Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (26,252)

Search Parameters:
Keywords = high-precision

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

25 pages, 19515 KiB  
Article
Towards Efficient SAR Ship Detection: Multi-Level Feature Fusion and Lightweight Network Design
by Wei Xu, Zengyuan Guo, Pingping Huang, Weixian Tan and Zhiqi Gao
Remote Sens. 2025, 17(15), 2588; https://doi.org/10.3390/rs17152588 - 24 Jul 2025
Abstract
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where [...] Read more.
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where model size, computational load, and power consumption are tightly restricted. Thus, guided by the principles of lightweight design, robustness, and energy efficiency optimization, this study proposes a three-stage collaborative multi-level feature fusion framework to reduce model complexity without compromising detection performance. Firstly, the backbone network integrates depthwise separable convolutions and a Convolutional Block Attention Module (CBAM) to suppress background clutter and extract effective features. Building upon this, a cross-layer feature interaction mechanism is introduced via the Multi-Scale Coordinated Fusion (MSCF) and Bi-EMA Enhanced Fusion (Bi-EF) modules to strengthen joint spatial-channel perception. To further enhance the detection capability, Efficient Feature Learning (EFL) modules are embedded in the neck to improve feature representation. Experiments on the Synthetic Aperture Radar (SAR) Ship Detection Dataset (SSDD) show that this method, with only 1.6 M parameters, achieves a mean average precision (mAP) of 98.35% in complex scenarios, including inshore and offshore environments. It balances the difficult problem of being unable to simultaneously consider accuracy and hardware resource requirements in traditional methods, providing a new technical path for real-time SAR ship detection on satellite platforms. Full article
Show Figures

Figure 1

20 pages, 69305 KiB  
Article
LD-DEM: Latent Diffusion with Conditional Decoding for High-Precision Planetary DEM Generation from RGB Satellite Images
by Long Sun, Haonan Zhou, Li Yang, Dengyang Zhao and Dongping Zhang
Aerospace 2025, 12(8), 658; https://doi.org/10.3390/aerospace12080658 - 24 Jul 2025
Abstract
A Digital Elevation Model (DEM) provides accurate topographic data for planetary exploration (e.g., Moon and Mars), essential for tasks like lander navigation and path planning. This study proposes the first latent diffusion-based algorithm for DEM generation, leveraging a conditional decoder to enhance reconstruction [...] Read more.
A Digital Elevation Model (DEM) provides accurate topographic data for planetary exploration (e.g., Moon and Mars), essential for tasks like lander navigation and path planning. This study proposes the first latent diffusion-based algorithm for DEM generation, leveraging a conditional decoder to enhance reconstruction accuracy from RGB satellite images. The algorithm performs the diffusion process in the latent space and uses a conditional decoder module to enhance the decoding accuracy of the DEM latent vectors. Experimental results show that the proposed algorithm outperforms the baseline algorithm in terms of reconstruction accuracy, providing a new technical approach to efficiently reconstruct DEMs for extraterrestrial planets. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 1027 KiB  
Article
Optimizing Parameters of Strong Oxidizing Free Radicals Application for Effective Management of Wheat Powdery Mildew
by Huanhuan Zhang, Bo Zhang, Huagang He, Lulu Zhang, Xinkang Hu, Xintong Du and Chundu Wu
Agronomy 2025, 15(8), 1785; https://doi.org/10.3390/agronomy15081785 - 24 Jul 2025
Abstract
Wheat powdery mildew is a major fungal disease threatening global wheat production. To develop an effective and environmentally friendly control strategy, this study systematically evaluated the disease-suppressive efficacy of strong oxidative free radicals across a series of treatment parameters, including radical concentrations (3.0–8.0 [...] Read more.
Wheat powdery mildew is a major fungal disease threatening global wheat production. To develop an effective and environmentally friendly control strategy, this study systematically evaluated the disease-suppressive efficacy of strong oxidative free radicals across a series of treatment parameters, including radical concentrations (3.0–8.0 mg/L), spraying durations (20–60 s), solution pH levels (5–8), spraying heights (0–20 cm), and treatment timings corresponding to different infection stages (0–120 h post-inoculation). Response surface methodology (RSM) was used to optimize these variables with the objective of maximizing disease control efficacy. The results showed that control efficacy increased with radical concentration up to 5.0 mg/L, beyond which a saturation effect was observed. The most effective conditions included a spraying duration of 50 s and a height of 6.5 cm. Maximum suppression was achieved when the treatment was applied within 0–12 h post-infection. Moreover, adjusting the solution pH to a range of 5–7 further enhanced the efficacy. The RSM-based predictive model demonstrated high accuracy (R2 = 0.9942), and the optimized parameters—6.65 mg/L radical concentration, 50.84 s spraying duration, and treatment at 15.67 h post-infection—yielded a predicted control efficacy of 97.64%, with a validation error below 0.5%. This study provides a quantitative basis for the precise and sustainable deployment of free radical-based treatments in wheat disease management. Full article
(This article belongs to the Section Pest and Disease Management)
15 pages, 4180 KiB  
Article
Quantitative and Correlation Analysis of Pear Leaf Dynamics Under Wind Field Disturbances
by Yunfei Wang, Xiang Dong, Weidong Jia, Mingxiong Ou, Shiqun Dai, Zhenlei Zhang and Ruohan Shi
Agriculture 2025, 15(15), 1597; https://doi.org/10.3390/agriculture15151597 - 24 Jul 2025
Abstract
In wind-assisted orchard spraying operations, the dynamic response of leaves—manifested through changes in their posture—critically influences droplet deposition on both sides of the leaf surface and the penetration depth into the canopy. These factors are pivotal in determining spray coverage and the spatial [...] Read more.
In wind-assisted orchard spraying operations, the dynamic response of leaves—manifested through changes in their posture—critically influences droplet deposition on both sides of the leaf surface and the penetration depth into the canopy. These factors are pivotal in determining spray coverage and the spatial distribution of pesticide efficacy. However, current research lacks comprehensive quantification and correlation analysis of the temporal response characteristics of leaves under wind disturbances. To address this gap, a systematic analytical framework was proposed, integrating real-time leaf segmentation and tracking, geometric feature quantification, and statistical correlation modeling. High-frame-rate videos of fluttering leaves were acquired under controlled wind conditions, and background segmentation was performed using principal component analysis (PCA) followed by clustering in the reduced feature space. A fine-tuned Segment Anything Model 2 (SAM2-FT) was employed to extract dynamic leaf masks and enable frame-by-frame tracking. Based on the extracted masks, time series of leaf area and inclination angle were constructed. Subsequently, regression analysis, cross-correlation functions, and Granger causality tests were applied to investigate cooperative responses and potential driving relationships among leaves. Results showed that the SAM2-FT model significantly outperformed the YOLO series in segmentation accuracy, achieving a precision of 98.7% and recall of 97.48%. Leaf area exhibited strong linear coupling and directional causality, while angular responses showed weaker correlations but demonstrated localized synchronization. This study offers a methodological foundation for quantifying temporal dynamics in wind–leaf systems and provides theoretical insights for the adaptive control and optimization of intelligent spraying strategies. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 1605 KiB  
Article
Accurate Dual-Channel Broadband RF Attenuation Measurement System with High Attenuation Capability Using an Optical Fiber Assembly for Optimal Channel Isolation
by Anton Widarta
Electronics 2025, 14(15), 2963; https://doi.org/10.3390/electronics14152963 - 24 Jul 2025
Abstract
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage [...] Read more.
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage divider (IVD) that provides precise voltage ratios at a 1 kHz operating IF, serving as the primary attenuation standard. To ensure optimal inter-channel isolation, essential for accurate high-attenuation measurements, an optical fiber assembly, consisting of a laser diode, a wideband external electro-optic modulator, and a photodetector, is integrated between the channels. A comprehensive performance evaluation is presented, with particular emphasis on the programmable IVD calibration technique, which achieves an accuracy better than 0.001 dB across all attenuation levels, and on the role of the optical fiber assembly in enhancing isolation, demonstrating levels exceeding 120 dB across the entire frequency range. The system demonstrates measurement capabilities with expanded uncertainties (k = 2) of 0.004 dB, 0.008 dB, and 0.010 dB at attenuation levels of 20 dB, 60 dB, and 100 dB, respectively. Full article
(This article belongs to the Special Issue RF/MM-Wave Circuits Design and Applications, 2nd Edition)
25 pages, 3372 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
17 pages, 1134 KiB  
Article
Application of High Efficiency and High Precision Network Algorithm in Thermal Capacity Design of Modular Permanent Magnet Fault-Tolerant Motor
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 3967; https://doi.org/10.3390/en18153967 - 24 Jul 2025
Abstract
Aiming at the problems of low thermal analysis efficiency and high computational cost of traditional computational fluid dynamics (CFD) methods for modular fault-tolerant permanent magnet synchronous motors (MFT-PMSMs) under complex working conditions, this paper proposes a fast modeling and calculation method of motor [...] Read more.
Aiming at the problems of low thermal analysis efficiency and high computational cost of traditional computational fluid dynamics (CFD) methods for modular fault-tolerant permanent magnet synchronous motors (MFT-PMSMs) under complex working conditions, this paper proposes a fast modeling and calculation method of motor temperature field based on a high-efficiency and high-precision network algorithm. In this method, the physical structure of the motor is equivalent to a parameterized network model, and the computational efficiency is significantly improved by model partitioning and Fourth-order Runge Kutta method. The temperature change of the cooling medium is further considered, and the temperature rise change of the motor at different spatial positions is effectively considered. Based on the finite element method (FEM), the space loss distribution under rated, single-phase open circuit and overload conditions is obtained and mapped to the thermal network nodes. Through the transient thermal network solution, the rapid calculation of the temperature rise law of key components such as windings and permanent magnets is realized. The accuracy of the thermal network model was verified by using fluid-structure coupling simulation and prototype test for temperature analysis. This method provides an efficient tool for thermal safety assessment and optimization in the motor fault-tolerant design stage, especially for heat capacity check under extreme conditions and fault modes. Full article
(This article belongs to the Special Issue Linear/Planar Motors and Other Special Motors)
18 pages, 1936 KiB  
Article
Design of Virtual Sensors for a Pyramidal Weathervaning Floating Wind Turbine
by Hector del Pozo Gonzalez, Magnus Daniel Kallinger, Tolga Yalcin, José Ignacio Rapha and Jose Luis Domínguez-García
J. Mar. Sci. Eng. 2025, 13(8), 1411; https://doi.org/10.3390/jmse13081411 - 24 Jul 2025
Abstract
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with [...] Read more.
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with monitoring submerged components, virtual sensors are investigated as an alternative to physical instrumentation. The main objective is to design a virtual sensor of mooring hawser loads using a reduced set of input features from GPS, anemometer, and inertial measurement unit (IMU) data. A virtual sensor is also proposed to estimate the bending moment at the joint of the pyramid masts. The FOWT is modeled in OrcaFlex, and a range of load cases is simulated for training and testing. Under defined sensor sampling conditions, both supervised and physics-informed machine learning algorithms are evaluated. The models are tested under aligned and misaligned environmental conditions, as well as across operating regimes below- and above-rated conditions. Results show that mooring tensions can be estimated with high accuracy, while bending moment predictions also perform well, though with lower precision. These findings support the use of virtual sensing to reduce instrumentation requirements in critical areas of the floating wind platform. Full article
13 pages, 1401 KiB  
Article
Cost-Effectiveness of Endoscopic Stricturotomy Versus Resection Surgery for Crohn’s Disease Strictures
by Kate Lee Karlin, Grace Kim, Francesca Lim, Adam S. Faye, Chin Hur and Bo Shen
Healthcare 2025, 13(15), 1801; https://doi.org/10.3390/healthcare13151801 - 24 Jul 2025
Abstract
Background: Endoscopic therapies for Crohn’s disease (CD) strictures, including endoscopic balloon dilation (EBD) and endoscopic stricturotomy (ESt), are less invasive interventions compared to surgery. ESt is advantageous for strictures that are longer, more fibrotic, or adjacent to anatomic structures requiring precision, and it [...] Read more.
Background: Endoscopic therapies for Crohn’s disease (CD) strictures, including endoscopic balloon dilation (EBD) and endoscopic stricturotomy (ESt), are less invasive interventions compared to surgery. ESt is advantageous for strictures that are longer, more fibrotic, or adjacent to anatomic structures requiring precision, and it has shown a high rate of surgery-free survival. Methods: We designed a microsimulation state-transition model comparing ESt to surgical resection for CD strictures. We calculated quality-adjusted life years (QALYs) over a 10-year time horizon; secondary outcomes included costs (in 2022 USD) and incremental cost-effectiveness ratios (ICERs). We used a societal perspective to compare our strategies at a willingness-to-pay (WTP) threshold of 100,000 USD/QALY. Sensitivity analyses, both deterministic and probabilistic, were performed. Results: The surgery strategy cost more than 2.5 times the ESt strategy, but resulted in nine more QALYs per 100 persons. The ICER for the surgery strategy was 308,787 USD/QALY; thus, the ESt strategy was determined more cost-effective. One-way sensitivity analyses showed that quality of life after ESt as compared to that after surgery, the likelihood of repeat intervention, and surgical mortality and cost were the most influential parameters shifting cost-effectiveness. Probabilistic sensitivity analyses favored ESt in most (65.5%) iterations. Conclusions: Our study finds endoscopic stricturotomy to be a cost-effective strategy to manage primary or anastomotic Crohn’s disease strictures. Post-intervention quality of life and probabilities of requiring repeated interventions exert most influence on cost-effectiveness. The decision between ESt and surgery should be made considering patient and stricture characteristics, preferences, and cost-effectiveness. Full article
(This article belongs to the Section Healthcare Quality and Patient Safety)
21 pages, 3093 KiB  
Article
Light Propagation and Multi-Scale Enhanced DeepLabV3+ for Underwater Crack Detection
by Wenji Ai, Jiaxuan Zou, Zongchao Liu, Shaodi Wang and Shuai Teng
Algorithms 2025, 18(8), 462; https://doi.org/10.3390/a18080462 - 24 Jul 2025
Abstract
Achieving state-of-the-art performance (82.5% IoU, 85.6% F1), this paper proposes an enhanced DeepLabV3+ model for robust underwater crack detection through three integrated innovations: a physics-based light propagation correction model for illumination distortion, multi-scale feature extraction for variable crack dimensions, and curvature flow-guided loss [...] Read more.
Achieving state-of-the-art performance (82.5% IoU, 85.6% F1), this paper proposes an enhanced DeepLabV3+ model for robust underwater crack detection through three integrated innovations: a physics-based light propagation correction model for illumination distortion, multi-scale feature extraction for variable crack dimensions, and curvature flow-guided loss for boundary precision. Our approach significantly outperforms DeepLabV3+, SCTNet, and LarvSeg by 10.6–13.4% IoU, demonstrating particular strength in detecting small cracks (78.1% IoU) under challenging low-light/high-turbidity conditions. The solution provides a practical framework for automated underwater infrastructure inspection. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (3rd Edition))
18 pages, 2018 KiB  
Article
Analysis of Spatiotemporal Characteristics of Microseismic Monitoring Data in Deep Mining Based on ST-DBSCAN Clustering Algorithm
by Jingxiao Yu, Hongsen He, Zongquan Liu, Xinzhe He, Fengwei Zhou, Zhihao Song and Dingding Yang
Processes 2025, 13(8), 2359; https://doi.org/10.3390/pr13082359 - 24 Jul 2025
Abstract
Analyzing the spatiotemporal characteristics of microseismic monitoring data is crucial for the monitoring and early prediction of coal–rock dynamic disasters during deep mining. Aiming to address the challenges hampering the early prediction of coal–rock dynamic disasters in deep mining, in this paper, we [...] Read more.
Analyzing the spatiotemporal characteristics of microseismic monitoring data is crucial for the monitoring and early prediction of coal–rock dynamic disasters during deep mining. Aiming to address the challenges hampering the early prediction of coal–rock dynamic disasters in deep mining, in this paper, we propose a method for analyzing the spatiotemporal characteristics of microseismic events in deep mining based on the ST-DBSCAN algorithm. First, a spatiotemporal distance metric model integrating temporal and spatial distances was constructed to accurately describe the correlations between microseismic events in spatiotemporal dimensions. Second, along with the spatiotemporal distribution characteristics of microseismic data, we determined the spatiotemporal neighborhood parameters suitable for deep-mining environments. Finally, we conducted clustering analysis of 14 sets of actual microseismic monitoring data from the Xinjulong Coal Mine. The results demonstrate the precise identification of two characteristic clusters, namely middle-layer mining disturbances and deep-seated activities, along with isolated high-magnitude events posing significant risks. Full article
39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

25 pages, 9119 KiB  
Article
An Improved YOLOv8n-Based Method for Detecting Rice Shelling Rate and Brown Rice Breakage Rate
by Zhaoyun Wu, Yehao Zhang, Zhongwei Zhang, Fasheng Shen, Li Li, Xuewu He, Hongyu Zhong and Yufei Zhou
Agriculture 2025, 15(15), 1595; https://doi.org/10.3390/agriculture15151595 - 24 Jul 2025
Abstract
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. [...] Read more.
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. This paper proposes a high-precision, lightweight solution based on an enhanced YOLOv8n with improvements in network architecture, feature fusion, and attention mechanism. The backbone’s C2f module is replaced with C2f-Faster-CGLU, integrating partial convolution (PConv) local convolution and convolutional gated linear unit (CGLU) gating to reduce computational redundancy via sparse interaction and enhance small-target feature extraction. A bidirectional feature pyramid network (BiFPN) weights multiscale feature fusion to improve edge positioning accuracy of dense grains. Attention mechanism for fine-grained classification (AFGC) is embedded to focus on texture and damage details, enhancing adaptability to light fluctuations. The Detect_Rice lightweight head compresses parameters via group normalization and dynamic convolution sharing, optimizing small-target response. The improved model achieved 96.8% precision and 96.2% mAP. Combined with a quantity–mass model, SR/BR detection errors reduced to 1.11% and 1.24%, meeting national standard (GB/T 29898-2013) requirements, providing an effective real-time solution for intelligent hulling sorting. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

Back to TopTop