-
Unveiling the Effects of Two Polycyclic Aromatic Hydrocarbons and Two Temperatures on the Trout RTL-W1 Cell Line Expression of Detoxification-Related Target Genes
-
Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations
-
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
Journal Description
Journal of Xenobiotics
Journal of Xenobiotics
is an international, peer-reviewed, open access journal on xenobiotics published bimonthly online by MDPI (from Volume 10, Issue 1 - 2020).
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubMed, PMC, CAPlus / SciFinder, Embase, and other databases
- Journal Rank: JCR - Q1 (Toxicology) / CiteScore - Q2 (Pharmacology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 27.6 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review and reviewer names are published annually in the journal.
Impact Factor:
4.4 (2024);
5-Year Impact Factor:
5.7 (2024)
Latest Articles
Virgin Coconut Oil and Its Lauric Acid, Between Anticancer Activity and Modulation of Chemotherapy Toxicity: A Review
J. Xenobiot. 2025, 15(4), 126; https://doi.org/10.3390/jox15040126 - 5 Aug 2025
Abstract
►
Show Figures
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty
[...] Read more.
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty acid in VCO and has been associated with several pharmacological activities. The literatures show the pharmacological effects of VCO and LA on chronic pathologies, infectious diseases, and metabolic disorders. A robust body of evidence shows that LA and other phenolic compounds are responsible for the VCO protection against toxicities and pharmacological efficacies. This review elucidates the anticancer mechanisms of VCO/LA and their modulation of the chemotherapy-induced side effect toxicity. VCO, LA, and their nanomaterial/encapsulated derivatives promote ROS generation, antiproliferation, apoptosis, cell cycle arrest, the inhibition of metastasis, and the modulation of cancer-related signaling pathways for cancer cell death in vivo and in vitro. VCO mitigates oxidative inflammation and apoptosis to block the underlying mechanisms of the side effect toxicity of chemotherapy. However, the possible beneficial effect of LA on the toxicity of chemotherapy is currently unknown. The available evidence emphasizes the anticancer effect and mechanism of VCO and LA, and the VCO potential to combat adverse side effects of chemotherapy. Thus, VCO and LA are potential adjuvant therapeutic agents in the management of various cancers. Nevertheless, future studies should be targeted at elucidating cancer-related molecular mechanisms to bridge the gap in knowledge.
Full article
Open AccessArticle
Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables
by
Milica Lučić and Antonije Onjia
J. Xenobiot. 2025, 15(4), 125; https://doi.org/10.3390/jox15040125 - 3 Aug 2025
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in
[...] Read more.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability.
Full article
(This article belongs to the Special Issue New Challenges in the Monitoring, Risk Assessment and Management of Pesticides and Biocides in the “One Health Era”)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota
by
Jin Wei, Yake Li, Yuanyuan Chen, Qian Lin and Lin Zhang
J. Xenobiot. 2025, 15(4), 124; https://doi.org/10.3390/jox15040124 - 3 Aug 2025
Abstract
►▼
Show Figures
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining
[...] Read more.
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining area (A), the transition area (B), and the distant area (C). Our results revealed that metal concentrations were highest in the mining area and decreased with increasing distance from it. The bioaccumulation of metals in fish tissues followed the order of gut > brain > muscle, with some concentrations exceeding food safety standards. Analysis of the gut microbiota showed that Firmicutes and Proteobacteria dominated in the mining area, while Fusobacteriota were more prevalent in the distant area. Heavy metal pollution significantly altered the composition and network structure of the gut microbiota, reducing microbial associations and increasing negative correlations. These findings highlight the profound impact of heavy metal pollution on both fish health and the stability of their gut microbiota, underscoring the urgent need for effective pollution control measures to mitigate ecological risks and protect aquatic biodiversity. Future research should focus on long-term monitoring and exploring potential remediation strategies to restore the health of affected ecosystems.
Full article

Graphical abstract
Open AccessCase Report
Phytotoxic Effects and Agricultural Potential of Nanofertilizers: A Case Study Using Zeolite, Zinc Oxide, and Titanium Dioxide Under Controlled Conditions
by
Ezequiel Zamora-Ledezma, Glenda Leonela Loor Aragundi, Willian Stalyn Guamán Marquines, Michael Anibal Macías Pro, José Vicente García Díaz, Henry Antonio Pacheco Gil, Julián Mauricio Botero Londoño, Mónica Andrea Botero Londoño and Camilo Zamora-Ledezma
J. Xenobiot. 2025, 15(4), 123; https://doi.org/10.3390/jox15040123 - 1 Aug 2025
Abstract
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K
[...] Read more.
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K2Cr2O7) using Lactuca sativa seeds under adapted OECD-208 protocol conditions. Seeds were exposed to varying concentrations of each xenobiotic material (0.5–3% for NFs; 10–50% for NPs), with systematic assessment of seedling survival, root and hypocotyl length, dry biomass, germination index (GI), and median effective concentration (EC50) values. Nanofertilizers demonstrated significantly greater phytotoxicity than engineered nanoparticles despite lower application concentrations. The toxicity ranking was established as NF1 > NF3 > NF2 > NM2 > NM1 > NM3, with NF1 being most toxic (EC50 = 1.2%). Nanofertilizers caused 45–78% reductions in root length and 30–65% decreases in dry biomass compared with controls. GI values dropped to ≤70% in NF1 and NF3 treatments, indicating concentration-dependent growth inhibition. While nanofertilizers offer agricultural benefits, their elevated phytotoxicity compared with conventional nanoparticles necessitates rigorous pre-application safety assessment. These findings emphasize the critical need for standardized evaluation protocols incorporating both physiological and ecotoxicological endpoints to ensure safe xenobiotic nanomaterial deployment in agricultural systems.
Full article
(This article belongs to the Special Issue Integrative Studies on Environmental Toxicity, Bioaccumulation and Remediation Strategies for Hazardous Substances)
►▼
Show Figures

Graphical abstract
Open AccessReview
Hypertension in People Exposed to Environmental Cadmium: Roles for 20-Hydroxyeicosatetraenoic Acid in the Kidney
by
Soisungwan Satarug
J. Xenobiot. 2025, 15(4), 122; https://doi.org/10.3390/jox15040122 - 1 Aug 2025
Abstract
►▼
Show Figures
Chronic kidney disease (CKD) has now reached epidemic proportions in many parts of the world, primarily due to the high incidence of diabetes and hypertension. By 2040, CKD is predicted to be the fifth-leading cause of years of life lost. Developing strategies to
[...] Read more.
Chronic kidney disease (CKD) has now reached epidemic proportions in many parts of the world, primarily due to the high incidence of diabetes and hypertension. By 2040, CKD is predicted to be the fifth-leading cause of years of life lost. Developing strategies to prevent CKD and to reduce its progression to kidney failure is thus of great public health significance. Hypertension is known to be both a cause and a consequence of kidney damage and an eminently modifiable risk factor. An increased risk of hypertension, especially among women, has been linked to chronic exposure to the ubiquitous food contaminant cadmium (Cd). The mechanism is unclear but is likely to involve its action on the proximal tubular cells (PTCs) of the kidney, where Cd accumulates. Here, it leads to chronic tubular injury and a sustained drop in the estimated glomerular filtration rate (eGFR), a common sequela of ischemic acute tubular necrosis and acute and chronic tubulointerstitial inflammation, all of which hinder glomerular filtration. The present review discusses exposure levels of Cd that have been associated with an increased risk of hypertension, albuminuria, and eGFR ≤ 60 mL/min/1.73 m2 (low eGFR) in environmentally exposed people. It highlights the potential role of 20-hydroxyeicosatetraenoic acid (20-HETE), the second messenger produced in the kidneys, as the contributing factor to gender-differentiated effects of Cd-induced hypertension. Use of GFR loss and albumin excretion in toxicological risk calculation, and derivation of Cd exposure limits, instead of β2-microglobulin (β2M) excretion at a rate of 300 µg/g creatinine, are recommended.
Full article

Graphical abstract
Open AccessSystematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by
Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Abstract
►▼
Show Figures
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of
[...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations.
Full article

Figure 1
Open AccessArticle
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by
Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using
[...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas.
Full article
(This article belongs to the Special Issue New Challenges in the Monitoring, Risk Assessment and Management of Pesticides and Biocides in the “One Health Era”)
►▼
Show Figures

Figure 1
Open AccessArticle
Skin Wound Healing: The Impact of Treatment with Antimicrobial Nanoparticles and Mesenchymal Stem Cells
by
Pavel Rossner, Eliska Javorkova, Michal Sima, Zuzana Simova, Barbora Hermankova, Katerina Palacka, Zuzana Novakova, Irena Chvojkova, Tereza Cervena, Kristyna Vrbova, Anezka Vimrova, Jiri Klema, Andrea Rossnerova and Vladimir Holan
J. Xenobiot. 2025, 15(4), 119; https://doi.org/10.3390/jox15040119 - 18 Jul 2025
Abstract
►▼
Show Figures
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing
[...] Read more.
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing process. This combined treatment was hypothesized to be beneficial, as it is associated with the production of molecules supporting the healing process and antimicrobial activity. The samples were collected seven days after injury. When compared with untreated wounded animals (controls), the combined (MSCs+NPs) treatment induced the expression of Sprr2b, encoding small proline-rich protein 2B, which is involved in keratinocyte differentiation, the response to tissue injury, and inflammation. Pathways associated with keratinocyte differentiation were also affected. Ag NP treatment (alone or combined) modulated DNA methylation changes in genes involved in desmosome organization. The percentage of activated regulatory macrophages at the wound site was increased by MSC-alone and Ag-alone treatments, while the production of nitric oxide, an inflammatory marker, by stimulated macrophages was decreased by both MSC/Ag-alone and MSCs+Ag treatments. Ag induced the expression of Col1, encoding collagen-1, at the injury site. The results of the MSC and NP treatment of skin wounds (alone or combined) suggest an induction of processes accelerating the proliferative phase of healing. Thus, MSC-NP interactions are a key factor affecting global mRNA expression changes in the wound.
Full article

Graphical abstract
Open AccessReview
Environmental Xenobiotics and Epigenetic Modifications: Implications for Human Health and Disease
by
Ana Filipa Sobral, Andrea Cunha, Inês Costa, Mariana Silva-Carvalho, Renata Silva and Daniel José Barbosa
J. Xenobiot. 2025, 15(4), 118; https://doi.org/10.3390/jox15040118 - 13 Jul 2025
Abstract
►▼
Show Figures
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis
[...] Read more.
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis and contribute to a range of diseases, including cancer and neurodegenerative diseases, among others. Emerging evidence indicates that epigenetic alterations, such as abnormal deoxyribonucleic acid (DNA) methylation, aberrant histone modifications, and altered expression of non-coding ribonucleic acids (ncRNAs), may play a central role in mediating the toxic effects of environmental xenobiotics. Furthermore, exposure to these compounds during critical periods, such as embryogenesis and early postnatal stages, can induce long-lasting epigenetic alterations that increase susceptibility to diseases later in life. Moreover, modifications to the gamete epigenome can potentially lead to effects that persist across generations (transgenerational effects). Although these modifications represent significant health risks, many epigenetic alterations may be reversible through the removal of the xenobiotic trigger, offering potential for therapeutic intervention. This review explores the relationship between environmental xenobiotics and alterations in epigenetic signatures, focusing on how these changes impact human health, including their potential for transgenerational inheritance and their potential reversibility.
Full article

Figure 1
Open AccessReview
An Integrative Approach to Assessing the Impact of Mercury (Hg) on Avian Behaviour: From Molecule to Movement
by
Dora Bjedov, Mirta Sudarić Bogojević, Jorge Bernal-Alviz, Goran Klobučar, Jean-Paul Bourdineaud, K. M. Aarif and Alma Mikuška
J. Xenobiot. 2025, 15(4), 117; https://doi.org/10.3390/jox15040117 - 9 Jul 2025
Abstract
Mercury (Hg) pollution is a widespread ecological threat with sublethal effects on wildlife. Birds, due to their ecological diversity and sensitivity, serve as effective models for evaluating the behavioural impacts of Hg exposure. This review applies Tinbergen’s four questions: causation, ontogeny, function, and
[...] Read more.
Mercury (Hg) pollution is a widespread ecological threat with sublethal effects on wildlife. Birds, due to their ecological diversity and sensitivity, serve as effective models for evaluating the behavioural impacts of Hg exposure. This review applies Tinbergen’s four questions: causation, ontogeny, function, and evolution, as an integrative framework. Mechanistically, Hg disrupts neuroendocrine pathways, gene expression, immune function, and hormone regulation, leading to behavioural changes such as reduced foraging, altered parental care, and impaired predator avoidance. Early-life exposure affects neural development, learning, and social behaviour into adulthood. Functionally, these changes reduce fitness by compromising reproduction and survival. Phylogenetic comparisons show interspecific variability, with piscivorous and insectivorous birds exhibiting high Hg burdens and sensitivity, linked to ecological roles and exposure. Behavioural responses often precede physiological or demographic effects, highlighting their value as early indicators. Both field and laboratory studies show that even low Hg concentrations can alter behaviour, though outcomes vary by species, life stage, and exposure route. Integrating behavioural endpoints into ecotoxicological risk assessments is essential to improve conservation strategies and understanding of sublethal pollutant effects on wildlife.
Full article
(This article belongs to the Section Ecotoxicology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Butylated Hydroxyanisole (BHA) Disrupts Brain Signalling in Embryo–Larval Stage of Zebrafish Leading to Attention Deficit Hyperactivity Disorder (ADHD)
by
Kandhasamy Veshaal, Ramasamy Vasantharekha, Usha Rani Balu, Mahesh Vallabi Aayush, Saheshnu Sai Balaji Pillai, Winkins Santosh and Barathi Seetharaman
J. Xenobiot. 2025, 15(4), 116; https://doi.org/10.3390/jox15040116 - 9 Jul 2025
Abstract
►▼
Show Figures
Background: Butylated hydroxyanisole (BHA) has been extensively used in several commercial industries as a preservative. It causes severe cellular and neurological damage affecting the developing fetus and might induce attention deficit hyperactivity disorder (ADHD). Methods: Zebrafish embryos were subjected to five distinct doses
[...] Read more.
Background: Butylated hydroxyanisole (BHA) has been extensively used in several commercial industries as a preservative. It causes severe cellular and neurological damage affecting the developing fetus and might induce attention deficit hyperactivity disorder (ADHD). Methods: Zebrafish embryos were subjected to five distinct doses of BHA—0.5, 1, 2, 4, and 8 ppb up to 96 h post fertilization (hpf). Hatching rate, heart rate, and body malformations were assessed at 48 hpf, 72 hpf, and 48–96 hpf, respectively. After exposure, apoptotic activity, neurobehavioral evaluation, neurotransmitter assay, and antioxidant activity were assessed at 96 hpf. At 120 hpf, the expression of genes DRD4, COMT, 5-HTR1aa, and BDNF was evaluated by real-time PCR. Results: BHA exposure showed a delay in the hatching rate and a decrease in the heart rate of the embryo when compared with the control. Larvae exhibited developmental deformities such as bent spine, yolk sac, and pericardial edema. A higher density of apoptotic cells was observed in BHA-exposed larvae at 96 hpf. There was a decline in catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and superoxide dismutase (SOD) activity, indicating oxidative stress. There was a significant decrease in Acetylcholinesterase (AChE) activity and serotonin levels with an increase in concentration of BHA, leading to a dose-responsive increase in anxiety and impairment in memory. A significant decrease in gene expression was also observed for DRD4, COMT, 5-HTR1aa, and BDNF. Conclusions: Even at lower concentrations of BHA, zebrafish embryos suffered from developmental toxicity, anxiety, and impaired memory due to a decrease in AChE activity and serotonin levels and altered the expression of the mentioned genes.
Full article

Figure 1
Open AccessArticle
Environmental Arsenic Exposure, Biomarkers and Lung Function in Children from Yaqui Communities in Sonora, Mexico
by
Ana G. Dévora-Figueroa, Anaid Estrada-Vargas, Jefferey L. Burgess, Paloma I. Beamer, José M. Guillen-Rodríguez, Leticia García-Rico, Diana Evelyn Villa-Guillen, Iram Mondaca-Fernández and Maria M. Meza-Montenegro
J. Xenobiot. 2025, 15(4), 115; https://doi.org/10.3390/jox15040115 - 8 Jul 2025
Abstract
►▼
Show Figures
Arsenic exposure in children and adults has been associated with respiratory symptoms, respiratory infections, and decreased lung function. The goal of this study was to evaluate the relationship between environmental arsenic exposure and serum pneumoproteins and lung function. A cross-sectional study was conducted
[...] Read more.
Arsenic exposure in children and adults has been associated with respiratory symptoms, respiratory infections, and decreased lung function. The goal of this study was to evaluate the relationship between environmental arsenic exposure and serum pneumoproteins and lung function. A cross-sectional study was conducted including 175 children exposed to arsenic by drinking water (range: 7.4 to 91 µg/L) and soil (range: 4.76 to 35.93 mg/kg), from some Yaqui villages. Arsenic was analyzed in dust and urine using field-portable X-ray fluorescence spectrometry and ICP/OES, respectively. Serum was analyzed for Clara Cell protein (CC16) and Matrix Metalloproteinase-9 (MMP-9) using immunoassays, and lung function was evaluated by spirometry. The results showed that increased arsenic in drinking water was associated with reduced forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio (β = −0.027, p = 0.0000) whereas, contrary to expectations, arsenic in dust was associated with increased FEV1/FVC (β = 0.004, p = 0.0076). Increased urinary arsenic was associated with reduced % predicted FEV1 (β = −0.723, p = 0.0152) and reduced FEV1/FVC ratio (β = −0.022, p = 0.0222). Increased serum MMP-9 was associated with reduced FEV1/FVC ratio (β = −0.017, p = 0.0167). Children with % predicted FEV1 values less than 80 had the lowest levels of CC16 (Median 29.0 ng/mL, IQR 21.3, 37.4, p = 0.0148). As a conclusion, our study evidenced an impairment in lung function in children exposed to low arsenic levels.
Full article

Graphical abstract
Open AccessReview
Aspartame and Human Health: A Mini-Review of Carcinogenic and Systemic Effects
by
Nour El Doueihy, Joya Ghaleb, Karl Kfoury, Katy Kaleen Khouzami, Nicolas Nassif, Philippe Attieh, Hilda E. Ghadieh, Sami Azar, Amjad Kanaan and Frederic Harb
J. Xenobiot. 2025, 15(4), 114; https://doi.org/10.3390/jox15040114 - 7 Jul 2025
Abstract
►▼
Show Figures
Aspartame, a widely used artificial sweetener, has been at the center of ongoing debates concerning its safety, particularly its potential role in cancer development. This review provides an overview and analysis of the current research exploring the carcinogenic effects of aspartame. It examines
[...] Read more.
Aspartame, a widely used artificial sweetener, has been at the center of ongoing debates concerning its safety, particularly its potential role in cancer development. This review provides an overview and analysis of the current research exploring the carcinogenic effects of aspartame. It examines findings from in vitro studies, in vivo experiments, and epidemiological investigations to offer a comprehensive perspective on the controversy. The results from these studies remain inconsistent—some suggest a possible association between high aspartame intake and increased cancer risk, while others fail to establish a conclusive link. Additionally, this review explores potential mechanisms by which aspartame could exert carcinogenic effects, focusing on its metabolic byproducts and their influence on cellular and molecular processes. Despite these investigations, the question of aspartame’s safety remains unresolved. Continued research is essential to clarify its role in cancer risk and to inform evidence-based dietary guidelines.
Full article

Figure 1
Open AccessArticle
Combined Effects of Nano-Polystyrene and Heavy Metal Mixture on the Bioaccumulation of Heavy Metals and Physiological Changes in Macrobrachium rosenbergii
by
Mahdi Banaee, Amir Zeidi, Amal Beitsayah, Cristiana Roberta Multisanti and Caterina Faggio
J. Xenobiot. 2025, 15(4), 113; https://doi.org/10.3390/jox15040113 - 7 Jul 2025
Abstract
►▼
Show Figures
Contaminants such as nano-polystyrenes (NPs) and heavy metal cocktail (HMC) have been found to disrupt physiological functions in aquatic organisms. Although HMC and NPs alone induce oxidative stress, their combined effects are not well understood. This study aimed to assess the combined effects
[...] Read more.
Contaminants such as nano-polystyrenes (NPs) and heavy metal cocktail (HMC) have been found to disrupt physiological functions in aquatic organisms. Although HMC and NPs alone induce oxidative stress, their combined effects are not well understood. This study aimed to assess the combined effects of HMC and NPs on the freshwater shrimp (Macrobrachium rosenbergii). Shrimp were divided into seven groups, including the control group, and the experimental groups co-exposed to 0, 50, 100, 150, 200, and 250 µg/L NPs combined with 0.5 mg/L HMC. After 14 days, shrimp were sampled, and their hepatopancreas and muscle tissues were analyzed for oxidative biomarkers, biochemical parameters, and metabolic profiles. Moreover, the bioaccumulation rate of heavy metals was measured. Results showed that co-exposure to NPs and HMC increased superoxide dismutase, glutathione peroxidase, glutathione reductase activities, and malondialdehyde levels, while reducing glutathione and total antioxidant capacity. The integrated biomarker response indicated that co-exposure to HMC and NPs induces oxidative stress. A significant decrease was observed in aspartate aminotransferase, gamma-glutamyl transpeptidase, and alkaline phosphatase activities, glycogen, triglyceride, and total protein levels. However, lactate dehydrogenase activity was significantly increased. Co-exposure to HMC and NPs increased heavy metal bioaccumulation, induced oxidative stress, biochemical changes, and enhanced HMC toxicity in shrimp.
Full article

Graphical abstract
Open AccessArticle
Ecotoxicological Effects of Environmentally Relevant Concentrations of Nickel Nanoparticles on Aquatic Organisms from Three Trophic Levels: Insights from Oxidative Stress Biomarkers
by
Alberto Teodorico Correia, Eduardo Motta, David Daniel, Bruno Nunes and José Neves
J. Xenobiot. 2025, 15(4), 112; https://doi.org/10.3390/jox15040112 - 4 Jul 2025
Abstract
This study investigated the ecotoxicological impacts of environmentally relevant concentrations (0.05, 0.50, and 5.00 mg/L) of nickel nanoparticles (Ni-NPs) by assessing oxidative stress biomarkers. The worm Hediste diversicolor, the bivalve Mytilus spp., and the fish Sparus aurata were chronically exposed to Ni-NPs
[...] Read more.
This study investigated the ecotoxicological impacts of environmentally relevant concentrations (0.05, 0.50, and 5.00 mg/L) of nickel nanoparticles (Ni-NPs) by assessing oxidative stress biomarkers. The worm Hediste diversicolor, the bivalve Mytilus spp., and the fish Sparus aurata were chronically exposed to Ni-NPs for 28 days, and glutathione S-transferases (GST), catalase (CAT), and thiobarbituric acid reactive substances (TBARS) levels were measured to evaluate biochemical responses. GST activity increased in H. diversicolor and the liver of S. aurata, suggesting a key role for this enzyme in Ni-NPs detoxification. CAT activity was inhibited in the digestive gland of Mytilus spp. at the highest Ni-NPs concentration, indicating possible disruption of antioxidant defense. TBARS levels rose significantly in the gills of Mytilus spp. exposed to high Ni-NP concentrations, suggesting oxidative damage beyond detoxification capacity. In contrast, TBARS decreased in the digestive gland of Mytilus and in H. diversicolor, possibly due to compensatory upstream antioxidant responses. These findings indicate that each species exhibits distinct adaptive responses to Ni-NP exposure. Overall, this study highlights the need to consider species- and tissue-specific responses when performing ecotoxicological risk assessments of nanomaterials.
Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Effects of Docosahexaenoic Acid on Prostate Cancer
by
Guilherme Henrique Tamarindo, Gustavo Matheus Amaro, Alana Della Torre da Silva and Rejane Maira Góes
J. Xenobiot. 2025, 15(4), 111; https://doi.org/10.3390/jox15040111 - 4 Jul 2025
Abstract
The polyunsaturated fatty acids of the omega-3 class have been widely investigated due to their antitumor properties, including in prostate cancer (PCa). Among them is docosahexaenoic acid (DHA, C22:6 ω-3), whose biological activity is higher than other omega-3s, exhibiting a stronger impact on
[...] Read more.
The polyunsaturated fatty acids of the omega-3 class have been widely investigated due to their antitumor properties, including in prostate cancer (PCa). Among them is docosahexaenoic acid (DHA, C22:6 ω-3), whose biological activity is higher than other omega-3s, exhibiting a stronger impact on PCa. The specific mechanisms triggered by DHA are blurred by studies that used a blend of omega-3s, delaying the understanding of its biological role, and hence alternative therapeutic approaches. DHA is differentially processed between normal and malignant epithelial PCa cells, which suggests its function as a tumor suppressor. At cell-specific level, it downregulates key pathways in PCa, such as androgen signaling and lipid metabolism, but also changes membrane composition by disrupting phospholipid balance and increasing unsaturation status, arrests the cell cycle, and induces apoptosis and reactive oxygen species (ROS) overproduction. At the tissue level, DHA seems to influence stromal components, such as the inhibition of cancer-associated fibroblast differentiation and resolution of inflammation, which generates a microenvironment favorable to PCa initiation and progression. Considering that such effects are misunderstood and assigned to omega-3s in general, this review aims to discuss the specific effects of DHA on PCa based on in vitro and in vivo evidence.
Full article
(This article belongs to the Special Issue Impact of Nutrition and the Environment on Human Metabolism)
►▼
Show Figures

Figure 1
Open AccessReview
Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species
by
Grace Emily Okuthe, Edith Dube and Patrick Siyambulela Mafunda
J. Xenobiot. 2025, 15(4), 110; https://doi.org/10.3390/jox15040110 - 4 Jul 2025
Abstract
►▼
Show Figures
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations
[...] Read more.
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations in apex predators. This review synthesizes current knowledge regarding the far-reaching impacts of pharmaceutical and EDC pollution on the reproductive biology of aquatic fauna, focusing on the heightened vulnerability of the endangered African penguin. A rigorous literature review across key scientific databases—PubMed, Scopus, Web of Science, and Google Scholar—using targeted search terms (e.g., penguins, contaminants of emerging concern, penguin species, seabird species, Antarctica, pharmaceuticals, personal care products, EDCs) underpins this analysis. This review explores the anthropogenic sources of pharmaceuticals and EDCs in aquatic ecosystems. It discusses the mechanisms by which these chemicals disrupt the reproductive physiology of aquatic fauna. Recent studies on the ecological and population-level consequences of these contaminants are also reviewed. Furthermore, the review elaborates on the urgent need for comprehensive mitigating strategies to address their effects on vulnerable penguin populations. These approaches hold the potential to unlock innovative pathways for conservation initiatives and the formulation of robust environmental management policies aimed at safeguarding aquatic ecosystems and the diverse life they support.
Full article

Figure 1
Open AccessArticle
Antioxidant Potential and Antibacterial Activities of Caucasian Endemic Plants Sempervivum transcaucasicum and Paeonia daurica subsp. mlokosewitschii Extracts and Molecular In Silico Mechanism Insights
by
Valentina Mittova, Marina Pirtskhalava, Zurab R. Tsetskhladze, Khatuna Makalatia, Alexander Loladze, Irakli Bebiashvili, Tinatin Barblishvili, Ana Gogoladze and Giovanni N. Roviello
J. Xenobiot. 2025, 15(4), 109; https://doi.org/10.3390/jox15040109 - 4 Jul 2025
Abstract
Antioxidants derived from plant extracts have attracted considerable attention due to their potential in mitigating oxidative damage through free radical scavenging mechanisms. Although 700 species have been used for centuries in Georgian traditional medicine, the chemical composition and antioxidant and antibacterial properties of
[...] Read more.
Antioxidants derived from plant extracts have attracted considerable attention due to their potential in mitigating oxidative damage through free radical scavenging mechanisms. Although 700 species have been used for centuries in Georgian traditional medicine, the chemical composition and antioxidant and antibacterial properties of Caucasian endemic medicinal plants remain largely unknown. In this study, the antioxidant and antibacterial activities of leaf and root extracts of Caucasian endemic medicinal plants Sempervivum transcaucasicum Muirhead and Paeonia daurica subsp. mlokosewitschii (Lomakin) D. Y. Hong were investigated. The highest antioxidant activity and phenolic and flavonoid content were revealed in Paeonia daurica leaf extract. The analysis of the content of water-soluble antioxidants revealed the highest content of reduced glutathione and ascorbate in Paeonia daurica leaves. Moreover, the antibacterial activity of leaf and root extracts against Escherichia coli ATCC 25922 strain was investigated, and minimal inhibitory concentration (MIC) values were determined. While the antibacterial activity against E. coli ATCC 25922 was not revealed for the Sempervivum transcaucasicum leaf extract, antibacterial properties were detected for the root extract (MIC 5 mg/mL). Collectively, the highest antibacterial activity was revealed for Paeonia daurica leaf and root extracts (MIC 2 mg/mL and 3 mg/mL, respectively). From a molecular perspective, molecular docking simulations were performed using HDOCK software, with reduced glutathione and ascorbic acid as ligands, in order to analyse their potential binding affinity to the OmpX protein. Inhibiting this protein would likely disrupt bacterial function and produce an antibacterial effect. Our results provide a possible mechanism for the antibacterial activity of Paeonia daurica subsp. mlokosewitschii. Overall, the results of the study demonstrate the potential of Caucasian endemic medicinal plants as natural antioxidants and antimicrobial agents.
Full article
(This article belongs to the Special Issue Impact of Nutrition and the Environment on Human Metabolism)
►▼
Show Figures

Figure 1
Open AccessArticle
Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic
by
Sanjay K. S. Patel, Rahul K. Gupta and Jung-Kul Lee
J. Xenobiot. 2025, 15(4), 108; https://doi.org/10.3390/jox15040108 - 3 Jul 2025
Abstract
►▼
Show Figures
In the present investigation, an eco-friendly biocatalyst was developed using Pleurotus eryngii laccase (PeLac) through a copper (Cu)-based protein–inorganic hybrid system for the degradation of bisphenol A, a representative xenobiotic. After partial purification, the specific activity of crude PeLac was
[...] Read more.
In the present investigation, an eco-friendly biocatalyst was developed using Pleurotus eryngii laccase (PeLac) through a copper (Cu)-based protein–inorganic hybrid system for the degradation of bisphenol A, a representative xenobiotic. After partial purification, the specific activity of crude PeLac was 92.6 U/mg of total protein. Immobilization of PeLac as Cu3(PO4)2–Lac (Cu–PeLac) nanoflowers (NFs) at 4 °C resulted in a relative activity 333% higher than that of the free enzyme. The Cu–PeLac NFs exhibited greater pH and temperature stability and enhanced catalytic activity compared to free laccase. This enhanced activity was validated through improved electrochemical properties. After immobilization, Cu–PeLac NFs retained up to 8.7-fold higher residual activity after storage at 4 °C for 30 days. Free and immobilized laccase degraded bisphenol A by 41.6% and 99.8%, respectively, after 2 h of incubation at 30 °C. After ten cycles, Cu–PeLac NFs retained 91.2% degradation efficiency. In the presence of potent laccase inhibitors, Cu–PeLac NFs exhibited a 47.3-fold improvement in bisphenol A degradation compared to free PeLac. Additionally, the synthesized Cu–PeLac NFs demonstrated lower acute toxicity against Vibrio fischeri than Cu nanoparticles. This study presents the first report of PeLac immobilization through an eco-friendly protein–inorganic hybrid system, with promising potential for degrading bisphenol A in the presence of inhibitors to support sustainable development.
Full article

Figure 1
Open AccessArticle
A Novel HPLC-MS/MS Method for the Intracellular Quantification of the Active Triphosphate Metabolite of Remdesivir: GS-443902
by
Alice Palermiti, Amedeo De Nicolò, Miriam Antonucci, Sara Soloperto, Martina Billi, Alessandra Manca, Jessica Cusato, Giorgia Menegatti, Mohammed Lamorde, Andrea Calcagno, Catriona Waitt and Antonio D’Avolio
J. Xenobiot. 2025, 15(4), 107; https://doi.org/10.3390/jox15040107 - 3 Jul 2025
Abstract
►▼
Show Figures
Background: Remdesivir (RDV) is a broad-spectrum antiviral prodrug, which is rapidly metabolized in vivo within cells to the pharmacologically active triphosphate metabolite, GS-443902. On the other hand, the dephosphorylated metabolite GS-441524 is the main form detected in plasma. RDV acts against RNA viruses,
[...] Read more.
Background: Remdesivir (RDV) is a broad-spectrum antiviral prodrug, which is rapidly metabolized in vivo within cells to the pharmacologically active triphosphate metabolite, GS-443902. On the other hand, the dephosphorylated metabolite GS-441524 is the main form detected in plasma. RDV acts against RNA viruses, and it was the first antiviral drug to receive EMA and FDA approval for treating COVID-19. Nevertheless, its intracellular pharmacokinetics in real life are poorly explored, particularly due to technical challenges. Methods: The aim of this study was to validate an HPLC-MS/MS method for the direct quantification of GS-443902 in peripheral blood mononuclear cells (PBMCs) with a chromatographic separation of 15 min. Results: The method was validated following EMA and FDA guidelines in terms of sensitivity, specificity, accuracy, precision, matrix effect, recovery, carryover, and stability, and then applied to PBMC isolates from a small cohort of patients with severe COVID-19 who received RDV. Conclusions: This work represents the first method for the direct quantification of GS-443902 in PBMCs, with possible future application to intracellular pharmacokinetic studies in different scenarios, such as new oral prodrugs or drug–drug interaction studies.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
JMSE, JoX, Microplastics, Toxics, Water
Plastics, Water-Soluble Polymers and Rubberized Materials: Ecotoxicological Aspects in the Aquatic Environments
Topic Editors: Stefano Magni, François GagnéDeadline: 31 August 2025
Topic in
Agriculture, Analytica, Chemistry, Environments, JoX
Exploring the Interplay of Agriculture, Analytical Chemistry, Environments and Toxics
Topic Editors: Bruno Lemos Batista, Tatiana Pedron, Camila Neves LangeDeadline: 20 September 2025
Topic in
Antioxidants, JoX, Metabolites, Molecules, Toxics, Veterinary Sciences, IJMS, Biomolecules
Recent Advances in Veterinary Pharmacology and Toxicology
Topic Editors: Chongshan Dai, Jichang LiDeadline: 1 December 2025
Topic in
BioChem, Biomolecules, JoX, Pharmaceuticals
Phase I and Phase II Xenobiotic-Metabolizing Enzymes: Structure, Function, and Regulation
Topic Editors: Nikolaos Labrou, Anastassios C. PapageorgiouDeadline: 31 December 2025

Conferences
Special Issues
Special Issue in
JoX
Plant Biostimulants - a Promising Tool in Organic Farming
Guest Editors: Ana Paula Honrado Pinto, Jorge M. S. FariaDeadline: 31 August 2025
Special Issue in
JoX
Microplastics in Soils: Occurrence, Sources, Contaminant Vectors, and Effects on Soil Properties
Guest Editors: Ana Paula Honrado Pinto, Jorge M. S. FariaDeadline: 31 August 2025
Special Issue in
JoX
The Role of Endocrine-Disrupting Chemicals in the Human Health: 2nd Edition
Guest Editor: Elisa CairraoDeadline: 30 September 2025
Special Issue in
JoX
Environmental Toxicology and Animal Health: 2nd Edition
Guest Editor: Sara Raquel Boaventura RodriguesDeadline: 31 October 2025