Journal Description
Journal of Xenobiotics
Journal of Xenobiotics
is an international, peer-reviewed, open access journal on xenobiotics published quarterly online by MDPI (from Volume 10, Issue 1 - 2020).
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubMed, PMC, CAPlus / SciFinder, and other databases
- Journal Rank: CiteScore - Q2 (Pollution)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.8 days after submission; acceptance to publication is undertaken in 3.8 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review and reviewer names are published annually in the journal.
Impact Factor:
6.0 (2022);
5-Year Impact Factor:
5.0 (2022)
Latest Articles
The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem
J. Xenobiot. 2023, 13(4), 604-614; https://doi.org/10.3390/jox13040038 - 01 Oct 2023
Abstract
The growing concern over the environmental impacts of industrial chemicals on aquatic ecosystems has prompted increased attention and regulation. Aromatic amines have drawn scrutiny due to their potential to disturb aquatic ecosystems. 4-chloroaniline and 3,4-dichloroaniline are chlorinated derivatives of aniline used as intermediates
[...] Read more.
The growing concern over the environmental impacts of industrial chemicals on aquatic ecosystems has prompted increased attention and regulation. Aromatic amines have drawn scrutiny due to their potential to disturb aquatic ecosystems. 4-chloroaniline and 3,4-dichloroaniline are chlorinated derivatives of aniline used as intermediates in the synthesis of pharmaceuticals, dyes, pesticides, cosmetics, and laboratory chemicals. While industrial applications are crucial, these compounds represent significant risks to aquatic environments. This article aims to shed light on aromatic amines’ ecological and ecotoxicological impacts on aquatic ecosystems, given as examples 4-chloroaniline and 3,4-dichloroaniline, highlighting the need for stringent regulation and management to safeguard water resources. Moreover, these compounds are not included in the current Watch List of the Water Framework Directive, though there is already some information about aquatic ecotoxicity, which raises some concerns. This paper primarily focuses on the inherent environmental problem related to the proliferation and persistence of aromatic amines, particularly 4-chloroaniline and 3,4-dichloroaniline, in aquatic ecosystems. Although significant research underscores the hazardous effects of these compounds, the urgency of addressing this issue appears to be underestimated. As such, we underscore the necessity of advancing detection and mitigation efforts and implementing improved regulatory measures to safeguard the water bodies against these potential threats.
Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
Open AccessReview
Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation
by
, , , , , , , and
J. Xenobiot. 2023, 13(4), 572-603; https://doi.org/10.3390/jox13040037 - 01 Oct 2023
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been
[...] Read more.
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Full article
(This article belongs to the Special Issue Plant Biostimulants - a Promising Tool in Organic Farming)
►▼
Show Figures

Figure 1
Open AccessArticle
The Behavior of Terbuthylazine, Tebuconazole, and Alachlor during Denitrification Process
J. Xenobiot. 2023, 13(4), 560-571; https://doi.org/10.3390/jox13040036 - 01 Oct 2023
Abstract
Pesticide compounds can influence denitrification processes in groundwater in many ways. This study observed behavior of three selected pesticides under denitrifying conditions. Alachlor, terbuthylazine, and tebuconazole, in a concentration of 0.1 mL L−1, were examined using two laboratory denitrifications assays: a
[...] Read more.
Pesticide compounds can influence denitrification processes in groundwater in many ways. This study observed behavior of three selected pesticides under denitrifying conditions. Alachlor, terbuthylazine, and tebuconazole, in a concentration of 0.1 mL L−1, were examined using two laboratory denitrifications assays: a “short” 7-day and a “long” 28-day test. During these tests, removal of pesticides via adsorption and biotic decomposition, as well as the efficiency of nitrate removal in the presence of the pesticides, were measured. No considerable inhibition of the denitrification process was observed for any of the pesticides. On the contrary, significant stimulation was observed after 21 days for alachlor (49%) and after seven days for terbuthylazine (40%) and tebuconazole (36%). Adsorption was in progress only during the first seven days in the case of all tested pesticides and increased only negligibly afterwards. Immediate adsorption of terbuthylazine was probably influenced by the mercuric chloride inhibitor. A biotic loss of 4% was measured only in the case of alachlor.
Full article
(This article belongs to the Section Emerging Chemicals)
►▼
Show Figures

Figure 1
Open AccessArticle
Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda
by
, , , , , , , , , and
J. Xenobiot. 2023, 13(4), 544-559; https://doi.org/10.3390/jox13040035 - 26 Sep 2023
Abstract
►▼
Show Figures
Pollution of water resources is one of the major impediments to the realization of Sustainable Development Goals, especially in developing countries. The aim of this study was to investigate the physicochemical quality and potentially toxic element (lead and cadmium) concentrations in surface water
[...] Read more.
Pollution of water resources is one of the major impediments to the realization of Sustainable Development Goals, especially in developing countries. The aim of this study was to investigate the physicochemical quality and potentially toxic element (lead and cadmium) concentrations in surface water sampled from Pager River, a tributary of the Nile River in Northern Uganda. Water samples (n = 18) were taken from six different points upstream (A, B, and C) and downstream (D, E, and F) of the river and analyzed following standard methods for their physiochemical properties. Atomic absorption spectroscopy was used to quantify lead and cadmium concentrations. Human health risks from ingestion and dermal contact with potentially toxic metal-contaminated water were calculated. The results obtained indicated that the mean temperature (27.7 ± 0.5–29.5 ± 0.8 °C), turbidity (40.7 ± 2.1–50.1 ± 1.1 NTU), lead (0.296 ± 0.030–0.576 ± 0.163 mg/L) and cadmium (0.278 ± 0.040–0.524 ± 0.040 mg/L) occurred at levels that surpassed their permissible limits as per World Health Organization guidelines for drinking water. Human health risk assessment showed that there are potential non-cancer risks from the ingestion of water from Pager River by adults, as the total hazard quotients were greater than one. These results emphasize the urgency to restrict the dumping of wastes into the river to minimize chances of impacting the Nile River, which flows northwards to the Mediterranean Sea. Further studies should perform routine monitoring of the river during both dry and wet seasons to establish the spatiotemporal variations of physicochemical, microbial, and trace metal profiles of the river and the associated health risks.
Full article

Figure 1
Open AccessArticle
The Extracellular Vesicles Containing Inorganic Polyphosphate of Candida Yeast upon Growth on Hexadecane
by
, , , , , and
J. Xenobiot. 2023, 13(4), 529-543; https://doi.org/10.3390/jox13040034 - 23 Sep 2023
Abstract
►▼
Show Figures
The cell wall of Candida yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes—canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition,
[...] Read more.
The cell wall of Candida yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes—canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition, inorganic polyphosphate (polyP) was identified in Candida maltosa canals. The aim of the work was a comparative study of the features of cell walls and extracellular structures in yeast C. maltosa, C. albicans and C. tropicalis with special attention to inorganic polyphosphates as possible part of these structures when grown on the widely used xenobiotic hexadecane (diesel fuel). Fluorescence microscopy with DAPI has shown an unusual localization of polyP on the cell surface and in the exovesicles in the three yeast species, when growing on hexadecane. Electron-scanning microscopy showed that the exovesicles were associated with the cell wall and also presented in the external environment probably as biofilm components. Treatment of hexadecane-grown cells with purified Ppx1 polyphosphatase led to the release of phosphate into the incubation medium and the disappearance of polyP in vesicles and cell wall observed using microscopic methods. The results indicate the important role of polyP in the formation of extracellular structures in the Candida yeast when consuming hexadecane and are important for the design of xenobiotic destructors based on yeast or mixed cultures.
Full article

Figure 1
Open AccessReview
Indigo Carmine: Between Necessity and Concern
J. Xenobiot. 2023, 13(3), 509-528; https://doi.org/10.3390/jox13030033 - 20 Sep 2023
Abstract
►▼
Show Figures
Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum
[...] Read more.
Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum permitted level is 500 mg/kg. Indigo carmine is one of the most used dyes in the textile industry, especially for dyeing denim, and it is also used in medicine due to its impressive applicability in diagnostic methods and surgical procedures, such as in gynecological and urological surgeries and microsurgery. It is reported that indigo carmine is toxic for humans and can cause various pathologies, such as hypertension, hypotension, skin irritations, or gastrointestinal disorders. In this review, we discuss the structure and properties of indigo carmine; its use in various industries and medicine; the adverse effects of its ingestion, injection, or skin contact; the effects on environmental pollution; and its toxicity testing. For this review, 147 studies were considered relevant. Most of the cited articles were those about environmental pollution with indigo carmine (51), uses of indigo carmine in medicine (45), and indigo carmine as a food additive (17).
Full article

Graphical abstract
Open AccessCommunication
Effects of Chronic Roundup Exposure on Medaka Larvae
J. Xenobiot. 2023, 13(3), 500-508; https://doi.org/10.3390/jox13030032 - 14 Sep 2023
Abstract
The use of glyphosate-based herbicides is increasing yearly to keep up with the growing demands of the agriculture world. Although glyphosate-based herbicides target the enzymatic pathway in plants, the effects on the endocrine systems of vertebrate organisms, mainly fish, are widely unknown. Many
[...] Read more.
The use of glyphosate-based herbicides is increasing yearly to keep up with the growing demands of the agriculture world. Although glyphosate-based herbicides target the enzymatic pathway in plants, the effects on the endocrine systems of vertebrate organisms, mainly fish, are widely unknown. Many studies with glyphosate used high-exposure concentrations (mg/L), and the effect of environmentally relevant or lower concentrations has not been clearly understood. Therefore, the present study examined the effects of very low, environmentally relevant, and high concentrations of glyphosate exposure on embryo development and the thyroid system of Japanese medaka (Oryzias latipes). The Hd-rR medaka embryos were exposed to Roundup containing 0.05, 0.5, 5, 10, and 20 mg/L glyphosate (glyphosate acid equivalent) from the 8 h post-fertilization stage through the 14-day post-fertilization stage. Phenotypes observed include delayed hatching, increased developmental deformities, abnormal growth, and embryo mortality. The lowest concentration of glyphosate (0.05 mg/L) and the highest concentration (20 mg/L) induced similar phenotypes in embryos and fry. A significant decrease in mRNA levels for acetylcholinesterase (ache) and thyroid hormone receptor alpha (thrα) was found in the fry exposed to 0.05 mg/L and 20 mg/L glyphosate. The present results demonstrated that exposure to glyphosate formulation, at a concentration of 0.05 mg/L, can affect the early development of medaka larvae and the thyroid pathway, suggesting a link between thyroid functional changes and developmental alteration; they also showed that glyphosate can be toxic to fish at this concentration.
Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
►▼
Show Figures

Figure 1
Open AccessCommunication
Becoming aWARE: The Development of a Web-Based Tool for Autism Research and the Environment
by
, , , , , and
J. Xenobiot. 2023, 13(3), 492-499; https://doi.org/10.3390/jox13030031 - 13 Sep 2023
Abstract
A sharp rise in autism spectrum disorder (ASD) prevalence estimates, beginning in the 1990s, suggested factors additional to genetics were at play. This stimulated increased research investment in nongenetic factors, including the study of environmental chemical exposures, diet, nutrition, lifestyle, social factors, and
[...] Read more.
A sharp rise in autism spectrum disorder (ASD) prevalence estimates, beginning in the 1990s, suggested factors additional to genetics were at play. This stimulated increased research investment in nongenetic factors, including the study of environmental chemical exposures, diet, nutrition, lifestyle, social factors, and maternal medical conditions. Consequently, both peer- and non-peer-reviewed bodies of evidence investigating environmental contributors to ASD etiology have grown significantly. The heterogeneity in the design and conduct of this research results in an inconclusive and unwieldy ‘virtual stack’ of publications. We propose to develop a Web-based tool for Autism Research and the Environment (aWARE) to comprehensively aggregate and assess these highly variable and often conflicting data. The interactive aWARE tool will use an approach for the development of systematic evidence maps (SEMs) to identify and display all available relevant published evidence, enabling users to explore multiple research questions within the scope of the SEM. Throughout tool development, listening sessions and workshops will be used to seek perspectives from the broader autism community. New evidence will be indexed in the tool annually, which will serve as a living resource to investigate the association between environmental factors and ASD.
Full article
(This article belongs to the Special Issue Environmental Conditions and Autism Spectrum Disorders)
►▼
Show Figures

Figure 1
Open AccessArticle
Can BPA Analogs Affect Cellular and Biochemical Responses in the Microalga Phaeodactylum tricornutum Bohlin?
by
, , , , and
J. Xenobiot. 2023, 13(3), 479-491; https://doi.org/10.3390/jox13030030 - 08 Sep 2023
Abstract
Bisphenol A analogs (BPA analogs) are emerging contaminants with a rising production caused by the replacement of BPA with these compounds. The increased production of BPA analogs is leading to their increased release into various ecosystems, including marine ones. The aim of this
[...] Read more.
Bisphenol A analogs (BPA analogs) are emerging contaminants with a rising production caused by the replacement of BPA with these compounds. The increased production of BPA analogs is leading to their increased release into various ecosystems, including marine ones. The aim of this study was to evaluate the biological effects of BPA analogs on a primary producer, the diatom Phaeodactylum tricornutum Bohlin. Three different BPA analogs (BPAF, BPF, and BPS) and their mixture were tested at the environmental relevant concentration of 300 ng/L. Growth, cell size and several biomarkers of oxidative stress and oxidative damage were measured. Our results indicated that the tested compounds caused a reduced growth rate and induced oxidative stress, altering many antioxidant enzymes in P. tricornutum. However, no oxidative damages were observed.
Full article
(This article belongs to the Section Ecotoxicology)
►▼
Show Figures

Figure 1
Open AccessArticle
Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica–Głogów Copper Area—An In Vitro Pilot Study
by
, , , , , , , and
J. Xenobiot. 2023, 13(3), 463-478; https://doi.org/10.3390/jox13030029 - 27 Aug 2023
Abstract
►▼
Show Figures
The aim of this study was to determine the content of mercury in impacted third molars from Legnica–Głogów Copper Area residents to emphasize the effects of environmental pollution on the human body. A group of 72 patients with an average age of 27.3
[...] Read more.
The aim of this study was to determine the content of mercury in impacted third molars from Legnica–Głogów Copper Area residents to emphasize the effects of environmental pollution on the human body. A group of 72 patients with an average age of 27.3 ± 6.9 years participated in the study. Within this study, the research group (Legnica–Głogów Copper Area residents) comprised 51 individuals, while the control group (residents of Wrocław) consisted of 21 participants. A higher number of female individuals participated in the research (55). The amount of mercury present in the samples was determined through atomic absorption spectrometry with the use of a SpectraAA atomic absorption spectrometer and a V2 AA240FS flame attachment that utilized an air–acetylene flame. The accumulation of Hg in the teeth of members of the control group residing in Wrocław was studied, with a focus on identifying the risk factors that contribute to this phenomenon. The final model analyzed the presence of various factors, including thyroid and parathyroid gland diseases, cardiac diseases, and interval-scale Vit. D3 concentration. Among these factors, the presence of cardiac diseases was deemed statistically significant in relation to an increase in Hg concentration in third molars (rate ratio = 2.27, p < 0.0001). The concentration of mercury increased with the age and time of residence in the L-G Copper District.
Full article

Figure 1
Open AccessReview
Organochlorine Compounds in the Amur (Heilong) River Basin (2000–2020): A Review
J. Xenobiot. 2023, 13(3), 439-462; https://doi.org/10.3390/jox13030028 - 20 Aug 2023
Abstract
Persistent organic pollutants (POPs) are well-known contaminants that raise serious concerns, even more than 20 years after they were banned. Their worldwide distribution and persistence necessitate continuous monitoring in all components of the environment. The most challenging issues of POP regulation are associated
[...] Read more.
Persistent organic pollutants (POPs) are well-known contaminants that raise serious concerns, even more than 20 years after they were banned. Their worldwide distribution and persistence necessitate continuous monitoring in all components of the environment. The most challenging issues of POP regulation are associated with international water resources because their solutions require international cooperation in environment protection. This review provides data on various POPs (DDT, HCH, endrin, dieldrin, and PCBs) and their concentrations in aquatic organisms inhabiting the Amur River basin, one of the most poorly explored regions of Northeast Asia. Most studies have been conducted in the Songhua River (China), a tributary of the Amur River, which indicates that large inland bodies of water, especially those of international importance, require more extensive research.
Full article
(This article belongs to the Special Issue Journal of Xenobiotics: Feature Papers)
►▼
Show Figures

Figure 1
Open AccessArticle
The Microbiome and Antibiotic Resistome in Soil under Biodegradable Composite Carbon Source Amendment
by
, , , , , , and
J. Xenobiot. 2023, 13(3), 424-438; https://doi.org/10.3390/jox13030027 - 15 Aug 2023
Abstract
The decomposition of biodegradable composite carbon sources generates a large amount of biodegradable microplastics, which may not only furnish microbial denitrification, but might also pose potential environmental risks. In the present study, the effects of different dosages of a biodegradable composite carbon source
[...] Read more.
The decomposition of biodegradable composite carbon sources generates a large amount of biodegradable microplastics, which may not only furnish microbial denitrification, but might also pose potential environmental risks. In the present study, the effects of different dosages of a biodegradable composite carbon source on the microbial communities, the nitrogen metabolic pathways and the antibiotic resistome were explored through Illumina MiSeq sequencing analysis and metagenomic analysis. The results of partial least-square discriminant analysis (PLS-DA) and analysis of similarity (ANOSIM) demonstrated that the response of the bacterial community to a biodegradable composite carbon source was more obvious than the fungal community. The application of biodegradable microplastics diminished the complexity of the microbial communities to some extent and obviously stimulated denitrification. Antibiotics resistance gene (ARG) dispersal was not evidently accelerated after the addition of biodegradable composite carbon source. Lysobacter, Methylobacillus, Phyllobacterium, Sinorhizobium, Sphingomonas from Proteobacteria and Actinomadura, Agromyces, Gaiella and Micromonospora from Actinobacteria were the major ARG hosts. Overall, the addition of a biodegradable composite carbon source shaped microbial communities and their antibiotic resistance profiles in this study.
Full article
(This article belongs to the Special Issue Microplastics in Soils: Occurrence, Sources, Contaminant Vectors, and Effects on Soil Properties)
►▼
Show Figures

Graphical abstract
Open AccessReview
Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense
J. Xenobiot. 2023, 13(3), 402-423; https://doi.org/10.3390/jox13030026 - 25 Jul 2023
Abstract
►▼
Show Figures
Cytochrome P450s (CYPs) are the most prominent family of enzymes involved in NADPH- and O2-dependent hydroxylation processes throughout all spheres of life. CYPs are crucial for the detoxification of xenobiotics in plants, insects, and other organisms. In addition to performing this
[...] Read more.
Cytochrome P450s (CYPs) are the most prominent family of enzymes involved in NADPH- and O2-dependent hydroxylation processes throughout all spheres of life. CYPs are crucial for the detoxification of xenobiotics in plants, insects, and other organisms. In addition to performing this function, CYPs serve as flexible catalysts and are essential for producing secondary metabolites, antioxidants, and phytohormones in higher plants. Numerous biotic and abiotic stresses frequently affect the growth and development of plants. They cause a dramatic decrease in crop yield and a deterioration in crop quality. Plants protect themselves against these stresses through different mechanisms, which are accomplished by the active participation of CYPs in several biosynthetic and detoxifying pathways. There are immense potentialities for using CYPs as a candidate for developing agricultural crop species resistant to biotic and abiotic stressors. This review provides an overview of the plant CYP families and their functions to plant secondary metabolite production and defense against different biotic and abiotic stresses.
Full article

Figure 1
Open AccessReview
Microbiome: The Next Frontier in Psychedelic Renaissance
J. Xenobiot. 2023, 13(3), 386-401; https://doi.org/10.3390/jox13030025 - 25 Jul 2023
Abstract
The psychedelic renaissance has reignited interest in the therapeutic potential of psychedelics for mental health and well-being. An emerging area of interest is the potential modulation of psychedelic effects by the gut microbiome—the ecosystem of microorganisms in our digestive tract. This review explores
[...] Read more.
The psychedelic renaissance has reignited interest in the therapeutic potential of psychedelics for mental health and well-being. An emerging area of interest is the potential modulation of psychedelic effects by the gut microbiome—the ecosystem of microorganisms in our digestive tract. This review explores the intersection of the gut microbiome and psychedelic therapy, underlining potential implications for personalized medicine and mental health. We delve into the current understanding of the gut–brain axis, its influence on mood, cognition, and behavior, and how the microbiome may affect the metabolism and bioavailability of psychedelic substances. We also discuss the role of microbiome variations in shaping individual responses to psychedelics, along with potential risks and benefits. Moreover, we consider the prospect of microbiome-targeted interventions as a fresh approach to boost or modulate psychedelic therapy’s effectiveness. By integrating insights from the fields of psychopharmacology, microbiology, and neuroscience, our objective is to advance knowledge about the intricate relationship between the microbiome and psychedelic substances, thereby paving the way for novel strategies to optimize mental health outcomes amid the ongoing psychedelic renaissance.
Full article
(This article belongs to the Section Drug Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study
J. Xenobiot. 2023, 13(3), 323-385; https://doi.org/10.3390/jox13030024 - 18 Jul 2023
Cited by 3
Abstract
►▼
Show Figures
Recent European data facilitate an epidemiological investigation of the controversial cannabis–cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer
[...] Read more.
Recent European data facilitate an epidemiological investigation of the controversial cannabis–cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000–2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10−115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Full article

Figure 1
Open AccessArticle
Vulvovaginal Candidiasis in Pregnancy—Between Sensitivity and Resistance to Antimycotics
by
, , , , and
J. Xenobiot. 2023, 13(3), 312-322; https://doi.org/10.3390/jox13030023 - 05 Jul 2023
Abstract
Vulvovaginitis with Candida spp. is the most common infection in women and the rate is increased during pregnancy. Antifungal prescription in pregnant women continues to present challenges and the decision must balance the risk of fetal toxicity with the benefits to the fetus
[...] Read more.
Vulvovaginitis with Candida spp. is the most common infection in women and the rate is increased during pregnancy. Antifungal prescription in pregnant women continues to present challenges and the decision must balance the risk of fetal toxicity with the benefits to the fetus and mother. Starting from the idea that clotrimazole is the most recommended antifungal in candidal vaginitis in pregnancy, we tested the sensitivity of different species of Candida spp. to other azoles, polyenes, and antimetabolites. This retrospective study (January to June 2019) assessed 663 pregnant women hospitalized for various pregnancy-related symptoms in which samples of phage secretion were taken. The laboratory results confirmed 21% of cases, indicating 140 positive mycologic samples. In this study, vaginal candidiasis was mostly related to the first trimester of pregnancy (53.57%,) and less related in the last trimester (17.14%). Candida albicans was the most frequent isolated strain in this study, accounting for 118 cases, followed by 16 strains of Candida glabrata and 6 cases of Candida krusei. The highest sensitivity for C. albicans was found in azoles, mostly in miconazole (93.2%), while C. krusei was completely resistant to polyene with low sensitivity in antimetabolites and even in some azoles, such as fluconazole. In our study, higher resistance rates to flucytosine were found, with C. glabrata and C. krusei exhibiting greater resistance than C. albicans.
Full article
(This article belongs to the Section Drug Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
Deposition, Dietary Exposure and Human Health Risks of Heavy Metals in Mechanically Milled Maize Flours in Mbarara City, Uganda
J. Xenobiot. 2023, 13(3), 298-311; https://doi.org/10.3390/jox13030022 - 26 Jun 2023
Abstract
►▼
Show Figures
Consumption of maize and maize-based products contributes a significant percentage to the total food energy intake in Uganda. However, the production of maize-derived foodstuffs is performed traditionally or by small- and medium-scale processors using different processing techniques. This can lead to differences in
[...] Read more.
Consumption of maize and maize-based products contributes a significant percentage to the total food energy intake in Uganda. However, the production of maize-derived foodstuffs is performed traditionally or by small- and medium-scale processors using different processing techniques. This can lead to differences in the quality of these products from processors, raising food safety concerns. In this study, the effects of mechanical processing (milling) methods on deposition of heavy metals into milled maize flour and the associated consumption health risks were assessed. Atomic absorption spectrophotometry was used to quantitatively establish the concentration of iron (Fe), manganese (Mn), zinc (Zn), cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), cobalt (Co) and nickel (Ni) in 100 samples of maize milled using a wooden mortar (n = 2), a metallic mortar (n = 2), diesel engine−powered mills (n = 48) and electric motor−powered mills (n = 48). Results showed that the mean concentrations of heavy metals in mg/kg were Fe (11.60–34.45), Cu (0.50–8.10), Ni (0.50–1.60), Mn (0.70–25.40), Zn (4.40–15.90), Pb (0.53–10.20), Cd (0.51–0.85), Cr (0.50–1.53) and Co (0.50–1.51). The highest concentrations were found in flour milled using a traditional metallic mortar while the lowest levels were in those samples milled using a wooden mortar. The Fe, Pb and Cd contents of flours produced using the metallic mortar and some commercial mills was found to be higher than the permissible limits set by WHO/FAO. Human health risk assessment showed that there are potential carcinogenic health risks from adults’ intake of heavy metals in maize flour milled using a metallic mortar. Therefore, processing of maize flour needs to be monitored by the relevant statutory bodies in Uganda to minimize the possibility of heavy metal contamination of food products and animal feeds.
Full article

Figure 1
Open AccessArticle
Development of a Dynamic Network Model to Identify Temporal Patterns of Structural Malformations in Zebrafish Embryos Exposed to a Model Toxicant, Tris(4-chlorophenyl)methanol
J. Xenobiot. 2023, 13(2), 284-297; https://doi.org/10.3390/jox13020021 - 16 Jun 2023
Abstract
Embryogenesis is a well-coordinated process relying on precise cues and environmental signals that direct spatiotemporal embryonic patterning. Quite often, when one error in this process occurs, others tend to co-occur. We posit that investigating the co-occurrence of these abnormalities over time would yield
[...] Read more.
Embryogenesis is a well-coordinated process relying on precise cues and environmental signals that direct spatiotemporal embryonic patterning. Quite often, when one error in this process occurs, others tend to co-occur. We posit that investigating the co-occurrence of these abnormalities over time would yield additional information about the mode of toxicity for chemicals. Here, we use the environmental contaminant tris(4-chlorophenyl)methanol (TCPMOH) as a model toxicant to assess the relationship between exposures and co-occurrence of developmental abnormalities in zebrafish embryos. We propose a dynamic network modeling approach to study the co-occurrence of abnormalities, including pericardial edema, yolk sac edema, cranial malformation, spinal deformity, delayed/failed swim bladder inflation, and mortality induced by TCPMOH exposure. TCPMOH-exposed samples revealed increased abnormality co-occurrence when compared to controls. The abnormalities were represented as nodes in the dynamic network model. Abnormalities with high co-occurrence over time were identified using network centrality scores. We found that the temporal patterns of abnormality co-occurrence varied between exposure groups. In particular, the high TCPMOH exposure group experienced abnormality co-occurrence earlier than the low exposure group. The network model also revealed that pericardial and yolk sac edema are the most common critical nodes among all TCPMOH exposure levels, preceding further abnormalities. Overall, this study introduces a dynamic network model as a tool for assessing developmental toxicology, integrating structural and temporal features with a concentration response.
Full article
(This article belongs to the Section Emerging Chemicals)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture
by
, , , , , , and
J. Xenobiot. 2023, 13(2), 270-283; https://doi.org/10.3390/jox13020020 - 05 Jun 2023
Cited by 1
Abstract
Chemical fungicides are the backbone of modern agriculture, but an alternative formulation is necessary for sustainable crop production to address human health issues and soil/water environmental pollution. So, a green chemistry approach was used to form guar gum nanoemulsions (NEs) of 186.5–394.1 nm
[...] Read more.
Chemical fungicides are the backbone of modern agriculture, but an alternative formulation is necessary for sustainable crop production to address human health issues and soil/water environmental pollution. So, a green chemistry approach was used to form guar gum nanoemulsions (NEs) of 186.5–394.1 nm containing the chemical fungicide mancozeb and was characterized using various physio-chemical techniques. An 84.5% inhibition was shown by 1.5 mg/mL mancozeb-loaded NEs (GG-1.5) against A. alternata, comparable to commercial mancozeb (86.5 ± 0.7%). The highest mycelial inhibition was exhibited against S. lycopersici and S. sclerotiorum. In tomatoes and potatoes, NEs showed superior antifungal efficacy in pot conditions besides plant growth parameters (germination percentage, root/shoot ratio and dry biomass). About 98% of the commercial mancozeb was released in just two h, while only about 43% of mancozeb was released from nanoemulsions (0.5, 1.0 and 1.5) for the same time. The most significant results for cell viability were seen at 1.0 mg/mL concentration of treatment, where wide gaps in cell viability were observed for commercial mancozeb (21.67%) and NEs treatments (63.83–71.88%). Thus, this study may help to combat the soil and water pollution menace of harmful chemical pesticides besides protecting vegetable crops.
Full article
(This article belongs to the Section Nanotoxicology and Nanopharmacology)
►▼
Show Figures

Figure 1
Open AccessReview
Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications
by
, , , , , and
J. Xenobiot. 2023, 13(2), 252-269; https://doi.org/10.3390/jox13020019 - 01 Jun 2023
Abstract
►▼
Show Figures
In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical
[...] Read more.
In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical and chemical techniques are used to remove HMs from contaminated soil. Microbial-metal interaction, a novel but underutilized strategy, might be used to lessen the stress caused by metals on plants. For reclaiming areas with high levels of heavy metal contamination, bioremediation is effective and environmentally friendly. In this study, the mechanism of action of endophytic bacteria that promote plant growth and survival in polluted soils—known as heavy metal-tolerant plant growth-promoting (HMT-PGP) microorganisms—and their function in the control of plant metal stress are examined. Numerous bacterial species, such as Arthrobacter, Bacillus, Burkholderia, Pseudomonas, and Stenotrophomonas, as well as a few fungi, such as Mucor, Talaromyces, Trichoderma, and Archaea, such as Natrialba and Haloferax, have also been identified as potent bioresources for biological clean-up. In this study, we additionally emphasize the role of plant growth-promoting bacteria (PGPB) in supporting the economical and environmentally friendly bioremediation of heavy hazardous metals. This study also emphasizes future potential and constraints, integrated metabolomics approaches, and the use of nanoparticles in microbial bioremediation for HMs.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
JMSE, JoX, Microplastics, Toxics, Water
Plastics, Water-Soluble Polymers and Rubberized Materials: Ecotoxicological Aspects in the Aquatic Environments
Topic Editors: Stefano Magni, François GagnéDeadline: 31 August 2024

Conferences
Special Issues
Special Issue in
JoX
The Role of Endocrine-Disrupting Chemicals in the Human Health
Guest Editor: Elisa CairraoDeadline: 30 November 2023
Special Issue in
JoX
Journal of Xenobiotics: Feature Papers
Guest Editor: François GagnéDeadline: 15 December 2023
Special Issue in
JoX
From Soil to Plate: The Fate of Xenobiotics in the Food Chain with Ecological and Health Risk Implications
Guest Editor: Agnieszka Gruszecka-KosowskaDeadline: 31 December 2023
Special Issue in
JoX
Environmental Toxicology and Animal Health
Guest Editor: Sara Raquel Boaventura RodriguesDeadline: 31 January 2024