- Article
Microstructural, Electrical, and Magnetic Characterization of Degraded Photovoltaic Cells from Desert Environments: A Preliminary Study
- Fahima Djefaflia,
- Farida Khammar and
- Cristian Vacacela Gomez
- + 8 authors
This study examines the functional degradation of crystalline silicon photovoltaic cells after 17 years of field exposure in the Adrar Desert, Algeria. Harsh thermal, radiative, and mechanical conditions accelerate aging, affecting electrical performance and structural stability. Monocrystalline silicon cells were extracted and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, electrical resistivity measurements, and vibrating sample magnetometry (VSM). SEM revealed microcracks, delamination, and corrosion products. EDS showed Ag, Si, O, and C signals, while Raman indicated silicon features and signatures consistent with encapsulant (EVA) degradation. The temperature-dependent resistivity displayed a dual behavior with a minimum near ~72 °C, above which resistivity increased, consistent with a transition in the dominant transport mechanisms. VSM measurements showed an overall diamagnetic response with a weak hysteresis loop suggestive of defect-related contributions. The observed aging is primarily associated with oxidation, metal migration, and encapsulant degradation. These findings motivate more robust materials and interfaces for desert climates, alongside improved thermal management and active monitoring.
21 January 2026







