How Bacteria Change after Exposure to Silver Nanoformulations: Analysis of the Genome and Outer Membrane Proteome
Abstract
1. Introduction
2. Results
2.1. Genome Analysis
2.2. Proteome Analysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.1.1. Strains
4.1.2. Reagents
Genomic DNA Isolation
OMP Isolation
Two-Dimensional Gel Electrophoresis
In-Gel Protein Digestion and MS Protein Identification
4.2. Methods
4.2.1. Genome Analysis
4.2.2. Proteome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kędziora, A.; Wernecki, M.; Korzekwa, K.; Speruda, M.; Gerasymchuk, Y.; Łukowiak, A.; Bugla-Płoskońska, G. Consequences of Long-Term Bacteria’s Exposure To Silver Nanoformulations With Different PhysicoChemical Properties. Int. J. Nanomed. 2020, 15, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef] [PubMed]
- Pareek, V.; Gupta, R.; Panwar, J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 739–749. [Google Scholar] [CrossRef]
- Kędziora, A.; Wieczorek, R.; Speruda, M.; Matolínová, I.; Goszczyñski, T.M.; Litwin, I.; Matolín, V.; Bugla-łoskonska, G. Comparison of Antibacterial Mode of Action of Silver Ions and Silver Nanoformulations With Different Physico-Chemical Properties: Experimental and Computational Studies. Front. Microbiol. 2021, 12, 659614. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yan, J.J.; Lei, H.Y. Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect. Immun. 2012, 80, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Nikaido, H.; Williams, K.E. Silver resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 1997, 179, 6127–6132. [Google Scholar] [CrossRef]
- Radzig, M.; Nadtochenko, V.; Koksharova, O.; Kiwi, J.; Lipasova, V.; Khmel, I. Antibacterial effects of silver nanoparticles on gram negative bacteria: Influence on the growth and biofilms, mechanisms of action. Colloids Surf. B Biointerfaces 2013, 102, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Randall, C.; Gupta, A.; Jackson, N.; Busse, D.; O’Neill, A.J. Silver resistance in Gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 2015, 70, 1037–1046. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Ahmad, M.K.; Mahdi, A.A.; Pal, R.; Cameotra, S.S. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Basic Microbiol. 2014, 54, 905–915. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018, 13, 65–71. [Google Scholar] [CrossRef]
- Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Popodi, E.; Tang, H.; Foster, P.L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl. Acad. Sci. USA 2012, 109, E2774–E2783. [Google Scholar] [CrossRef]
- Nazir, R.; Rehman, S.; Nisa, M.; Baba, U.A. Exploring Bacterial Diversity: From Cell to Sequence; Freshwater Microbiology Elsevier Inc.: London, UK, 2019; ISBN 978-0-12-817495-1. [Google Scholar] [CrossRef]
- Li, W.; Sun, T.; Zhou, S.; Ma, Y.; Shi, Q.; Xie, X.; Huang, X. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int. Biodeterior. Biodegrad. 2017, 123, 304–310. [Google Scholar] [CrossRef]
- Yan, X.; He, B.; Liu, L.; Qu, G.; Shi, J.; Hu, L.; Jiang, G. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics 2018, 10, 557. [Google Scholar] [CrossRef] [PubMed]
- Anuj, S.A.; Gajera, H.; Hirpara, D.G.; Golakiya, B.A. Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in Gram-negative bacteria. Life Sci. 2019, 230, 178–187. [Google Scholar] [CrossRef]
- Lok, C.; Ho, C.; Chen, R.; He, Q.I.; Yu, W.; Sun, H.; Tam, P.K.; Chiu, J.; Che, C. Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Kedziora, A.; Korzekwa, K.; Strek, W.; Pawlak, A.; Doroszkiewicz, W.; Bugla-Ploskonska, G. Silver Nanofilms as a Therapeutic Agent for Killing Escherichia coli and Certain ESKAPE Pathogens. Curr. Microbiol. 2016, 73, 139–147. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kedziora, A.; Strek, W.; Kȩpiński, L.; Bugla-Ploskonska, G.; Doroszkiewicz, W. Synthesis and antibacterial activity of novel titanium dioxide doped with silver. J. Sol-Gel Sci. Technol. 2012, 62, 79–86. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB Net. J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.; Dvorkin, M.; Kulikov, A.; Lesin, V.M.; Nikolenko, S.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.E.; Mau, B.; Perna, N.T. Progressive Mauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Sueki, A.; Stein, F.; Savitski, M.M.; Selkrig, J.; Typas, A. Systematic Localization of Escherichia coli Membrane Proteins. Msystems 2020, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Wagih, O.; Galardini, M.; Busby, B.P.; Memon, D.; Typas, A.; Beltrao, P. A resource of variant effect predictions of single nucleotide variants in model organisms. Mol. Syst. Biol. 2018, 14, e8430. [Google Scholar] [CrossRef]
- Murphy, T.F.; Bartos, L.C. Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarrhalis. Infect. Immun. 1989, 57, 2938–2941. [Google Scholar] [CrossRef]
- Bugla-Płoskońska, G.; Korzeniowska-Kowal, A.; Guz-Regner, K. Reptiles as a source of Salmonella O48-clinically important bacteria for children: The relationship between resistance to normal cord serum and outer membrane protein patterns. Microb. Ecol. 2011, 61, 41–51. [Google Scholar] [CrossRef]
- Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar] [CrossRef]
- Bednarz-Misa, I.; Serek, P.; Dudek, B.; Pawlak, A.; Bugla-Płoskońska, G.; Gamian, A. Application of zwitterionic detergent to the solubilization of Klebsiella pneumoniae outer membrane proteins for two-dimensional gel electrophoresis. J. Microbiol. Methods 2014, 107, 74–79. [Google Scholar] [CrossRef]
- Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J.V.; Mann, M.J. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef]
Function of the Gene Product | Gene | Product Description | Mutations | Predicted Effects | |
---|---|---|---|---|---|
Transmembrane transporter activity | Channel | cusC | Cation efflux system protein CusC | Thr81Ala, Asn117Asp, Thr118Ser | - |
fimD | Outer membrane usher protein | Ser397Thr, Ile401Val, Gly403Ala, Glu410Lys | Alteration in a conserved region, destabilizing mutation | ||
ompC | Outer membrane porin C | Ile306Val Thr305Val | - | ||
ompF | Outer membrane porin F | Asp48Gly, Val51Glu, Lys60Met, | - | ||
ompG | Outer membrane porin G | Ala67Ser | - | ||
ompN | Outer membrane porin N | Lys90Thr | Destabilizing mutation | ||
tsx | Nucleoside-specific channel-forming protein | Ile53Leu | - | ||
uidC | Membrane-associated protein | Asn285Ile | - | ||
yehB | Outer membrane usher protein | Thr377Ser, Gln540His, Ile699Val | Alteration in a conserved region | ||
yfaL | Probable autotransporter | Thr879Ala, Pro920Pro, Pro921Thr, Ser922Pro, Thr919Asn, Ser1091Asn Glu1098Asp Thr1101Val | - | ||
Siderophore transporter | cirA | Colicin I receptor | Ile174Val | - | |
fecA | Fe(3+) dicitrate transport protein | Ile56Phe, Val350Leu, Ile397Val, Gly600Asp, Val605Ile, Leu651Phe, Ser684Ala, Met693Ile | - | ||
fepA | Ferrienterobactin receptor | Thr356Ala | - | ||
fhuA | Ferrichrome outer membrane transporter/phage receptor | Ser110Ala | - | ||
fhuE | Outer-membrane receptor for Fe(III)-coprogen; Fe(III)-ferrioxamine B and Fe(III)-rhodotorulic acid | Ser61Asn | destabilizing mutation | ||
fiu | Catecholate siderophore receptor | Thr493Ala | - | ||
Others | gspD | Putative type II secretion system protein D | Gln617Leu, Val627Ile | - | |
pgaA | Poly-beta-1;6-N-acetyl-D-glucosamine (PGA) export protein | Gln11Lys, Ile18Leu, Val26Ala, Ile87Val, Ser90Arg, Ile106Val, Pro129Ser, Thr150Ser, Pro451His, Phe599Val | Alteration in conserved regions | ||
Peptidoglycan-related | lpoA | Penicillin-binding protein activator | Ala96Thr, Val106Ala, Ala292Val | - | |
lpoB | Penicillin-binding protein activator | Pro71Leu | - | ||
lpp | Major outer membrane lipoprotein (Braun lipoprotein) | Val26Ile | - | ||
mliC | Membrane-bound lysozyme inhibitor of C-type lysozyme | His25Arg, Ala29Asp | - | ||
mltB | Membrane-bound lytic murein transglycosylase B | Val49Met, Asp64Glu, Lys324Arg | - | ||
nlpD | Murein hydrolase activator | Ala228Thr | - | ||
Lipid-related | blc | Outer membrane lipoprotein | Gly84Glu | - | |
lolB | Outer membrane lipoprotein | Ala115Ser | - | ||
mlaA | Intermembrane phospholipid transport system lipoprotein | Gly168Ser | - | ||
ycaL | Metalloprotease | Ser158Arg | - | ||
Various | Bam | bamB | Outer membrane protein assembly factor | Ser96Asn, Ser335Gly | - |
bamC | Outer membrane protein assembly factor | Asp287Glu, Gln289His | - | ||
Others | bcsC | Cellulose synthase operon protein C | Val65Ile, Pro110Ser, Ala558Gly, Ala775Thr | - | |
nfrA | Bacteriophage adsorption protein A | Ala98Asp, Ala115Asp, Ile784Leu | - | ||
pgaB | Poly-beta-1;6-N-acetyl-D-glucosamine N-deacetylase (PGA N-deacetylase) | Leu575Met | - | ||
slyB | Outer membrane lipoprotein | Val78Ile | - | ||
tam | Trans-aconitate 2-methyltransferase | Asn121Ser, Gln123Leu, Ser158Pro, Ile162Val, Ala210Thr Leu216His | - | ||
yajI | Uncharacterized lipoprotein | Glu164Asp, Asp167Gly | - | ||
yceB | Uncharacterized lipoprotein | Glu126Gly | Alteration in a conserved region | ||
yfeY | Uncharacterized protein | Gly142Ser, Arg167Ser | - |
Spots In Figure 1 | Identified Proteins (Encoding Gene) | Data | Strains | Function |
---|---|---|---|---|
1–4 | Flagellin FliC (flyC) | MW = 51,265 pI = 4.5 | E. coli BW25113 AgR only | Subunit protein which polymerizes to form the filaments of bacterial flagellum (extracellular component) |
5 | Chaperone protein DnaK (dnaK) | MW = 69,072 pI = 4.83 | E. coli BW25113 wt | Essential role in the initiation of phage lambda DNA replication, involved in chromosomal DNA replication, participates actively in the response to hyperosmotic shock |
6 | Isocitrate lyase AceA (aceA) | MW = 47,782 pI = 5.16 | E. coli BW25113 AgR only | Involved in the metabolic adaptation in response to environmental changes; catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates, metal binding |
7 | D-galactose binding protein MglB (mglB) | MW = 35,690 pI = 5.68 | E. coli BW25113 AgR only | Protein involved in the active transport of galactose and glucose. It plays a role in the chemotaxis towards the two sugars by interacting with the trg chemoreceptor |
8 | Superoxide dismutase SodF, SODF, SOD2, FeSOD I (sodF) | MW = 21,311 pI = 5.58 | E. coli BW25113 wt | Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems |
9 | Aldehyde reductase YahK (yahK) | MW = 37,954 pI = 5.80 | E. coli BW25113 wt | Uncharacterized zinc-type alcohol dehydrogenase |
10 | Copper homeostasis protein CutC (cutC) | MW = 26,623 pI = 5.75 | E. coli BW25113 wt and AgR | Control of copper homeostasis, copper ions binding |
Spots in Figure 1 | Identified Protein (Encoding Gene) | Data | Strains | Function (https://www.uniprot.org/ accessed on 12 November 2020) |
---|---|---|---|---|
1 | OmpC (ompC) | M = 40,343, pI = 4.58 | E. coli ATCC 11229 wt only | Forms pores that allow passive diffusion of small molecules across the outer membrane. Microbial infection: supports colicin E5 entry in the absence of its major receptor OmpF, A mixed OmpC-OmpF heterotrimer is the outer membrane receptor for toxin CdiA-EC536; polymorphisms in extracellular loops 4 and 5 of OmpC confer susceptibility to CdiA-EC536-mediated toxicity. |
2 | Glutaredoxin-4 GrxD (grxD) | M = 13,044, pI = 4.75 | E. coli ATCC 11229 wt only | Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters. |
3 | D-galactose-binding periplasmic protein MglB (mglB) | M = 35,690, pI = 5.68 | E. coli ATCC 11229 var. S7 | Protein involved in the active transport of galactose and glucose. It plays a role in the chemotaxis towards the two sugars by interacting with the trg chemoreceptor. |
4 | Malate dehydrogenase Mgh (mdh) | M = 32,317, pI = 5.61 | E. coli ATCC 11229 var. S7 | Catalyzes the reversible oxidation of malate to oxaloacetate. |
5–6 | Periplasmic oligopeptide-binding protein OppA (oppA) | M = 60,977, pI = 6.05 | E. coli ATCC 11229 var. S2 and S7 | Component of the oligopeptide permease, a binding protein-dependent transport system, it binds peptides up to five amino acids long with high affinity. |
7 | Thiosulfate-binding protein CysP (cysP) | M = 37,591, pI = 6.81 | E. coli ATCC 11229 wt only | Part of the ABC transporter complex CysAWTP involved in sulfate/thiosulfate import. This protein specifically binds thiosulfate and is involved in its transmembrane transport. |
Bacteria Strains | Genome Analysis | Proteome Analysis | |
---|---|---|---|
Wild Type Strains and Its Variants | Description | ||
E. coli BW25113 wt | Wild type strain | [8] (Reference strain) | This work |
E. coli BW25113 AgR (full name: E. coli BW25113 ompRG596AcusSG1130A) | Variant of E. coli BW25113 wt resistant to silver ions (Ag+) due to mutations, in ompR and cusS, respectively, conferred loss of the OmpC/F porins and derepression of the CusCFBA efflux transporter | [8] | This work |
E. coli J53 | Model organism with pMG101 plasmid encoding sil genes determining the resistance to silver ions | [8] (Reference strain with exogenous resistance to silver ions) | This work |
E. coli ATCC 11229 wt | Wild type strain treated with different silver (ions and nanoformulations) | This work (reference strain) | This work |
E. coli ATCC 11229 var. S2 | Variant of E. coli ATCC 11229 wt with decreased sensitivity to SNF S2 * (after S2 treatment) | This work | This work |
E. coli ATCC 11229 var. S7 | Variant of E. coli ATCC 11229 wt with decreased sensitivity to SNF S7 * (after S7 treatment) | Small number of mutations analyzed in previous work [1] | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędziora, A.; Speruda, M.; Wernecki, M.; Dudek, B.; Kapczynska, K.; Krzyżewska, E.; Rybka, J.; Bugla-Płoskońska, G. How Bacteria Change after Exposure to Silver Nanoformulations: Analysis of the Genome and Outer Membrane Proteome. Pathogens 2021, 10, 817. https://doi.org/10.3390/pathogens10070817
Kędziora A, Speruda M, Wernecki M, Dudek B, Kapczynska K, Krzyżewska E, Rybka J, Bugla-Płoskońska G. How Bacteria Change after Exposure to Silver Nanoformulations: Analysis of the Genome and Outer Membrane Proteome. Pathogens. 2021; 10(7):817. https://doi.org/10.3390/pathogens10070817
Chicago/Turabian StyleKędziora, Anna, Mateusz Speruda, Maciej Wernecki, Bartłomiej Dudek, Katarzyna Kapczynska, Eva Krzyżewska, Jacek Rybka, and Gabriela Bugla-Płoskońska. 2021. "How Bacteria Change after Exposure to Silver Nanoformulations: Analysis of the Genome and Outer Membrane Proteome" Pathogens 10, no. 7: 817. https://doi.org/10.3390/pathogens10070817
APA StyleKędziora, A., Speruda, M., Wernecki, M., Dudek, B., Kapczynska, K., Krzyżewska, E., Rybka, J., & Bugla-Płoskońska, G. (2021). How Bacteria Change after Exposure to Silver Nanoformulations: Analysis of the Genome and Outer Membrane Proteome. Pathogens, 10(7), 817. https://doi.org/10.3390/pathogens10070817