You are currently viewing a new version of our website. To view the old version click .
  • Tracked forImpact Factor
  • 5.2CiteScore
  • 37 daysTime to First Decision

Sci

Sci is an international, peer-reviewed, open access journal on all research fields published quarterly online by MDPI.

All Articles (440)

Chitosan Nanoparticles Enhance Yield and Bioactive Compounds in Melon Fruits

  • Pablo Preciado-Rangel,
  • Edgar R. Marín-Gómez and
  • Hortensia Ortega-Ortiz
  • + 4 authors

Chitosan nanoparticles (CSNPs), a product of nanotechnology, have emerged as promising biostimulants with significant applications in sustainable agriculture for enhancing crop yield and quality. In this study, the effects of foliar-applied CSNPs on yield and bioactive compounds in melon (Cucumis melo L.) fruits were evaluated. Five increasing concentrations of CSNPs (0, 0.2, 0.4, 0.6, and 0.8 mg mL−1) were foliarly applied. The foliar spraying of CSNPs exerted positive effects on fruit productivity and nutraceutical attributes. The most significant yield and commercial quality were achieved with the 0.4 mg mL−1 dose. In contrast, the 0.8 mg mL−1 dose was most effective in enhancing optimal postharvest characteristics, including fruit firmness and reduced weight loss, as well as stimulating the accumulation of bioactive compounds (such as flavonoids and vitamin C) and antioxidant capacity. In the case of phenols, the highest total phenolic content was observed at concentrations of 0.6 and 0.8 mg mL−1. Therefore, the foliar application of CSNPs constitutes a versatile and sustainable strategy, allowing for the tailoring of application doses to either maximize yield or enhance the functional and postharvest quality of melon fruits.

7 November 2025

Effect of chitosan nanoparticles (CSNPs) on melon yield (Mg ha−1). The bars show mean ± standard deviation. Means with equal letters in columns (a, b) do not differ significantly according to Dunn’s test with Bonferroni adjustment (p ≤ 0.05) following a Kruskal–Wallis test.

Joint Feeder Routing and Conductor Sizing in Rural Unbalanced Three-Phase Distribution Networks: An Exact Optimization Approach

  • Brandon Cortés-Caicedo,
  • Oscar Danilo Montoya and
  • Luis Fernando Grisales-Noreña
  • + 2 authors

This paper addresses the simultaneous feeder routing and conductor sizing problem in unbalanced three-phase distribution systems, formulated as a nonconvex mixed-integer nonlinear program (MINLP) that minimizes the equivalent annualized expansion cost—combining investment and loss costs—under voltage, ampacity, and radiality constraints. The model captures nonconvex voltage–current–power couplings, Δ/Y load asymmetries, and discrete conductor selections, creating a large combinatorial design space that challenges heuristic methods. An exact MINLP formulation in complex variables is implemented in Julia/JuMP and solved with the Basic Open-source Nonlinear Mixed Integer programming (BONMIN) solver, which integrates branch-and-bound for discrete variables and interior-point methods for nonlinear subproblems. The main contributions are: (i) a rigorous, reproducible formulation that jointly optimizes routing and conductor sizing; (ii) a transparent, replicable implementation; and (iii) a benchmark against minimum spanning tree (MST)-based and metaheuristic approaches, clarifying the trade-off between computational time and global optimality. Tests on 10- and 30-node rural feeders show that, although metaheuristics converge faster, they often yield suboptimal solutions. The proposed MINLP achieves globally optimal, technically feasible results, reducing annualized cost by 14.6% versus MST and 2.1% versus metaheuristics in the 10-node system, and by 17.2% and 2.5%, respectively, in the 30-node system. These results highlight the advantages of exact optimization for rural network planning, providing reproducible and verifiable decisions in investment-intensive scenarios.

7 November 2025

Essential and Toxic Elements in Cereal-Based Complementary Foods for Children: Concentrations, Intake Estimates, and Health Risk Assessment

  • Ana Claudia Rocha Gerônimo,
  • Elaine Silva de Pádua Melo and
  • Regiane Santana da Conceição Ferreira Cabanha
  • + 2 authors

Cereal-based complementary foods are widely consumed by children, yet limited data exist on their elemental composition and potential health risks. This study quantified As, Cd, Co, Cr, Cu, Fe, K, Mn, Mg, Mo, Ni, P, Pb, Se, Si, V, and Zn in eight commercial cereal-based products collected in Campo Grande, Brazil, using inductively coupled plasma optical emission spectrometry (ICP OES). Arsenic, cadmium, cobalt, and chromium were consistently below the detection limit. Phosphorus and potassium were the predominant elements across brands, followed by Fe, Mg, and Zn, with significant inter-brand variability (Kruskal–Wallis, p < 0.05). Lead was detected in Brands 1–5 (0.11–0.41 mg/kg), but it was below the limit of detection (LOD = 0.003 mg/L) in the other samples. Estimated daily intake (ID) values at 30 g/day and 90 g/day showed that Fe, Zn, Mn, and Se frequently met or exceeded dietary reference intakes for children aged 1–3 years, while Cu, Ni, and P remained below tolerable levels. Comparison with tolerable upper intake levels and ATSDR minimal risk levels indicated that higher consumption (90 g/day) could result in excess intake of Mn, Zn, and Se, with Pb contributing to cumulative hazard indices above the safety threshold (HI > 1). These findings emphasize the dual role of cereal-based foods as important nutrient sources and potential contributors to excessive trace element exposure in young children.

6 November 2025

Concentrations of oxides of nitrogen (NOx), as the sum total of nitric oxide (NO) and nitrogen dioxide (NO2), the individual parts, i.e., NO and NO2, (NOx = NO + NO2), and wind speed and direction measurements were gathered over a thirteen-year period (2011–2023) at the Giordan Lighthouse Geosciences Observatory, located on the Island of Gozo, forming part of the Maltese Archipelago (Central Mediterranean). The atmospheric concentration measurements were recorded with a Thermo Scientific Model 42i NOx analyser, which employs the chemiluminescence technique to detect atmospheric traces of NOx concentrations. In this case study, an investigation was conducted to understand the wind and seasonal variabilities of the measured concentrations. The highest NOx concentrations occurred when the prevailing wind originated from the SE, while a broad minimum was observed when the wind blew from the S–W sector. The maxima were primarily associated with land-based sources, predominantly vehicular emissions on the main island, i.e., Malta. The amplitudes for NO, NO2, and NOx in relation to wind direction were 63%, 125%, and 121%, respectively. Significant variabilities were observed during the autumn season. Regarding wind speed, the NOx concentrations reached their peak during high-wind-speed events, which are associated with transboundary pollution. A secondary broad maximum was observed for wind forces between 2 and 4, while the lowest concentrations were recorded at wind force 9. The NOx concentrations exhibited a seasonal maximum in spring and a minimum in winter, which contrasts with the findings from the Monte Cimone station in Italy. The seasonal amplitudes for NO, NO2, and NOx were 46%, 15%, and 17%, respectively. It is evident that NO concentrations exhibited a greater seasonal variability, whereas NO2 concentrations demonstrated significant variability in relation to wind direction.

6 November 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advanced Oxidation Process: Applications and Prospects
Reprint

Advanced Oxidation Process: Applications and Prospects

Editors: Gassan Hodaifa, Antonio Zuorro, Joaquín R. Dominguez, Juan García Rodríguez, José A. Peres, Zacharias Frontistis, Mha Albqmi

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Sci - ISSN 2413-4155