo, Ji-Hwan Choi, Jeong Mi Choi, Geum-Jae Jeong, Se Yun Jeong, Fazlurrahman Khan and Young-Mog Kim
Antibiotics 2025, 14(7), 637; https://doi.org/10.3390/antibiotics14070637 - 22 Jun 2025
Viewed by 350
Abstract
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to [...] Read more.
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to identify and characterize LAB strains from sausage products that are capable of biofilm formation, and to evaluate the inhibitory effects of E. bicyclis methanol extract, its ethyl acetate fraction, and phloroglucinol, as well as to synthesize AuNPs, and assess their efficacy in controlling biofilm formation. Methods: Slime or biofilm-producing LAB bacteria were isolated from commercial sausages and identified using 16S rRNA gene sequencing. Lactobacillus sakei S10, which can tolerate high salt concentrations and cold temperatures, was chosen as a representative strain. The isolates were subsequently tested for hemolytic activity, salt and temperature tolerance, and carbohydrate consumption patterns. To evaluate antibiofilm potential, marine-derived compounds from Eisenia bicyclis, such as phloroglucinol (PG), crude methanolic extracts, ethyl acetate fractions, and gold nanoparticle (AuNP) formulations, were tested in situ on sausage surfaces against L. sakei S10 and common pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The biofilm-inhibitory effects of the extracts, PG, and PG-AuNPs were estimated using the colony-counting method. Results: The PG-AuNPs had an average particle size of 98.74 nm and a zeta potential of −29.82 mV, indicating nanoscale dimensions and considerable colloidal stability. Structural analysis confirmed their spherical form and crystalline structure, as well as the presence of phenolic groups in both reduction and stabilization processes. Among the studied treatments, the PG and PG-AuNPs had the strongest antibiofilm activities, dramatically lowering biofilm biomass, particularly for P. aeruginosa and L. sakei S10. However, the inhibitory effects were less prominent in in situ conditions than in in vitro testing, highlighting the complexity of real food matrices. Conclusions: The results of this study indicate that polyphenolic compounds obtained from marine sources, particularly in nano-formulated forms, have a great deal of potential as natural antibiofilm products. Enhancing the microbiological safety of processed meat products and extending their shelf life could be accomplished through the application of these polyphenolic compounds in food packaging or surface treatments. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

25 pages, 1218 KiB  
Review
Probiotics in Nanotechnology-Driven Wound Healing: From Mechanistic Insight to Clinical Promise
by Milind Umekar, Anis Ahmad Chaudhary, Monali Manghani, Supriya Shidhaye, Pratiksha Khajone, Jayashri Mahore, Hassan Ahmad Rudayni and Rashmi Trivedi
Pharmaceutics 2025, 17(7), 805; https://doi.org/10.3390/pharmaceutics17070805 - 21 Jun 2025
Viewed by 691
Abstract
Chronic wounds, including diabetic foot ulcers and pressure sores, are becoming more prevalent due to aging populations and increased metabolic problems. These wounds often persist due to impaired healing, chronic inflammation, oxidative stress, and infections caused by multidrug-resistant pathogens, making conventional treatments—including antibiotics [...] Read more.
Chronic wounds, including diabetic foot ulcers and pressure sores, are becoming more prevalent due to aging populations and increased metabolic problems. These wounds often persist due to impaired healing, chronic inflammation, oxidative stress, and infections caused by multidrug-resistant pathogens, making conventional treatments—including antibiotics and antiseptics—largely inadequate. This creates an urgent need for advanced, biologically responsive therapies that can both combat infection and promote tissue regeneration. Probiotics have surfaced as a viable option owing to their capacity to regulate immune responses, impede pathogenic biofilms, and generate antibacterial and antioxidant metabolites. However, their clinical application is limited by poor viability, sensitivity to environmental conditions, and short retention at wound sites. Nanotechnology-based delivery systems address these limitations by protecting probiotics from degradation, enhancing site-specific delivery, and enabling controlled, stimuli-responsive release. Encapsulation techniques using materials like chitosan, PLGA, liposomes, nanogels, nanofibers, and microneedles have shown significant success in improving wound healing outcomes in preclinical and clinical models. This review summarizes the current landscape of chronic wound challenges and presents recent advances in probiotic-loaded nanotechnologies. It explores various nano-delivery systems, their mechanisms of action, biological effects, and therapeutic outcomes, highlighting the synergy between probiotics and nanocarriers as a novel, multifaceted strategy for managing chronic wounds. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

22 pages, 2633 KiB  
Review
Implications of Anaphylaxis Following mRNA-LNP Vaccines: It Is Urgent to Eliminate PEG and Find Alternatives
by Jinxing Song, Dihan Su, Hongbing Wu and Jeremy Guo
Pharmaceutics 2025, 17(6), 798; https://doi.org/10.3390/pharmaceutics17060798 - 19 Jun 2025
Viewed by 2024
Abstract
The mRNA vaccine has protected humans from the Coronavirus disease 2019 (COVID-19) and has taken the lead in reversing the epidemic efficiently. However, the Centre of Disease Control (CDC) reported and raised the alarm of allergic or acute inflammatory adverse reactions after vaccination [...] Read more.
The mRNA vaccine has protected humans from the Coronavirus disease 2019 (COVID-19) and has taken the lead in reversing the epidemic efficiently. However, the Centre of Disease Control (CDC) reported and raised the alarm of allergic or acute inflammatory adverse reactions after vaccination with mRNA-LNP vaccines. Meanwhile, the US Food and Drug Administration (FDA) has added four black-box warnings in the instructions for mRNA-LNP vaccines. Numerous studies have proven that the observance of side effects after vaccination is indeed positively correlated to the level of anti-PEG antibodies (IgM or IgG), which are enhanced by PEGylated preparations like LNP vaccine and environmental exposure. After literature research and review in the past two decades, it was found that the many clinical trial failures (BIND-014, RB006 fell in phase II) of PEG modified delivery system or PEGylated drug were related to the high expression of anti-PEG IgM and IgG. In the background of shooting multiple mRNA-LNP vaccines in billions of people around the world in the past three years, the level of anti-PEG antibodies in the population may have significantly increased, which brings potential risks for PEG-modified drug development and clinical safety. This review summarizes the experience of using mRNA-LNP vaccines from the mechanism of the anti-PEG antibodies generation, detection methods, clinical failure cases of PEG-containing products, harm analysis of abuse of PEGylation, and alternatives. In light of the increasing prevalence of anti-PEG antibodies in the population and the need to avoid secondary injuries, this review article holds greater significance by offering insights for drug developers. It suggests avoiding the use of PEG excipients when designing PEGylated drugs or PEG-modified nano-formulations and provides references for strategies such as utilizing PEG-free or alternative excipients. Full article
Show Figures

Graphical abstract

25 pages, 10277 KiB  
Article
Comparative Study of Free and Encapsulated Hypocrellin B on Photophysical-Chemical Properties, Cellular Uptake, Subcellular Distribution, and Phototoxicity
by Weiyan Kang, Feng Zhao, Jixing Cheng, Kaijie Feng, Liang Yan, Yue You, Jinxia Li and Jing Meng
Nanomaterials 2025, 15(12), 889; https://doi.org/10.3390/nano15120889 - 9 Jun 2025
Viewed by 470
Abstract
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted [...] Read more.
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted no obvious influence on the photophysical-chemical properties of HB, including UV-visible absorbance, fluorescence spectra, singlet oxygen (1O2) production capacity, and photostability. Free and encapsulated HB revealed some disparities in cellular uptake and subcellular localization patterns. In 2D-cultured B16 cells and tumor spheroids, free HB exhibited the fastest cellular uptake, while HB@PLGA had the lowest, as evidenced. Subcellular localization analysis first revealed a significant colocalization of free HB, HB@Lipo, and HB@PLGA within lipid droplets, with minimal colocalization in mitochondria and the endoplasmic reticulum. Unlike free HB and HB@Lipo, HB@PLGA exhibited strong lysosomal colocalization, indicating a unique intracellular trafficking pathway for PLGA-encapsulated HB. Upon laser irradiation, both free and encapsulated HB induced pronounced phototoxicity with substantial ROS production, confirming the robust PDT effect of HB. The photodynamic killing effect correlated with the intracellular HB content. These findings highlighted the impact of nanoformulation on HB’s cellular behavior and therapeutic performance. Full article
Show Figures

Graphical abstract

13 pages, 2021 KiB  
Article
Nanoemulsion of Gomortega keule Essential Oil: Characterization, Chemical Composition, and Anti-Yeast Activity Against Candida spp.
by Iván Montenegro, Bastián Fuentes, Valentina Silva, Francisca Valdés, Enrique Werner, Rocío Santander, Daniel Moraga-Espinoza and Alejandro Madrid
Pharmaceutics 2025, 17(6), 755; https://doi.org/10.3390/pharmaceutics17060755 - 8 Jun 2025
Viewed by 534
Abstract
Background/Objectives: Candidiasis, an opportunistic fungal infection caused by Candida species, is a major health problem, particularly in immunocompromised individuals. Increasing resistance of yeasts such as Candida spp. to pharmacological antifungal agents makes it necessary to explore alternative treatments. The aim of this study [...] Read more.
Background/Objectives: Candidiasis, an opportunistic fungal infection caused by Candida species, is a major health problem, particularly in immunocompromised individuals. Increasing resistance of yeasts such as Candida spp. to pharmacological antifungal agents makes it necessary to explore alternative treatments. The aim of this study was to evaluate the antifungal potential of Gomortega keule essential oil (GKEO) against Candida spp. by assessing growth and development at 24 and 48 h. Encapsulation and characterization of a stable nanoemulsion were carried out to enhance efficacy. Methods: The anti-yeast activity of both free GKEO and the nanoemulsion against Candida albicans, C. glabrata, and C. guilliermondii was evaluated using a microdilution method to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) at 24 and 48 h. Results: GC-MS/MS analysis identified forty-one components in GKEO, the main ones being eucalyptol (21.41%), 4-terpineol (19.62%), and α-terpinyl acetate (13.89%). Antifungal assays revealed that both free and nanoemulsion-formulated GKEO inhibited the growth of all tested Candida strains. At 48 h, the nanoformulated GKEO achieved a MIC value of 32 µg/mL and an MFC of 64 µg/mL for C. albicans and C. glabrata and showed higher antifungal activity compared to the free oil, in particular against C. albicans, exhibiting a four-fold lower MFC value. The activity of the nanoformulation was comparable to or better than fluconazole against C. glabrata and C. guilliermondii. Conclusions: The GKEO nanoemulsion potentiated anti-yeast activity against Candida spp. The formulation improved the efficacy of GKEO, suggesting its potential as an alternative or adjunctive treatment for candidiasis. Full article
(This article belongs to the Special Issue Antibacterial Nanoformulations Based on Natural Products)
Show Figures

Figure 1

13 pages, 1068 KiB  
Article
Styrene–Maleic Acid Copolymer-Based Nanoprobes for Enhanced Boron Neutron Capture Therapy
by Mingjie Zhang, Shanghui Gao, Kai Yang, Benchun Jiang, Wei Xu, Waliul Islam, Shinnosuke Koike, Yusei Kinoshita, Hiroto Nakayama, Jianrong Zhou, Kazumi Yokomizo and Jun Fang
Pharmaceutics 2025, 17(6), 738; https://doi.org/10.3390/pharmaceutics17060738 - 4 Jun 2025
Viewed by 432
Abstract
Background/Objectives: Boron neutron capture therapy (BNCT) is a promising, less-invasive anticancer treatment. However, the development of effective boron-based agents (BNCT probes) remains a critical and challenging issue. Previously, we developed a styrene–maleic acid (SMA) copolymer conjugated with glucosamine, encapsulating boronic acid, which [...] Read more.
Background/Objectives: Boron neutron capture therapy (BNCT) is a promising, less-invasive anticancer treatment. However, the development of effective boron-based agents (BNCT probes) remains a critical and challenging issue. Previously, we developed a styrene–maleic acid (SMA) copolymer conjugated with glucosamine, encapsulating boronic acid, which exhibited tumor-targeted distribution via the enhanced permeability and retention (EPR) effect. Building upon this approach, in this study, we designed and synthesized a series of SMA-based polymeric probes for BNCT and evaluated their biological activities, with a particular focus on tumor-targeting properties. Methods: Two SMA-based BNCT nanoprobes, SMA–glucosamine conjugated Borax (SG@B) and SMA-conjugated aminophenylboronic acid encapsulating tavaborole (S-APB@TB), were designed and synthesized. The boron content in the conjugates was quantified using inductively coupled plasma mass spectrometry (ICP-MS), while particle sizes were measured via dynamic light scattering (DLS). In vitro cytotoxicity was assessed using the MTT assay in mouse colon cancer C26 cells. The tissue distribution of the conjugates was analyzed in a mouse sarcoma S180 solid tumor model using ICP-MS. Results: Both SG@B and S-APB@TB formed nanoformulations with average particle sizes of 137 nm and 99 nm, respectively. The boron content of SG@B was 2%, whereas S-APB@TB exhibited a significantly higher boron content of 14.4%. Both conjugates demonstrated dose-dependent cytotoxicity against C26 cells, even in the absence of neutron irradiation. Notably, tissue distribution analysis following intravenous injection revealed higher boron concentrations in plasma and tumor tissues compared to most normal tissues, with S-APB@TB showing particularly favorable tumor accumulation. Conclusions: These findings highlight the tumor-targeting potential of SMA-based BNCT nanoprobes. Further investigations are warranted to advance their clinical development as BNCT agents. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop